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Abstract

Poor visibility conditions due to murky water, bad

weather, dust and smoke severely impede the performance

of vision systems. Passive methods have been used to restore

scene contrast under moderate visibility by digital post-

processing. However, these methods are ineffective when

the quality of acquired images is poor to begin with. In this

work, we design active lighting and sensing systems for con-

trolling light transport before image formation, and hence

obtain higher quality data. First, we present a technique

of polarized light striping based on combining polarization

imaging and structured light striping. We show that this

technique out-performs different existing illumination and

sensing methodologies. Second, we present a numerical ap-

proach for computing the optimal relative sensor-source po-

sition, which results in the best quality image. Our analysis

accounts for the limits imposed by sensor noise.

1. Introduction

Computer vision systems are increasingly being de-

ployed in domains such as surveillance and transportation

(terrestrial, underwater or aerial). To be successful, these

systems must perform satisfactorily in common poor visi-

bility conditions including murky water, bad weather, dust

and smoke. Unfortunately, images captured in these condi-

tions show severe contrast degradation and blurring, making

it hard to perform meaningful scene analysis.

Passive methods for restoring scene contrast [14, 18, 22]

and estimating 3D scene structure [4, 12, 28] rely on post-

processing based on the models of light transport in nat-

ural lighting. Such methods do not require special equip-

ment and are effective under moderate visibility [12], but

are of limited use in poor visibility environments. Very of-

ten, there is simply not enough useful scene information in

images. For example, in an 8-bit camera, the intensity due

to dense fog might take up 7 bits, leaving only 1 bit for

scene radiance. Active systems, on the other hand, give us

flexibility in lighting and/or camera design, allowing us to

control the light transport in the environment for better im-

age quality. Figure 1 illustrates the significant increase in

image quality using our technique. In this experiment, the

Figure 1. Polarized light striping versus flood-lighting. In this ex-

periment, the scene is comprised of objects immersed in murky

water. Using the polarized light striping approach, we can control

the light transport before image formation for capturing the same

scene with better color and contrast. High-resolution images can

be downloaded from the project web-page [7].

scene comprised of objects immersed in murky water.

While propagating within a medium such as murky water

or fog, light gets absorbed and scattered. Broadly speaking,

light transport [2] can be classified based on three specific

pathways: (a) from the light source to the object, (b) from

the object to the sensor and (c) from the light source to the

sensor without reaching the object (see Figure 2). Of these,

the third pathway causes loss of contrast and effective dy-

namic range (for example, the backscatter of car headlights

in fog), and is thus undesirable.

We wish to build active illumination and sensing systems

that maximize light transport along the first two pathways

while simultaneously minimizing transport along the third.

To this end, we exploit some real world observations. For

example, while driving in foggy conditions, flood-lighting

the road ahead with a high-beam may reduce visibility due

to backscatter. On the other hand, underwater divers real-

ize that maintaining a good separation between the source

and the camera reduces backscatter, and improves visibil-
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Figure 2. Light transport in scattering media for different source and sensor configurations. (a) Illustration of the three light transport

components. (b) The backscatter B reduces the image contrast. The amount of backscatter increases with the common backscatter volume.

(c) By changing the relative placement of the sensor and source, we can modulate the light transport components for increasing the image

contrast. (d) The common backscatter volume can be reduced by using light stripe scanning as well.

ity [21, 9]. Polarization filters have also been used to reduce

contrast loss due to haze and murky water [20, 24, 19, 6].

Based on these observations, we attempt to address two key

questions. First, which illumination and sensing modality

allows us to modulate the three light transport pathways

most effectively? Second, what is the “optimal” placement

of the source and the sensor? This paper has two main con-

tributions:

(1) We present an active imaging technique called polar-

ized light striping and show that it performs better than pre-

vious techniques such as flood-lighting, unpolarized light

striping [10, 15, 9], and high frequency illumination based

separation of light transport components [16].

(2) We derive a numerical approach for computing the

optimal relative sensor-source position in poor visibility

conditions. We consider a variety of illumination and sens-

ing techniques, while accounting for the limits imposed by

sensor noise. Our model can be used for improving visibil-

ity in different outdoor applications. It is useful for tasks

such as designing headlights for vehicles (terrestrial and un-

derwater). We validate our approach in real experiments.

2. How to Illuminate and Capture the Scene?

In this section, we present an active imaging technique:

polarized light striping. We also analyze the relative mer-

its of different existing techniques, and show that polarized

light striping outperforms them.

While propagating through a medium, light gets ab-

sorbed and scattered (Figure 2). The image irradiance at

a particular pixel is given as a sum of the three compo-

nents, the direct signal (D), the indirect signal (A) and the

backscatter (B):

E(x, y) = D(x, y) + A(x, y)
︸ ︷︷ ︸

Signal

+ B(x, y)
︸ ︷︷ ︸

Backscatter

. (1)

The total signal S is

S(x, y) = D(x, y) + A(x, y) . (2)

Experimental Setup Kodak Contrast Chart

Figure 3. Our experimental setup consisting of a glass tank, filled

with moderate to high concentrations of milk (four times as those

in [15]). An LCD projector illuminates the medium with polarized

light. The camera (with a polarizer attached) observes a contrast

chart through the medium.

The backscatter B degrades visibility and depends on the

optical properties of the medium such as the extinction co-

efficient and the phase function. The direct and the indi-

rect components (D and A) depend on both the object re-

flectance and the medium. Our goal is to design an active

illumination and sensing system that modulates the compo-

nents of light transport effectively. Specifically, we want to

maximize the signal S, while minimizing the backscatter B.

We demonstrate the effectiveness of different imaging

techniques in laboratory experiments. Our experimental

setup consists of a 60 × 60 × 38 cm3 glass tank filled with

dilute milk (see Figure 3). The glass facades are anti-

reflection coated to avoid stray reflections.1 The scene con-

sists of objects immersed in murky water or placed behind

the glass tank. A projector illuminates the scene and a cam-

era fitted with a polarizer observes the scene. We use a Sony

VPL-HS51A, Cineza 3-LCD video projector. The red and

the green light emitted from the projector are inherently po-

larized channels. If we want to illuminate the scene with

blue light, we place a polarizer in front of the projector. We

use a 12-bit Canon EOS1D Mark-II camera, and a Kodak

contrast chart as the object of interest to demonstrate the

contrast loss or enhancement for different techniques.

1Imaging into a medium through a flat interface creates a non-single

viewpoint system. The associated distortions are analyzed in [25].
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Figure 4. Limitations of the high frequency illumination based method. A shifting checkerboard illumination pattern was used with the

checker size of 10 × 10 pixels. (a) Maximum image (b) Minimum image (global component) (c) Direct component (d) Direct component

obtained using lower frequency illumination (checker size of 20 × 20 pixels). The direct component images have low SNR in the presence

of moderate to heavy volumetric scattering. The global image is approximately the same as a flood-lit image, and hence, suffers from low

contrast. This experiment was conducted in moderate scattering conditions, same as the second row of Figure 6.

Figure 5. The relative direct component of the signal reduces with

increasing optical thickness of the medium. This plot was calcu-

lated using simulations, with a two-term Henyey-Greenstein scat-

tering phase function [8] for a parameter value of 0.8.

High-frequency illumination: Ref. [16] presented a

technique to separate direct and global components of light

transport using high frequency illumination, with good sep-

aration results for inter-reflections and sub-surface scatter-

ing. What happens in the case of light transport in volumet-

ric media? Separation results in the presence of moderate

volumetric scattering are illustrated in Figure 4. The direct

component is the direct signal (D), whereas the global com-

ponent is the sum of indirect signal (A) and the backscatter

(B), as shown in Figure 2. Thus, this method seeks the fol-

lowing separation:

E(x, y) = D(x, y)
︸ ︷︷ ︸

Direct

+ A(x, y) + B(x, y)
︸ ︷︷ ︸

Global

. (3)

However, to achieve the best contrast, we wish to sep-

arate the signal D + A from the backscatter B. As the

medium becomes more strongly scattering, the ratio D
S

falls

rapidly due to heavy attenuation and scattering, as illus-

trated in Figure 5. This plot was estimated using numerical

simulations using the single scattering model of light trans-

port.2 Consequently, for moderate to high densities of the

2With multiple scattering, the ratio falls even more sharply.

medium, the direct image suffers from low signal-to-noise-

ratio (SNR), as shown in Figure 4. Further, the indirect sig-

nal (A) remains unseparated from the backscatter B, in the

global component. Thus, the global image is similar to a

flood-lit image, and suffers from low contrast.

Polarized flood-lighting: Polarization imaging has been

used to improve image contrast [19, 23, 6] in poor visibility

environments. It is based on the principle that the backscat-

ter component is partially polarized, whereas the scene radi-

ance is assumed to be unpolarized. Using a sensor mounted

with a polarizer, two images can be taken with two orthog-

onal orientations of the polarizer:

Eb =
D + A

2
+

B(1 − p)

2
(4)

Ew =
D + A

2
+

B(1 + p)

2
, (5)

where p is the degree of polarization (DOP) of the backscat-

ter. Here, Eb and Ew are the ‘best-polarized image’ and

the ‘worst-polarized image’, respectively. Thus, using opti-

cal filtering alone, backscatter can be removed partially, de-

pending on the value of p. Further, it is possible to recover

an estimate of the signal Ŝ in a post-processing step [19]:

Ŝ = Eb

(

1 +
1

p

)

+ Ew

(

1 −
1

p

)

. (6)

However, in optically dense media, heavy backscatter

due to flood-lighting can dominate the signal, making it im-

possible for the signal to be recovered. This is illustrated

in Figure 6, where in the case of flood-lighting under heavy

scattering, polarization imaging does not improve visibility.

Light stripe scanning: Here, a thin sheet of light is

scanned across the scene. In comparison to the above ap-

proaches, the common backscatter volume is considerably
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Figure 6. Comparison of various illumination and sensing techniques (zoom into the marked areas to better assess the image quality).

Flood-lit images suffer from a severe loss of contrast, specially in the presence of heavy scattering (a,b). Polarized light striping achieves a

significant increase in image contrast, even in the presence of heavy scattering (a-d). In moderate scattering, fine details (text) are recovered

more reliably in (g) and (h), as compared to (e). See (i), (j), (k) and (l) for close-ups of the marked areas in (e), (f), (g) and (h) respectively.

The moderate scattering experiment was conducted under the same conditions as the experiment in Figure 4.

reduced (see Figure 2d). The sheet of light intersects the

object to create a stripe that is detected using a gradient op-

erator.3 All stripes are then mosaiced to create a composite

image CI [10, 15, 9]. Alternatively, the composite image

can be obtained by simply selecting the maximum value at

each pixel over all the individual light stripe images SIk:

CI(x, y) = maxk{SIk(x, y)} . (7)

3In our particular implementation, the projector illuminates a single

plane and has low power. We compensate for this by increasing the ex-

posure time of the camera.

Polarized light striping: We propose polarized light

striping as a technique that combines the advantages of po-

larization imaging and light striping, and thus, is applica-

ble for an extended range of medium densities. Earlier,

we demonstrated that light striping reduces the amount of

backscatter. However, reliable localization of the object

stripes (by using gradient operator or by selecting the max-

imum pixel value, as in Eq. 7) is severely impeded due to

strong backscatter. This is illustrated in Figure 7.

To enable reliable detection of the object stripes even in

the presence of strong scattering, we use polarization imag-

ing in conjunction with light striping. A high DOP of the
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Figure 7. Unpolarized versus polarized light stripe scanning. (a) Ray diagram illustrating light stripe scanning, adapted from [15]. (b) The

camera observes a light stripe (1 out of 30) without a polarizer. The visible light plane is the backscatter and impedes reliable detection

of the object stripe. (c) Through a polarizer, there is a considerable reduction in backscatter. The light plane-object intersection becomes

more distinct, thus enabling its reliable delineation. (d) The removed backscatter (difference of (b) and (c)). Video of a complete scan can

be downloaded from the project web-page [7].

backscatter is essential for removing the backscatter using

polarization filtering (Eq. 4), or to recover a reliable estimate

of the signal using post-processing (Eq. 6). In our experi-

ments, the camera observes the scene through a polarization

filter and the light sheets irradiating the scene are polarized.

Since the incident illumination is completely polarized, the

DOP of the backscatter is high (see appendix). This results

in a significant reduction in the amount of backscatter, and

thus, enables reliable detection of the stripes.4 This is shown

in Figure 7. We compare the results of polarized light strip-

ing versus previous illumination and sensing techniques in

Figure 6. Notice especially the differences in the contrast

under strong scattering. Another result is shown in Figure 1.

3. Optimal Camera-Source Placement

Conventional wisdom from the underwater imaging lit-

erature suggests maximizing the sensor-source separation to

reduce the backscatter, and hence, increase the image con-

trast [9, 21] (see Figure 2). However, this does not take into

account the limitations posed by measurement noise. In-

deed, placing the source and the sensor far from each other

or the scene results in strong attenuation of light, and a low

SNR. In this section, we investigate this trade-off between

image contrast and SNR to compute the optimal relative

sensor-source positions.

3.1. Quality Measures

In order to formalize the notion of “optimal”, we define

various image quality measures for different imaging and

illumination techniques. These quality measures serve as

objective functions which can be maximized to find the op-

timal placement of the source and the camera.

Contrast Quality Measure: A major goal of an imaging

system is to maximize the image contrast. Analogous to [1,

4Polarization imaging was previously used with phase-shifted struc-

tured illumination for improved reconstruction of translucent objects [3].

5], we define the contrast quality measure, CQM(x, y) as

the ratio of the signal S(x, y) to the total intensity E(x, y):

CQM(x, y, p) =
S

S + B(1 − p)
· (8)

This measure takes polarization imaging into account by

defining the total intensity as that of the best polarized im-

age, as in Eq. (4). In the absence of a polarizer, p = 0.

Delineation of light plane-scene intersection: Success of

light striping in scattering media relies on reliable delin-

eation of the object stripe. One scheme is to detect a bright-

ness discontinuity in the intensity profile across the stripe

edge. Thus, for a light stripe scanning system, we define

a gradient quality measure (GQM) along the edge of the

stripe in terms of the strength of gradient across the stripe

edge. Consider Figure 8c; since the scene point O′ does not

have the direct component D or the backscatter component

B(1 − p), the normalized difference in intensity of O and

O′ is given as:

GQM(x, y, p) =
D + B(1 − p)

D + A + B(1 − p)
· (9)

SNR dependent weighting: An image with high contrast

but low overall intensity may result in a low SNR, and hence

be of limited use. Thus, we define an SNR dependent weight

W as a monotonically increasing function of the total sig-

nal value S. The quality measures (CQM and GQM) are

weighted by W so that signal values in the low SNR range

are penalized. For example, W can be a linear function of

S. For more flexibilty, we use a sigmoid function of S:

W(x, y) =
1

1 + e−(S−µ
z )

, (10)

where µ is the shift and z is the steepness of the sigmoid.

For example, µ can be the dark current offset. Similarly, if

the noise is derived from a Gaussian distribution, z can be

the standard deviation. In addition, we should account for

the effect of post-processing on image noise [24, 17].
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Figure 8. Simulating image formation for finding the optimal sensor-source configuration. (a) A schematic view of the volume. We use a

point light source (L) and a pinhole camera (C). The object is Lambertian, with reflectance R. (b) We calculate D, A and B according to

Eqs. (11-13). (c) In the case of light striping, the point O
′ is not getting directly irradiated by the source. Also, the viewing ray from O

′

does not intersect the common backscatter volume. Thus, the direct component and the backscatter component at O
′ are null. This results

in a brightness gradient across the stripe edge. The strength of the gradient is given by Eq. 9.

3.2. Simulations

Consider an underwater scenario where a remote oper-

ated vehicle (ROV) wants to capture images at a given dis-

tance. Given an approximate estimate of the object albedo,

medium scattering parameters [13] and sensor noise, we can

simulate the image formation process. To illustrate the con-

cept, we simulate the image formation process for our ex-

perimental setup. The Lambertian object reflectance was

assumed to be 0.6. For different source-camera configu-

rations, we compute the appropriate quality measure de-

scribed above. Then, the optimal configuration is the one

that maximizes the quality measure.

Figure 8 illustrates the image formation geometry. In our

experiments and simulations, the scene and camera remain

fixed, while the source is moved to vary the sensor-source

separation dLC. Point O on the object is being observed by

the camera. Points X and Y are in the medium. The dis-

tances dLO, dCO, dLX, dXO, dCO, dLY and dYC, and the angles

φ, α, γ, θ are as illustrated in Figure 8. To keep our simula-

tions simple, we assume a single scattering model of light

transport and a homogeneous medium. The individual com-

ponents of light transport are then given by:

D =
I0

d2
LO

e−σ(dLO+dCO)R(φ) (11)

A =

∫

V

I0

d2
LX

e−σ(dLX+dXO+dCO)F (α)R(γ)dV (12)

B =

∫ C

O

I0

d2
LY

e−σ(dLY+dYC)F (θ)dY , (13)

where I0 is the source radiance, σ is the extinction coef-

ficient, R is the Lambertian object reflectance, F is the

scattering phase function (we use the two-term Henyey-

Greenstein function [8]) and V is the illuminated volume.

Polarized images, Eb and Ew are simulated according

to Eqs. (4-5). This requires knowledge of the DOP of the

backscatter p. Using our experimental setup, we estimated

p to be approximately 0.8, from the regions of the image

without any object. We can also compute p analytically,

given the dependence of the DOP of scattered light on the

scattering angle, such as given in the Appendix.

Optimal configuration for flood-lighting: Let us find

the configuration that is optimal in terms of both image

contrast and noise. We plot the product of the CQM and

W versus the sensor-source separation dLC (Figure 9a).

The tradeoff between contrast and SNR results in a local

maximum. Notice that polarization improves image quality

as compared to unpolarized imaging. However, since the

DOP (and hence, the amount of contrast enhancement)

is similar for all sensor-source positions, the location of

the peak remains the same. The curve for the ideal case

of zero noise increases monotonically. However, for real

world scenarios, where measurement noise places limits

on the sensor’s abilities, our approach can yield an optimal

placement. This is illustrated in Figure 9 (b-c). The

image taken using the optimal separation (40 cms) has

high contrast and low noise. On the other hand, notice the

significant noise in the image taken using a large separation

(60 cms).

Optimizing the light stripe scan: The case of light stripe

scanning is more interesting. Instead of illuminating the

whole scene at once, we illuminate it using one sheet of

light at a time. We want to find the optimal light stripe scan.

Should we scan the scene (a) by rotating the source, (b)

by translating it, or (c) a combination thereof? To answer

this, we plot the product of the GQM and the W for our

setup (Figure 10). We observe different optimal separations

for different (3 out of 30) stripe locations. Figure 10 (e)

shows the high-contrast image acquired using the results of

the simulations. The camera and the projector were placed
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Figure 9. Optimal sensor-source configuration for flood-lighting.

(a) Plot of CQM × W versus dLC for our experimental setup.

The tradeoff between contrast and SNR results in a maximum.

(b) Large separation (60 cms) results in heavy image noise (c) Op-

timal separation (40 cms) results in a high contrast, low noise im-

age (zoom into the marked area). Both the frames were captured

with the same exposure time.

at a small distance from the facade of the glass tank in real

experiments. By carefully choosing the light rays, we can

simulate a light source and a sensor placed on the glass fa-

cade, as assumed in the simulations. The optimal scan for

polarized light striping is the same as unpolarized light strip-

ing, but results in better image quality.

4. Discussion

We study new ways to control light transport for the pur-

pose of capturing better quality data in poor visibility en-

vironments. With existing techniques for measurement of

medium scattering [13] and polarization properties [27], our

simulation-based approach can be used to adapt the illu-

mination and sensing system in-situ. Post-processing ap-

proaches are expected to recover the scene when applied to

the images acquired using our system. Our analysis focused
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Figure 10. We can scan the scene (a) by rotating the source, (b) by

translating it, or (c) a combination thereof. (d) Plot of GQM ×
W versus dLC for different stripe locations O1, O2 and O3, for our

setup. We can notice different optimal separations for these stripe

locations. (e) A high contrast image resulting from the optimal

light stripe scan designed using simulations.

on a single divergent source and a single camera. It is worth

extending our analysis to multiple cameras and sources [11].

More broadly, we believe that better control of the light

transport can be achieved with greater flexibility in choosing

illumination and viewing rays.
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A. Degree of Polarization of Scattering

In this appendix, we study the dependence of the DOP

of the scattered light, DOPB, on the scattering angle and the

DOP of the incident light, DOPL. We consider only the ver-

tical and horizontal polarized components of linearly polar-

ized light. Hence, we consider the first 2 × 2 sub-matrix of

the full 4×4 Mueller matrix. Polarization properties of scat-

tered light can be characterized by the Mueller matrix [26]:

[
IB

QB

]

=

[
m11 m12

m21 m22

] [
IL

QL

]

, (14)

where IL is the sum, and QL is the difference of the horizon-

tal and vertically polarized components of the incident light.

Similarly, IB and QB are the sum and difference respectively

of the scattered light. Note that DOP = Q

I
. Consequently,

based on Eq. (14):

DOPB =
m21 + m22 DOPL

m11 + m12 DOPL

· (15)

Using the above equation and the measured Mueller ma-

trix data for ocean water [27], we plot DOPB versus the

scattering angle in Figure 11. For comparison, we also

plot the behavior for Rayleigh scattering. For low values of

DOPL (natural light), the curve qualitatively resembles that

of Rayleigh scattering. On the other hand, for a completely

polarized source (for example, an LCD projector), the curve

is flatter, with an average value of 0.8 for backscattering

angles. Interestingly, this agrees with the observation made

in [23] as well.


