
Proceedings

8th Layered Assurance Workshop

LAW 2014

Proceedings

8th Layered Assurance Workshop

New Orleans, Louisiana, USA
8–9 December 2014

Sponsored by
Applied Computer Security Associates

Empirical Evaluation of API Usability and Security∗

Sam Weber, Robert Seacord,
Forrest Shull, David Keaton

†
Software Engineering Institute

Brad Myers, Michael Coblenz
‡

CMU

ABSTRACT
The aim of our project is to gather empirical evidence on
the security impacts of language and Application Program
Interface (API) design. Ultimately, the cause of cybersecu-
rity failures is flawed code written by programmers. Our
philosophy is that programmers are people, and we need to
study how to design APIs which are usable by programmers
— APIs with which it is easy to develop secure code.

It is well-known that API design can have a large impact
on security, and this barrier is difficult, if not impossible, to
overcome by training alone. For example, buffer overflows
were understood and documented as early as 1972, but are
still one of the most common vulnerabilities. Furthermore,
APIs are typically designed by a small number of experi-
enced developers but have an extremely long life-span, and
therefore the impact of poor API design can have far reach-
ing consequences.

There has been some previous work on the usability of
APIs, but so far this work has restricted itself to other soft-
ware quality attributes, such as learnability. A relevant ex-
ample of such work is Stylos et al [1], which studied the
relative usability of different styles of constructing objects.
The results were rather dismaying from a security point-of-
view: programmers strongly preferred a style which would
cause contructed objects to be mutable, whereas the secu-
rity community generally considers mutability a source of
security problems. One of our tasks will be to investigate
and measure this apparent trade-off between traditional us-
ability and security.

We should make clear that we are not targeting just APIs
with security-relevant functionality, such as libraries that
support authentication. Ordinary libraries — including but
not limited to string, file, and XML processing and net-
work libraries — pose more interesting problems because

∗This work is partially supported by NSF award 1423054
†email: {samweber|rcs|dmk}@cert.org, fjshull@sei.cmu.edu
‡email: {bam|mcoblenz}@cs.cmu.com

programmers using them are not actively considering secu-
rity and are consequently more likely to be susceptible to
the misconceptions, unstated assumptions, and flawed us-
age patterns that underlie most vulnerabilities.

API design is a broad domain to research, so we are focus-
ing on a few select areas that research has shown to have se-
curity implications such as concurrency and design patterns
like immutability. We expect that usability and security will
be aligned with respect to concurrency APIs (that is, more
usable APIs will also be more secure), but as mentioned
above, they will be opposed with respect to mutability. Our
research methodology relies on a mix of corpus review (to
understand how these issues are dealt with in contemporary
code bases) and studies with human subjects under more
controlled conditions.

We are extracting typical design patterns by which devel-
opment teams deal with concurrency API calls by analyzing
code repositories that use concurrency. We are augment-
ing these corpus reviews with field observations and surveys
using contextual inquiries of professionals, and surveying al-
ternate concurrency standards and approaches. From this
information, we will identify specific hypotheses about the
usability differences between alternate styles of presenting
concurrency to programmers. This will be used to design
and conduct user-studies.

We will use two different populations, students and ex-
perts, with a balanced within-subjects design to control for
individual programmer differences as well as ordering effects.
The evaluation will include quantitative measures (such as
number of errors, code length, completion time) and quali-
tative measures (such as rationales for design decisions) col-
lected through a think-aloud protocol and questionnaires.
This task will produce data as to the types and frequency
of errors that programmers can be expected to make using
alternate concurrency APIs.

In parallel, we will also conduct programmer studies of
the impact of mutability on both security and usability.

The ultimate aim of our project is to produce experimentally-
validated and specific guidance to API designers on how to
create systems which are less prone to security vulnerabili-
ties.

1. REFERENCES
[1] J. Stylos and S. Clarke. Usability Implications of

Requiring Parameters in Objects’ Constructors. 29th
International Conference on Software Engineering
(ICSE’07), pages 529–539, May 2007.

