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Abstract

Acquiring 3D models of intricate objects (like tree
branches, bicycles and insects) is a hard problem due to severe
self-occlusions, repeated thin structures and surface disconti-
nuities. In theory, a shape-from-silhouettes (SFS) approach
can overcome these difficulties and use many views to recon-
struct visual hulls that are close to the actual shapes. In prac-
tice, however, SFS is highly sensitive to errors in silhouette
contours and the calibration of the imaging system, and there-
fore not suitable for obtaining reliable shapes with a large
number of views. We present a practical approach to SFS us-
ing a novel technique called coplanar shadowgram imaging,
that allows us to use dozens to even hundreds of views for vi-
sual hull reconstruction. Here, a point light source is moved
around an object and the shadows (silhouettes) cast onto a sin-
gle background plane are observed. We characterize this imag-
ing system in terms of image projection, reconstruction ambi-
guity, epipolar geometry, and shape and source recovery. The
coplanarity of the shadowgrams yields novel geometric prop-
erties that are not possible in traditional multi-view camera-
based imaging systems. These properties allow us to derive a
robust and automatic algorithm to recover the visual hull of
an object and the 3D positions of light source simultaneously,
regardless of the complexity of the object. We demonstrate the
acquisition of several intricate shapes with severe occlusions
and thin structures, using 50 to 120 views.

1. Introduction

Acquiring 3D shapes of objects that have numerous oc-
clusions, discontinuities and repeated thin structures is chal-
lenging for vision algorithms. For instance, the wreath object
shown in Figure 1(a) contains over 300 branch-lets each 1-
3mm in diameter and 20-25mm in length. Covering the entire
surface area of such objects requires a large number (dozens
or even a hundred) of views. Thus, finding correspondences
between views as parts of the object get occluded and “dis-
occluded” becomes virtually impossible, often resulting in er-
roneous and incomplete 3D models.

If we only use the silhouettes of an object obtained from
different views, it is possible to avoid the issues of correspon-
dence and occlusion in the object, and reconstruct itsvisual
hull [1]. The top row of Figure 2 illustrates the visual hulls
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(a) An intricate object (b) Our reconstruction

Figure 1: Obtaining 3D models of intricate shapes such as in (a) is
hard due to severe occlusions and correspondence ambiguities. (b)
By moving a point source in front of the object, we capture a large
number of shadows cast on a single fixed planar screen (122 views for
this object). Applying our techniques to suchcoplanar shadowgrams
results in accurate recovery of intricate shapes.

estimated using our technique from different numbers of sil-
houettes. While the visual hull computed using a few (5 or 10)
silhouettes is too coarse, the reconstruction from a large num-
ber of views (50) is an excellent model of the original shape.

In practice, however, SFS algorithms are highly sensitive
to errors in the geometric parameters of the imaging system
(camera calibration) [15]. This sensitivity worsens as the num-
ber of views increases, resulting in poor quality models. The
bottom row in Figure 2 shows the visual hulls of the wreath
object obtained using a naı̈ve SFS algorithm. This drawback
must be addressed in order to acquire intricate shapes reliably.

In traditional SFS, a camera observes the object, and the
silhouette is extracted from obtained images by matting [16].
Multiple viewpoints are captured by moving either the camera
or the object (see Figure 3(a)). For each view, the relative pose
between the object and the camera is described by six parame-
ters (3D translation and 3D rotation). Savareseet al. [12] pro-
posed a system that avoids silhouette matting. When an object
is illuminated by a single point light source, the shadow cast
onto a background plane (also known as a shadowgram [14])
is sharp and can be directly used as its silhouette. Silhouettes
from multiple views are obtained by rotating the object. In
terms of multi-view geometry, this is equivalent to traditional
SFS, requiring six parameters per view.

In this paper, we present a novel approach to SFS called
coplanar shadowgram imaging. We use a setup similar in
spirit to that proposed by Savareseet al. [12] The key differ-
ence here is that the point source is moved, while the object, the
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(a) Traditional multi-view camera-based imaging (b) Coplanar shadowgram imaging

Figure 3: (a) The object of interest is observed directly by a projective camera. The silhouette of the object is extracted from the captured
image. Multiple views are obtained by moving the camera or the object. (b) A point source illuminates the object and its shadow cast on a planar
rear-projection screen represents the silhouette of the object. Coplanar shadowgrams from multiple viewpoints are obtained by translating the
light source. Note that the relative transformation between the object and the screen remains fixed across different views.
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Figure 2: Sensitivity of SFS reconstruction. (Top) The visual
hulls reconstructed using the light source positions estimated by our
method. As the number of silhouettes increases, the visual hull gets
closer to the actual shape. (Bottom) The reconstructions obtained
from slightly erroneous source positions. As the number of views
increases, the error worsens significantly.

camera and the background screen all remain stationary. The
central focus of this work is the acquisition of visual hulls for
intricate and opaque objects from a large number of coplanar
shadowgrams. Our main contributions are described below.
Multi-view Geometry of Coplanar Shadowgram Imaging:
Figure 3 shows the difference between the traditional camera-
based and coplanar shadowgram imaging systems. Observe
that the relative transformation between the object and screen
remains fixed across different views. The image projection
model is described by only three parameters per view (3D
translation of the source) instead of six in the traditional sys-
tem. Our geometry is similar in spirit to the parallax geom-
etry [13, 3] where the homography between image planes is
known to be an identity, which allows us to derive novel geo-
metric properties that are not possible in the traditional multi-
view camera-based imaging system. For instance, we show
that epipolar geometry can be uniquely estimated from only
the shadowgrams, without requiring any correspondences, and
independent of the object’s shape.

Simple and Efficient Recovery of Source Positions: When
the shape of the object is unknown, the locations of all the point
sources can be recovered from coplanar shadowgrams, only
up to a four parameter linear transformation. In the techni-
cal report [18], we show how this transformation relates to the
well-known Generalized Perspective Bas-Relief(GPBR) am-
biguity [9] that is derived for a single viewpoint system. We
break this ambiguity by simultaneously capturing the shadow-
grams of two spheres.

Robust Reconstruction of Visual Hull: Even a small
amount of blurring in the shadow contours may result in er-
roneous estimates of source positions that in turn can lead to
erroneous visual hulls. We propose an optimization of the light
source positions that can robustly reconstruct the visual hulls
of intricate shapes. First, the large error in light source posi-
tions is corrected by enforcing the reconstructed epipolar ge-
ometry. We then minimize the mismatch between the acquired
shadowgrams and those obtained by reprojecting the estimated
visual hull. Undesirable local convergence in the non-linear
optimization is alleviated using the convex polygons of the sil-
houette contours.

For the analogous camera-based imaging, a number of al-
gorithms have been proposed to make SFS robust to errors
in camera position and orientation. These techniques op-
timize camera parameters by exploiting either epipolar tan-
gency [15, 2, 17] or silhouette consistency [19, 8], or assume
orthographic projection [6]. However, they all require non-
trivial parameter initializations and the knowledge of silhou-
ette feature correspondences (known as frontier points [7]).
This restricts the types of objects that one can reconstruct using
these methods; silhouettes of simple objects such as spheres
do not have enough features and intricate objects like branches
have too many, making it hard to find correspondences auto-
matically. As a result, previous approaches have succeeded in
only acquiring the 3D shape ofreasonably complexshapes like
people and statues that can be modeled using a small number
of views.

In contrast, our algorithm is effective for a large number of
views (dozens to a hundred), does not require any feature cor-
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Figure 4: The setup used to capture coplanar shadowgrams includes
a digital camera, a single point light source, and a rear-projection
screen. The object is placed close to the screen to cover a large field
of view. Two or more spheres are used to estimate the initial light
source positions. (Inset) An example shadowgram obtained using the
setup.

respondences and does not place any restriction on the shapes
of the objects. The minimization of silhouette mismatch is also
easier requiring optimization of source translation (3 DOF per
view), instead of the harder (and sometimes ambiguous [7])
joint estimation of camera rotation and translation (6 DOF per
view) in the traditional system. As a result, we achieve good
quality reconstructions of real objects such as wreaths, wiry
balls and palm trees, that show numerous occlusions, disconti-
nuities and thin structures.

2. Coplanar Shadowgrams

We define shadowgrams as the shadows cast on a back-
ground plane by an object that occludes a point source. If the
object is opaque, the shadowgram accurately represents the sil-
houette of the object. Henceforth, we shall use shadowgrams
and silhouettes interchangeably. Coplanar shadowgram imag-
ing is the process of acquiring several shadowgrams ona single
planeby moving the light source. Our setup shown in Figure 4
includes a 6M pixel Canon EOS-20D digital camera, a 250
watt 4mm incandescent bulb, and a 4ft× 4ft translucent rear-
projection screen.

Figure 3(b) illustrates the viewing and illumination geom-
etry of coplanar shadowgram imaging. Without loss of gen-
erality, let the shadowgram planeΠ be located atZ = 0 and
the Z−direction be perpendicular toΠ. Suppose a point light
source is atL = (u, v,w)T , then the resulting shadowgramS is
obtained by applying a source dependent projective transfor-

Table 1: Comparison between the geometric parameters of silhouette
projection. Forn views, the traditional multi-view system is described
by 5+ 6n parameters. In comparison, the coplanar imaging system
requires only 8+ 3n parameters.

View independent View dependent
Projective cameras 1 (focal length) 3 (rotation)

1 (aspect ratio) 3 (translation)
1 (skew)
2 (image center)

Coplanar shadowgrams8 (homographyH) 3 (translationL)

mationP(L) to the objectO as:

S = P(L)O (1)

where, the projective transformationP(L) from 3D space to the
2D screen is (see the technical report [18] for the derivation):

P(L) =

 −w 0 u 0
0 −w v 0
0 0 1 −w

 . (2)

In Eq.(1), S represents the set of 2D points (in homoge-
neous coordinates) within the shadowgram on the planeΠ, and
O represents the 3D points on the object surface. The image
I captured by the camera is related to the shadowgramS on
the planeΠ by a 2D homography:I = H S. This homography
H is independent of the light source position and can be esti-
mated separately using any computer vision algorithm (such as
the four-point method [7]). In the following, we assume that
the shadowgramS has been estimated usingS = H−1 I .

Now let a set of shadowgrams{Sk} be captured by moving
the source ton different locations{Lk} (k = 1, · · · ,n). Then,
the visual hullV of the object is obtained by the intersection:

V =
⋂

k

P(Lk)
−1 Sk. (3)

Thus, given the 3D locationsLk of the light sources, the visual
hull of the object can be estimated using Eq.(2) and Eq.(3). Ta-
ble 1 summarizes and contrasts the geometric parameters that
appear in the traditional multi-view camera-based and coplanar
shadowgram imaging systems.

3. Source Recovery using two Spheres
When the shape of the object is unknown, it is not possi-

ble to uniquely recover the 3D source positions using only the
coplanar shadowgrams. In the technical report [18], we discuss
the nature of this ambiguity and show that the visual hull and
the source positions can be computed up to a 4 parameter lin-
ear transformation. This transformation is similar in spirit to
the 4 parameterGeneralized Perspective Bas-Relief(GPBR)
transformation [9] with one difference: in the context of copla-
nar shadowgrams, the GPBR transformation is separately de-
fined with respect to the local coordinate frame defined at each
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Figure 5: Source positionL = (u, v,w)T is recovered using the el-
liptical shadowgrams of two spheres. The radii and positions of the
spheres are unknown. The major axes of the ellipses intersect the
screen atL′ = (u, v)T . Thew component is obtained using Eq.(4).

source location, whereas our ambiguity transformation is de-
fined with respect to a global coordinate frame defined on the
screen. We also derive a relationship between the two transfor-
mations.

We now present a simple calibration technique to break this
ambiguity. The 3D locationL = (u, v,w)T of a light source
is directly estimated by capturing shadowgrams of two addi-
tional spheres that are placed adjacent to the object of interest.
Figure 5 illustrates the coplanar elliptical shadowgrams cast by
the two spheres. The ellipses are localized using a constrained
least squares approach [4]. The intersection of the major axes
A1B1 andA2B2 of the two ellipses yields two (out of three) co-
ordinatesL′ = (u, v)T of the light source. The third coordinate
w is obtained as:

w =

√
b2t2

a2 − b2
− b2 (4)

wherea andb are the semimajor and semiminor axes of one
of the ellipses, andt is the length betweenL′ and the center
of the ellipse (see the technical report [18] for the derivation).
Note that more than two spheres may be used for a robust es-
timate of the source position. The above method is completely
automatic and does not require the knowledge of the radii of
the spheres, the exact locations at which they are placed in the
scene, or point correspondences.
Sensitivity to silhouette blurring: This technique of esti-
mating the source position can be sensitive to errors in mea-
sured silhouettes especially when the cast shadow of the sphere
is close to a right circle (i.e.a2 ≈ b2) . Due to the finite size of
the light bulb, the shadowgram formed may be blurred, mak-
ing it hard to localize the boundary of the silhouette. The ex-
tent of blurring depends on the relative distances of the screen
and source from the object. To show the sensitivity of the
technique, we performed simulations with three spheres. We
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Figure 6: Source positions (u,w) are estimated using three calibra-
tion spheres. The sizes and positions of the spheres and screen are
shown in the plot. Each plot shows 11 source positions obtained from
(a) ground truth, (b) accurate shadowgrams, and (c)-(d) shadowgrams
blurred using 5× 5 and 10× 10 averaging filters. On the right is the
visual hull of a branch reconstructed from 50 light sources. The poor
result demonstrates the need for better algorithms for reconstructing
intricate shapes.

blurred the simulated silhouettes (effective resolution 480×360
pixels) with 5×5 and 10×10 averaging kernels, and estimated
the 3D coordinates of the light source using two elliptic shad-
ows for whicha2−b2 are the largest. Figure 6 presentsu andw
components of the source positions reconstructed using three
spheres. Observe that the estimation becomes poor when the
source position is right above the spheres. In turn, the visual
hull of a tree branch computed from the erroneous source po-
sitions is woefully inadequate. Thus, better algorithms for im-
proving the accuracy of light source positions are crucial for
obtaining 3D models of intricate shapes.

4. Epipolar Geometry
Analogous to the scenario of binocular stereo, we define

the epipolar geometry between a pair of shadowgrams that are
generated by placing the point source in two locations (L1 and
L2 in Figure 7). Here, the locations of the point source are
analogous to the centers-of-projection of the stereo cameras.
The baseline connecting the two light sourcesL1 and L2 in-
tersects the shadowgram planeΠ at the epipoleE12. When the
light sources are equidistant from the shadowgram planeΠ, the
epipole is at infinity. Based on these definitions, we make two
key observations that do not hold for binocular stereo: since
the shadowgrams are coplanar, (a) they share thesame epipole
and (b) the points on the two shadowgrams corresponding to
the same scene point lie on thesame epipolar line.

Let Li = (ui , vi ,wi)T andL j = (u j , v j ,w j)T be the 3D coor-
dinates of the two light sources, andEi j be the homogeneous
coordinate of the epipole on the planeΠ, defined byLi andL j .
Then, the observations (a) and (b) are written as:

M i j Ei j = 0 (5)

mT
i F i j mj = 0. (6)

In Eq.(5), M i j is a 2× 3 matrix composed of two plane equa-



light source L

light source L

epipole E

epipolar line

baseline

frontier point   F

TT

1

2

12

shadowgrams

shadowgram plane Π
12

Figure 7: Epipolar geometry of two shadowgrams. The baseline con-
necting the two sourcesL1 andL2 intersects the shadowgram planeΠ
at an epipoleE12. Suppose an epipolar plane that is tangent to the
surface of an object at a frontier pointF, then the intersection of the
epipolar plane and the shadowgram planeΠ is an epipolar line. The
epipolar line can be estimated as a line that is co-tangent to the shad-
owgrams atT1 andT2.

tions in the rows

M i j =

(
−∆v ∆u uiv j − u jvi

−∆u∆w −∆v∆w (ui∆u+vi∆v)∆w−wi(∆u2+∆v2)

)
(7)

where,∆u = u j−ui , ∆v = v j−vi , and∆w = w j−wi . In Eq.(6),

F i j = [Ei j ]× (8)

is thefundamental matrixthat relates two corresponding points
mi and mj between shadowgrams. [Ei j ]× is the 3× 3 skew
symmetric matrix for which [Ei j ]×x = Ei j × x for any 3D
vectorx.

The camera geometry in coplanar shadowgram is similar in
spirit to the parallax geometry [13, 3] where the image defor-
mation is decomposed into a planar homography and a residual
image parallax vector. In our system, however, the homog-
raphy is exactly known to be an identity, which allows us to
recover the epipolar geometryonly from acquired images ac-
curately regardless of the number of views or the complexity
of the shadowgram contours.

4.1. Algorithm for estimating epipolar geometry

Suppose we have the plane in Figure 7 that includes the
baseline and is tangent to the surface of an object at afron-
tier point F. The intersection of this plane and the shadow-
gram planeΠ forms an epipolar line, which is also known as
anepipolar bitangent[3], that can be estimated as one that is
cotangent to the two shadowgrams (atT1 andT2 in Figure 7).
Two such epipolar lines can then be intersected to localize the
epipole.

epipole 
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Figure 8: Localization of the epipole. (a),(b) If two shadowgrams
are convex, a maximum of four co-tangent lines and six intersections
are possible. Considering that the object and the light source are on
the same side with respect to the screen, the epipole can be chosen
uniquely out of the six intersections. (c),(d) If the shadowgrams are
non-convex, the epipole is localized by applying the technique in (a)
or (b) to the convex polygons of the original shadowgrams.

Figure 8(a) illustrates the simplest case of two convex shad-
owgrams partially overlapping each other. There are only two
cotangent lines that touch the shadowgrams at the top and bot-
tom region, resulting in a unique epipoleE. When the convex
shadowgrams do not overlap each other, four distinct cotan-
gent lines are possible, generating six candidate epipoles, as
shown by dots in Figure 8(b). We can detect actual epipolar
lines by choosing the cotangent lines where the epipole does
not appear between the two points of shadowgram tangency.

When shadowgrams are non-convex, the number of cotan-
gent lines can be arbitrarily large depending on the complexity
of the shadowgram contours. Figure 8(c) illustrates the mul-
tiple candidates of cotangent lines at the point of tangencyT.
In this case, we compute the convex polygon surrounding the
silhouette contour as shown in Figure 8(d) and prove the fol-
lowing proposition (see the technical report [18] for the proof):
Proposition The convex hulls of the silhouettes generated by
an object are the silhouettes generated by the convex hull of
the object.

Using this proposition, the problem of estimating epipolar
lines for concave silhouettes is reduced to the case of either (a)
or (b). Thus, epipolar geometry can be reconstructed uniquely
and automatically from only the shadowgrams. This capability
of recovering epipolar geometry is independent of the shape of
silhouette, and hence, the 3D shape of the object. Even when
the object is a sphere, we can recover the epipolar geometry
without any ambiguity. In traditional multi-view camera-based
imaging, epipolar reconstruction requires at least seven pairs of
correspondences [7]. Table 2 summarizes the differences be-
tween traditional imaging and coplanar shadowgrams in terms
of recovering epipolar geometry.

For the special case where the baseline intersects a convex
object, one convex silhouette lies completely within the other
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Figure 9: Initial light source positions in Figure 6 were improved by
epipolar constraints in Eq.(9). On the right is the visual hull recon-
structed from the improved source positions.

and hence the epipole lies within the silhouettes. In this case,
there are no frontier points formed (and hence no cotangent
lines for convex silhouettes). We can avoid this case by placing
the sources such that the baselines do not always intersect the
object.

4.2. Improving accuracy of source locations

The error in the light source positions reconstructed using
spheres can be arbitrarily large depending on the localization
of the elliptical shadowgram for each sphere. This error can
be reduced by relating different light source positions through
the epipolar geometry. Let the set of epipolesEi j be estimated
from all the source pairsLi andL j . The locations of the sources
are improved by minimizing the expression in Eq.(5) for each
pair of light sources using least squares:

{L∗k} = argmin
Lk

∑
i, j

∥∥∥M i j Ei j

∥∥∥2

2
(9)

where|| · ||2 is the L2-norm of a vector. The source positions
reconstructed from the shadowgrams of spheres are used as
initial estimates. We evaluate this approach using the simu-
lated silhouettes described in Figure 6. Figure 9 shows con-
siderable improvement in accuracy obtained by enforcing the
epipolar constraint in Eq.(5). Compared to the result in Fig-
ure 6, collinearity in the positions of light sources is better re-
covered in this example.

5. Using Shadowgram Consistency
While the epipolar geometry improves the estimation of the

light source positions, the accuracy of estimate can still be in-
sufficient for the reconstruction of intricate shapes (Figure 9).
In this section, we present an optimization algorithm that im-
proves the accuracy of all the source positions even more sig-
nificantly.

5.1. Optimizing light source positions

Let V be the visual-hull obtained from the set of cap-
tured shadowgrams{Sk} and the estimated projection matrices
{P(Lk)}. WhenV is re-projected back onto the shadowgram
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Table 2: Differences between traditional multi-view camera-based
imaging and coplanar shadowgrams in epipolar reconstruction. The
traditional multi-view images require at least 7 point correspondences
between the silhouette contours. Coplanar shadowgrams allow unique
epipolar reconstruction irrespective of the shape of the 3D object. We
assume that the baselines do not always intersect the object.

Silhouette complexity Convex Non-convex
#correspondences 2 < 7 ≥ 7 ≫ 7

Traditional multi-camera impossible impossible not always hard
Coplanar shadowgrams possible possible possible possible
possible — The epipolar geometry can be reconstructed uniquely.
not always — Possible if seven correspondences are found.
hard — Hard to find the correct correspondences in practice.
impossible — Impossible because of the insufficient constraints.

plane, we obtain the silhouettesSV
k :

SV
k = P(Lk) V . (10)

Due to the nature of the intersection operator, the re-projected
silhouettesSV

k always satisfy:

∀k : SV
k ⊆ Sk . (11)

Only when the source positions are perfect, will the reprojected
silhouettes match the acquired silhouettes. Thus, we can define
a measure of silhouette mismatch by the sum of squared dif-
ference:

E2
repro jection=

∑
k

∑
x

∣∣∣SV
k (x) − Sk(x)

∣∣∣2 (12)

wherex is a pixel coordinate in silhouette image. We minimize
the above mismatch by optimizing for the locations of the light
sources. Unfortunately, optimizing Eq.(12) solely is known to
be inherently ambiguous owing to 4 DOF transformation men-
tioned in Section 3. To alleviate this issue, we simultaneously
minimize the discrepancy between the optimized light source
positionsLk and the initial source positionsL∗k estimated from
the spheres (Section 3) and epipolar geometry (Section 4):

E2
initial =

∑
k

∥∥∥Lk − L∗k
∥∥∥2

2
. (13)
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Figure 11: Reconstructed shape of a thin wire-frame object is improved with each iteration from left to right. (Top) Reconstructed visuals hull at
the end of each iteration. (Bottom) The reprojection of the reconstructed visual hulls onto one of captured silhouette images. The reprojection and
silhouettes are consistent at yellow pixels, and inconsistent at green. The boxed figures show the reconstruction from the light source positions
(a) estimated from spheres, (b) improved by epipolar geometry, and (c) optimized by maximizing shadowgram consistency.

The final objective function is obtained by a linear combination
of the two errors:

Etotal = E2
repro jection+ αE2

initial (14)

where,α is a user-defined weight. While the idea of mini-
mizing silhouette discrepancy is well known in the traditional
multi-view camera-based SFS [15, 19, 17, 8], the key advan-
tage over prior work is the reduced number of parameters our
algorithm needs to optimize (three per view for the light source
position, instead of six per view for rotation and translation of
the camera). In turn, this allows us to apply our technique to a
much larger number of views than possible before.

5.2. Implementation

We use the signed Euclidean distances as the scalar-valued
functionsSV

k (x) andSk(x) in Eq.(12). The intersection of sil-
houettes is computed for each 3D ray defined by a pixel inSk,
and then projected back to the silhouette to obtainSV

k . This
is a simplified version of image-based visual hull [10] and has
been used in silhouette registration methods [8]. Eq.(14) is
minimized using Powell’s gradient-free technique [11].

Due to the intricate shapes of the silhouettes, the error func-
tion in Eq.(14) can be complex and may have numerous lo-
cal minima. We alleviate this issue using the convex polygons
of the silhouette contours described in Section 4. Given the
proposition shown in Section 4.1, we minimize Eq.(14) using
the convex silhouettes with{L∗k} as initial parameters. The re-
sulting light source positions are in turn used as starting values
to minimize Eq.(14) with the original silhouettes. Using con-
vex silhouettes, in practice, also speeds up convergence.

We evaluate this approach using the simulated silhouettes
described in Figure 6 and 9. Compare the results in Figure 6
(using spheres to estimate source positions) and Figure 9 (en-
forcing epipolar constraints) with those in Figure 10. The final
reconstruction of the tree branch is visually accurate highlight-
ing the performance for our technique.

6. Results

In this section, we demonstrate the accuracy of our tech-
niques using real objects. All results of 3D shape reconstruc-
tions shown in this paper are generated by exact polyhedral
visual hull method proposed by Franco and Boyer [5]. We
have quantitatively evaluated our algorithms using objects with
known ground truth structure in the technical report [18].

The shadowgrams of real objects were acquired using our
experimental setup shown in Figure 4. We selected objects
that have intricate structures — the wreath object with numer-
ous thin needles (Figure 1), the thin wiry polyhedral object
(Figure 11), and two palm trees with flat leaves and severe
occlusions (Figure 12). For each object, we captured a large
number of silhouettes (122, 45 and 56 respectively) by moving
the light source to different locations.

Figure 11 illustrates the convergence properties of our opti-
mization algorithm. Figure 11(a) shows the visual hull of the
wiry polyhedral object obtained using the initial source posi-
tions estimated from the calibration spheres. The reprojection
of the visual hull shows poor and incomplete reconstruction.
By optimizing the light source positions, the quality of the vi-
sual hull is noticeably improved in only a few iterations. Fig-
ure 12(d) also shows noticeable improvement in reconstructed
shape of the palm trees from the acquired silhouettes.

The convergence of the reconstruction algorithm is quan-
titatively evaluated in Figure 13. The error in light source
positions estimated by the algorithm proposed in Section 5 is
shown in the left plot. The vertical axis shows L2 distance be-
tween the ground truth and the current estimate of light source
positions. After convergence, the errors in the light source po-
sitions are less than 1% of the sizes of the objects. The silhou-
ette mismatch defined in Eq.(12) is plotted on the right. On
average, the silhouettes cover on the order of 105 pixels. The
error in the reprojection of the reconstructed visual hulls is less
than 1% of the silhouette pixels for the real objects.



(a) Photo (b) Acquired shadowgrams (9 out of 56) (c) Initial reconstruction (d) final reconstruction

Figure 12: A palm-tree object model with a large number of thin structures. The real photograph of the object is shown in (a). (b) Fifty six
shadowgrams with average resolution 520× 425 pixels are acquired by the setup shown in Figure 4. (c) Initial and (d) final reconstruction of the
object by coplanar shadowgrams.
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Figure 13: Convergence of error: (Left) Error in light source po-
sitions computed using ground truth for simulation models. (Right)
Error in shadowgram consistency. Both plots are in logarithmic scale.

7. Discussion of Limitations

A single planar screen cannot be used to capture the com-
plete 360◦ × 360◦ view of the object. For instance, it is not
possible to capture the silhouette observed in the direction par-
allel to a shadowgram plane. This limitation can be overcome
by augmenting our system with more than one shadowgram
screen (or move one screen to different locations). Another
drawback of SFS techniques is the inability to model concav-
ities on the object’s surface. Combining our approach with
other techniques, such as photometric stereo or multi-view
stereo can overcome this limitation, allowing us to obtain ap-
pearance together with a smoother shape of the object. Finally,
using multiple light sources of different spectra to speed up ac-
quisition, and the analysis of defocus blur due to a light source
of finite area are our directions of future work.
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