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Abstract

Acquiring 3D models of intricate objects (like tree
branches, bicycles and insects) is a hard problem due to severe
self-occlusions, repeated thin structures and surface disconti-
nuities. In theory, a shape-from-silhouettes (SFS) approach
can overcome thesefficulties and use many views to recon-
struct visual hulls that are close to the actual shapes. In prac-
tice, however, SFS is highly sensitive to errors in silhouette
contours and the calibration of the imaging system, and there-
fore not suitable for obtaining reliable shapes with a large
::]Lém;)i:)\cl);\/ LZ\CI:VI’?ﬁi(\qu/Jee F;:r:ITeegtc?);?I?ncglfnggg\zsng;n:Oirﬁggsinlés Figure 1: Obtaining 3D quels of intricate shapes such as ih_(a) is

. " hard due to severe occlusions and correspondence ambiguities. (b)
that allows us to use_ dozens to eve|_1 hu_ndreds of V'_eWS for V"By moving a point source in front of the object, we capture a large
sual hull reconstruction. Here, a point light source is moved ,,mper of shadows cast on a single fixed planar screen (122 views for
around an object and the shadows (silhouettes) cast onto a sinthis object). Applying our technigues to suchplanar shadowgrams
gle background plane are observed. We characterize this imag-esults in accurate recovery of intricate shapes.
ing system in terms of image projection, reconstruction ambi-
guity, epipolar geometry, and shape and source recovery. Thesstimated using our technique fronffdrent numbers of sil-
coplanarity of the shadowgrams yields novel geometric prop- hoyettes. While the visual hull computed using a few (5 or 10)
erties that are not pOSSible in traditional multi-view camera- silhouettes is too coarse, the reconstruction from a |arge num-
based imaging systems. These properties allow us to derive ger of views (50) is an excellent model of the original shape.
robust and automatic algorithm to recover the visual hull of In practice, however, SFS algorithms are highly sensitive
an object and the 3D posi_tions of IighF source simultaneously, to errors in the geometric parameters of the imaging system
regardless of the complexity of the object. We demonstrate the., a1 calibration) [15]. This sensitivity worsens as the num-
ach|s_|t|on of several !ntncate shape; with severe occlusmnsber of views increases, resulting in poor quality models. The
and thin structures, using 50 to 120 views. bottom row in Figure 2 shows the visual hulls of the wreath
object obtained using a ne SFS algorithm. This drawback
must be addressed in order to acquire intricate shapes reliably.

Acquiring 3D shapes of objects that have numerous oc- | traditional SFS, a camera observes the object, and the
clusions, discontinuities and repeated thin structures is chaljouette is extracted from obtained images by matting [16].
Ienging_for yision algorithms.. For instance, the wreath object Multiple viewpoints are captured by moving either the camera
shown in Figure 1(a) contains over 300 branch-lets each 1-qr the object (see Figure 3(a)). For each view, the relative pose
3mm in diameter and 20-25mm in length. Covering the entire hetween the object and the camera is described by six parame-
surface area of such objects requires_ a I_arge number (dozeng, g (3D translation and 3D rotation). Savaresal. [12] pro-
or even a hundred) of views. Thus, finding correspondences,osed a system that avoids silhouette matting. When an object
between views as parts of the object get occluded and “dis-is jjluminated by a single point light source, the shadow cast
occluded” beg:omes virtually impossible, often resulting in er- gnio a background plane (also known as a shadowgram [14])
roneous and incomplete 3D models. is sharp and can be directly used as its silhouette. Silhouettes

If we only use the silhouettes of an object obtained from from multiple views are obtained by rotating the object. In

different views, it is possible to avoid the issues of correspon-terms of multi-view geometry, this is equivalent to traditional
dence and occlusion in the object, and reconstructigsal SFS, requiring six parameters per view.

hull [1]. The top row of Figure 2 illustrates the visual hulls

(a) An intricate object (b) Our reconstruction

1. Introduction

In this paper, we present a novel approach to SFS called
*National Institute of Advanced Industrial Science and Technology co_p!anar shadowgram |mag|ngWe use a setup similar in

f Carnegie Mellon University spirit to that proposed by Savareseal. [12] The key difer-
#Microsoft Research ence here is that the point source is moved, while the object, the
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Figure 3: (a) The object of interest is observed directly by a projective camera. The silhouette of the object is extracted from the captured
image. Multiple views are obtained by moving the camera or the object. (b) A point source illuminates the object and its shadow cast on a planai
rear-projection screen represents the silhouette of the object. Coplanar shadowgrams from multiple viewpoints are obtained by translating th
light source. Note that the relative transformation between the object and the screen remains fixedffenerssvikws.

Simple and Hficient Recovery of Source Positions: When

the shape of the object is unknown, the locations of all the point
sources can be recovered from coplanar shadowgrams, only
up to a four parameter linear transformation. In the techni-
cal report [18], we show how this transformation relates to the
well-known Generalized Perspective Bas-Rel{&fPBR) am-
biguity [9] that is derived for a single viewpoint system. We
break this ambiguity by simultaneously capturing the shadow-
grams of two spheres.

Our reconstruction

Robust Reconstruction of Visual Hull: Even a small
amount of blurring in the shadow contours may result in er-

| roneous estimates of source positions that in turn can lead to
5 views 10 views 50 views erroneous visual hulls. We propose an optimization of the light
source positions that can robustly reconstruct the visual hulls

Figure 2: Sensitivity of SFS reconstruction. (Top) The visual o ) - .
hulls reconstructed using the light source positions estimated by our®f intricate shapes. First, the large error in light source posi-

method. As the number of silhouettes increases, the visual hull getdiOnS is corrected by enforcing the reconstructed epipolar ge-
closer to the actual shape. (Bottom) The reconstructions obtained®metry. We then minimize the mismatch between the acquired

from slightly erroneous source positions. As the number of views shadowgrams and those obtained by reprojecting the estimated
increases, the error worsens significantly. visual hull. Undesirable local convergence in the non-linear
optimization is alleviated using the convex polygons of the sil-
camera and the background screen all remain stationary. Théouette contours.
central focus of this work is the acquisition of visual hulls for For the analogous camera-based imaging, a humber of al-
intricate and opaque objects from a large number of coplanargorithms have been proposed to make SFS robust to errors
shadowgrams. Our main contributions are described below. in camera position and orientation. These techniques op-
Multi-view Geometry of Coplanar Shadowgram Imaging: timize camera parameters by exploiting either epipolar tan-
Figure 3 shows the fierence between the traditional camera- gency [15, 2, 17] or silhouette consistency [19, 8], or assume
based and coplanar shadowgram imaging systems. Observerthographic projection [6]. However, they all require non-
that the relative transformation between the object and screeiirivial parameter initializations and the knowledge of silhou-
remains fixed across fiierent views. The image projection ette feature correspondences (known as frontier points [7]).
model is described by only three parameters per view (3D This restricts the types of objects that one can reconstruct using
translation of the source) instead of six in the traditional sys- these methods; silhouettes of simple objects such as spheres
tem. Our geometry is similar in spirit to the parallax geom- do not have enough features and intricate objects like branches
etry [13, 3] where the homography between image planes ishave too many, making it hard to find correspondences auto-
known to be an identity, which allows us to derive novel geo- matically. As a result, previous approaches have succeeded in
metric properties that are not possible in the traditional multi- only acquiring the 3D shape cdasonably compleshapes like
view camera-based imaging system. For instance, we showpeople and statues that can be modeled using a small number
that epipolar geometry can be uniquely estimated from only of views.
the shadowgrams, without requiring any correspondences, and In contrast, our algorithm isfiective for a large number of
independent of the object’s shape. views (dozens to a hundred), does not require any feature cor-

Traditional SFS



Table 1: Comparison between the geometric parameters of silhouette
projection. Foin views, the traditional multi-view system is described
by 5+ 6n parameters. In comparison, the coplanar imaging system
requires only 8 3n parameters.

View independent| View dependen

Point | 4 Projective cameras 1 (focal length) | 3 (rotation)
light source ;‘ ! 1 (aspect ratio) 3 (translation)
%  Calibration : 1 (skew)
. spheres @ 2 (image center)

Coplanar shadowgrams8 (homographyH) | 3 (translatiorl)

mation P(L) to the objecD as:
S=P(L)O 1)

where, the projective transformatifL) from 3D space to the
2D screen is (see the technical report [18] for the derivation):

n - -w 0 u O
Figure 4: The setup used to capture coplanar shadowgrams includes PL)=f 0 -w v 0 |[. 2
a digital camera, a single point light source, and a rear-projection 0 0O 1 -w

screen. The object is placed close to the screen to cover a large field
of view. Two or more spheres are used to estimate the initial light  In EQ.(1), S represents the set of 2D points (in homoge-
source positions. (Inset) An example shadowgram obtained using theneous coordinates) within the shadowgram on the giarand
setup. O represents the 3D points on the object surface. The image
| captured by the camera is related to the shadowdsaon
respondences and does not place any restriction on the shapéie plandl by a 2D homographyt = H S. This homography
of the objects. The minimization of silhouette mismatch is also H is independent of the light source position and can be esti-
easier requiring optimization of source translation (3 DOF per mated separately using any computer vision algorithm (such as
view), instead of the harder (and sometimes ambiguous [7])the four-point method [7]). In the following, we assume that
joint estimation of camera rotation and translation (6 DOF per the shadowgrar has been estimated usiSg= H™* 1.
view) in the traditional system. As a result, we achieve good Now let a set of shadowgranS,} be captured by moving
quality reconstructions of real objects such as wreaths, wirythe source ta different locationgLy} (k = 1,---,n). Then,
balls and palm trees, that show numerous occlusions, discontithe visual hullV of the object is obtained by the intersection:
nuities and thin structures.

V=[P Sk ©)
k

2. Coplanar Shadowgrams
] Thus, given the 3D locatiors, of the light sources, the visual
We define shadowgrams as the shadows cast on a backyy|| of the object can be estimated using Eq.(2) and Eq.(3). Ta-
ground plane by an object that occludes a point source. If thep|e 1 summarizes and contrasts the geometric parameters that
object is opaque, the shadowgram accurately represents the Silppear in the traditional multi-view camera-based and coplanar
houette of the object. Henceforth, we shall use shadowgramshadowgram imaging systems.
and silhouettes interchangeably. Coplanar shadowgram imag-
ing is the process of acquiring several shadowgranssingle 3. Source Recovery using two Spheres
planeby moving t_he light source. Our setl_Jp shown in Figure 4 When the shape of the object is unknown, it is not possi-
includes a 6M pixel Canon EOS-20D digital camera, & 250 pjq 15 yniquely recover the 3D source positions using only the
watt 4mm incandescent bulb, and a ®#féft translucent rear- . njanar shadowgrams. In the technical report [18], we discuss
projection screen. the nature of this ambiguity and show that the visual hull and
Figure 3(b) illustrates the viewing and illumination geom- the source positions can be computed up to a 4 parameter lin-
etry of coplanar shadowgram imaging. Without loss of gen- ear transformation. This transformation is similar in spirit to
erality, let the shadowgram plarié be located aZ = 0 and the 4 parameteGeneralized Perspective Bas-Rel({&PBR)
the Z—direction be perpendicular id. Suppose a point light  transformation [9] with one dierence: in the context of copla-
source is at. = (u,v,w)", then the resulting shadowgra®nis nar shadowgrams, the GPBR transformation is separately de-
obtained by applying a source dependent projective transfor-fined with respect to the local coordinate frame defined at each
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Figure 6: Source positionsu w) are estimated using three calibra-
tion spheres. The sizes and positions of the spheres and screen are
: . shown in the plot. Each plot shows 11 source positions obtained from
shadowgram plane T1 L=(uv) (a) ground truth, (b) accurate shadowgrams, and (c)-(d) shadowgrams
; ) - — ; blurred using 5< 5 and 10x 10 averaging filters. On the right is the
Figure 5: Source positiorl. = (u,v.w)" is recovered using the el- iq,a hyll of a branch reconstructed from 50 light sources. The poor

liptical shadowgrams of two spheres. The radii and positions of the ot demonstrates the need for better algorithms for reconstructing
spheres are unknown. The major axes of the ellipses intersect th‘?ntricate shapes.

screen at’ = (u,v)". Thew component is obtained using Eq.(4).

blurred the simulated silhouettedfgrtive resolution 480360
pixels) with 5x 5 and 10< 10 averaging kernels, and estimated
the 3D coordinates of the light source using two elliptic shad-
ows for whicha? — b? are the largest. Figure 6 presentndw

. L . ._components of the source positions reconstructed using three
We now present a simple calibration technique to break thISspheres. Observe that the estimation becomes poor when the

L S T .
gmlygwty. The 3D locatiort. - (u,v,w)" of a light source . source position is right above the spheres. In turn, the visual
is directly estimated by capturing shadowgrams of two addi- hull of a tree branch computed from the erroneous source po-

tional spheres that are placed adjacent to the object of interesty; ¢ is woefully inadequate. Thus, better algorithms for im-

Figure 5 illustrates the co_planar eII|pt|c§I shadqwgrams cast. by roving the accuracy of light source positions are crucial for
the two spheres. The ellipses are localized using a constraine btaining 3D models of intricate shapes

least squares approach [4]. The intersection of the major axes

A1B; andA;B; of the two ellipses yields two (out of three) co- 4. Epipolar Geometry
ordinates” = (u, V)" of the light source. The third coordinate
w is obtained as:

source location, whereas our ambiguity transformation is de-
fined with respect to a global coordinate frame defined on the
screen. We also derive a relationship between the two transfor
mations.

Analogous to the scenario of binocular stereo, we define
the epipolar geometry between a pair of shadowgrams that are
b2t2 generated by placing the point source in two locatidnsand
W\ b? (4) L, in Figure 7). Here, the locations of the point source are
analogous to the centers-of-projection of the stereo cameras.
wherea andb are the semimajor and semiminor axes of one The baseline connecting the two light sour¢gsand L, in-
of the ellipses, and is the length betweeh’ and the center  tersects the shadowgram pldiet the epipolé;,. When the
of the ellipse (see the technical report [18] for the derivation). light sources are equidistant from the shadowgram pihrike
Note that more than two spheres may be used for a robust esepipole is at infinity. Based on these definitions, we make two
timate of the source position. The above method is completelykey observations that do not hold for binocular stereo: since
automatic and does not require the knowledge of the radii ofthe shadowgrams are coplanar, (a) they sharedh® epipole
the spheres, the exact locations at which they are placed in thend (b) the points on the two shadowgrams corresponding to
scene, or point correspondences. the same scene point lie on teka@me epipolar line
Sensitivity to silhouette blurring:  This technique of esti- Let L = (u,vi,w;)" and L= (Uj,V]’,WJ’)T be the 3D coor-
mating the source position can be sensitive to errors in meadinates of the two light sources, aig be the homogeneous
sured silhouettes especially when the cast shadow of the sphereoordinate of the epipole on the plafiedefined byL; andL;.
is close to a right circle (i.ea? ~ b?) . Due to the finite size of ~ Then, the observations (a) and (b) are written as:
the light bulb, the shadowgram formed may be blurred, mak-
ing it hard to localize the boundary of the silhouette. The ex- Mij Eij =0 (5)
tent of blurring depends on the relative distances of the screen mT Fijm; = 0. (6)
and source from the object. To show the sensitivity of the
technique, we performed simulations with three spheres. Weln Eq.(5), Mjj is a 2x 3 matrix composed of two plane equa-
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Figure 8: Localization of the epipole. (a),(b) If two shadowgrams
> are convex, a maximum of four co-tangent lines and six intersections
T T epipole £ are possible. Considering that the object and the light source are on

shadowgram plane I the same side with respect to the screen, the epipole can be chosen

Figure 7: Epipolar geometry of two shadowgrams. The baseline con- uniquely out of the six intersections. (c),(d) If the shadowgrams are

necting the two sourcds; andL, intersects the shadowgram plaiie ~ non-convex, the epipole is localized by applying the technique in (a)

at an epipoleE;,. Suppose an epipolar plane that is tangent to the or (b) to the convex polygons of the original shadowgrams.

surface of an object at a frontier poiRt then the intersection of the

epipolar plane and the shadowgram pldhes an epipolar line. The Figure 8(a) illustrates the simplest case of two convex shad-

epipolar line can be estimated as a line that is co-tangent to the Shadowgrams partially overlapping each other. There are only two

owgrams affy andT,. cotangent lines that touch the shadowgrams at the top and bot-

tom region, resulting in a unique epipde When the convex

shadowgrams

epipolar line

tions in the rows shadowgrams do not overlap each other, four distinct cotan-
—AV AU UiVj — UjVi gent lines are possible, generating six candidate epipoles, as
Mij = —AUAW —AVAW (U AUV AV)AW-W; (AUZHAV2) shown by dots in Figure 8(b). We can detect actual epipolar
(7) lines by choosing the cotangent lines where the epipole does
where,Au = uj—u;, AV = v;—V;, andAw = w;-w;. In Eq.(6), not appear between the two points of shadowgram tangency.
When shadowgrams are non-convex, the number of cotan-
Fij = [Eijlx (8) gent lines can be arbitrarily large depending on the complexity

of the shadowgram contours. Figure 8(c) illustrates the mul-
tiple candidates of cotangent lines at the point of tangdncy

In this case, we compute the convex polygon surrounding the
silhouette contour as shown in Figure 8(d) and prove the fol-
lowing proposition (see the technical report [18] for the proof):

The camera geometry in coplanar shadowgram is similar in . .
o : _Proposition  The convex hulls of the silhouettes generated by
spirit to the parallax geometry [13, 3] where the image defor an object are the silhouettes generated by the convex hull of

mation is decomposed into a planar homography and a residuat .

. he object.
image parallax vector. In our system, however, the homog- _ _ - o _
raphy is exactly known to be an identity, which allows us to _ USing this proposition, the problem of estimating epipolar
recover the epipolar geometonly from acquired images ac- lines for concave silhouettes is reduced to the case of either (a)

curately regardless of the number of views or the complexity OF (b). Thus, epipolar geometry can be reconstructed uniquely
of the shadowgram contours. and automatically from only the shadowgrams. This capability

of recovering epipolar geometry is independent of the shape of
silhouette, and hence, the 3D shape of the object. Even when
Suppose we have the plane in Figure 7 that includes thethe object is a sphere, we can recover the epipolar geometry
baseline and is tangent to the surface of an objectfaira without any ambiguity. In traditional multi-view camera-based
tier point F. The intersection of this plane and the shadow- imaging, epipolar reconstruction requires at least seven pairs of
gram plandl forms an epipolar line, which is also known as correspondences [7]. Table 2 summarizes tlfiedinces be-
anepipolar bitangen{3], that can be estimated as one that is tween traditional imaging and coplanar shadowgrams in terms
cotangent to the two shadowgrams Tatand T, in Figure 7). of recovering epipolar geometry.
Two such epipolar lines can then be intersected to localize the For the special case where the baseline intersects a convex
epipole. object, one convex silhouette lies completely within the other

is thefundamental matrithat relates two corresponding points
m and m; between shadowgramsEi[] is the 3x 3 skew
symmetric matrix for which [j]l«<x = Ejj x x for any 3D
vectorx.

4.1. Algorithm for estimating epipolar geometry
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Figure 9: Initial light source positions in Figure 6 were improved by Figure 10: The light source positions reconstructed using epipolar

epipolar constraints in Eq.(9). On the right is the visual hull recon- constraintin Figure 9 were optimized by maximizing the shadowgram

structed from the improved source positions. consistency in Eqg.(14). On the right is the visual hull reconstructed
from the optimized source positions.

and hence the epipole lies within the silhouettes. In this case,
there are no frontier points formed (and hence no cotangenilable 2: Differences between traditional multi-view camera-based
lines for convex silhouettes). We can avoid this case by placingimaging and coplanar shadowgrams in epipolar reconstruction. The

the sources such that the baselines do not always intersect thigaditional multi-view images require at least 7 point correspondences
object between the silhouette contours. Coplanar shadowgrams allow unique

epipolar reconstruction irrespective of the shape of the 3D object. We
4.2. Improving accuracy of source locations assume that the baselines do not always intersect the object.

The error in the light source positions reconstructed using | Sihouette complexity || - Convex Non-convex
. . . . . #correspondences 2 <7 >7 >7
spheres can be arbitrarily large depending on the localization

" . Traditional multi-camerg impossible] impossible] not always  hard
of the elliptical shadowgram for each sphere. This error can Coplanar shadowgramg_possible | possible | possible | possible

be red_uced by relating fierent light source pOSitionS_thrOUgh possible  — The epipolar geometry can be reconstructed uniquely.
the epipolar geometry. Let the set of epipoigsbe estimated notalways — Possible if seven correspondences are found.
from all the source paitts; andL ;. The locations of the sources ~ hard — Hard tofind the correct correspondences in practice.

are improved by minimizing the expression in Eq.(5) for each impossible — Impossible because of the iffiient constraints.

pair of light sources using least squares: plane, we obtain the silhouettsﬁ’:

(L) = argmin " [[M; E; [ ©) SY = P(L)V. (10)
k i#]
Due to the nature of the intersection operator, the re-projected

where|| - ||, is the L2-norm of a vector. The source positions silhouettess}(’ always satisfy:
reconstructed from the shadowgrams of spheres are used as
initial estimates. We evaluate this approach using the simu- vk:SY C Sk. (11)
lated silhouettes described in Figure 6. Figure 9 shows con-
siderable improvement in accuracy obtained by enforcing the
epipolar constraint in Eq.(5). Compared to the result in Fig-
ure 6, collinearity in the positions of light sources is better re-
covered in this example.

2
5. Using Shadowgram Consistency Efeprojection= Zk] ZX: 1S9 = Sk(x)| (12)

While the epipolar geometry improves the estimation of the
light source positions, the accuracy of estimate can still be in-

suficient for the reconstruction of intricate shapes (Figure 9). sources. Unfortunately, optimizing Eq.(12) solely is known to

In this section, we present an optimization algorithm that im- _ "~ : . .
. . _be inherently ambiguous owing to 4 DOF transformation men-
proves the accuracy of all the source positions even more sig-. . : . o .
o tioned in Section 3. To alleviate this issue, we simultaneously
nificantly. o : - .
minimize the discrepancy between the optimized light source
5.1. Optimizing light source positions positionsLy and the initial source positiorlg, estimated from

the spheres (Section 3) and epipolar geometry (Section 4):

Only when the source positions are perfect, will the reprojected
silhouettes match the acquired silhouettes. Thus, we can define
a measure of silhouette mismatch by the sum of squared dif-
ference:

wherex is a pixel coordinate in silhouette image. We minimize
the above mismatch by optimizing for the locations of the light

Let V be the visual-hull obtained from the set of cap-

tured shadowgram{$y} and the estimated projection matrices E2  _ Z ”Lk —L 2 (13)
k

{P(LY)}. WhenV is re-projected back onto the shadowgram initial



(a) Initial (b) Epipolar (c) Consistency  (d) Photo

Figure 11: Reconstructed shape of a thin wire-frame object is improved with each iteration from left to right. (Top) Reconstructed visuals hull at
the end of each iteration. (Bottom) The reprojection of the reconstructed visual hulls onto one of captured silhouette images. The reprojection an
silhouettes are consistent at yellow pixels, and inconsistent at green. The boxed figures show the reconstruction from the light source position
(a) estimated from spheres, (b) improved by epipolar geometry, and (c) optimized by maximizing shadowgram consistency.

The final objective function is obtained by a linear combination 6. Results

of the two errors: In this section, we demonstrate the accuracy of our tech-

Etotal = E,2epro jection T B2 (14) niques using real objects. All results of 3D shape reconstruc-
tions shown in this paper are generated by exact polyhedral
visual hull method proposed by Franco and Boyer [5]. We

mlzll[ng_5|lhouette dlscre%aglczysls 1v;_>/ell I9<n(1)\;vn8|n :Ee 'I[(radltlgnal have quantitatively evaluated our algorithms using objects with
Mufti-view camera-base [15, 19, 17, 8], the key advan-y .., ground truth structure in the technical report [18].

tage over prior work is the reduced number of parameters our . : :
; - . . The shadowgrams of real objects were acquired using our
algorithm needs to optimize (three per view for the light source ) o .
experimental setup shown in Figure 4. We selected objects

position, instead of six per view for rotation and translation of L ; .
! . that have intricate structures — the wreath object with numer-
the camera). In turn, this allows us to apply our technique to a . . L :
. . ous thin needles (Figure 1), the thin wiry polyhedral object
much larger number of views than possible before. . :
i (Figure 11), and two palm trees with flat leaves and severe
5.2. Implementation occlusions (Figure 12). For each object, we captured a large

We use the signed Euclidean distances as the scalar-valueBumber of silhouettes (122, 45 and 56 respectively) by moving
functionsSy (x) andSy(x) in Eq.(12). The intersection of sil-  the light source to dierent locations.
houettes is computed for each 3D ray defined by a pix&kin Figure 11 illustrates the convergence properties of our opti-
and then projected back to the silhouette to ob&‘j’n This mization algorithm. Figure 11(a) shows the visual hull of the
is a simplified version of image-based visual hull [10] and has wiry polyhedral object obtained using the initial source posi-
been used in silhouette registration methods [8]. Eg.(14) istions estimated from the calibration spheres. The reprojection
minimized using Powell's gradient-free technique [11]. of the visual hull shows poor and incomplete reconstruction.

Due to the intricate shapes of the silhouettes, the error func-By optimizing the light source positions, the quality of the vi-
tion in Eq.(14) can be complex and may have numerous lo-sual hull is noticeably improved in only a few iterations. Fig-
cal minima. We alleviate this issue using the convex polygonsure 12(d) also shows noticeable improvement in reconstructed
of the silhouette contours described in Section 4. Given theshape of the palm trees from the acquired silhouettes.
proposition shown in Section 4.1, we minimize Eq.(14) using  The convergence of the reconstruction algorithm is quan-
the convex silhouettes witfL;} as initial parameters. The re- ftitatively evaluated in Figure 13. The error in light source
sulting light source positions are in turn used as starting valuespositions estimated by the algorithm proposed in Section 5 is
to minimize Eq.(14) with the original silhouettes. Using con- shown in the left plot. The vertical axis shows L2 distance be-
vex silhouettes, in practice, also speeds up convergence. tween the ground truth and the current estimate of light source

We evaluate this approach using the simulated silhouettegpositions. After convergence, the errors in the light source po-
described in Figure 6 and 9. Compare the results in Figure 6sitions are less than 1% of the sizes of the objects. The silhou-
(using spheres to estimate source positions) and Figure 9 (enette mismatch defined in Eq.(12) is plotted on the right. On
forcing epipolar constraints) with those in Figure 10. The final average, the silhouettes cover on the order &fdiRels. The
reconstruction of the tree branch is visually accurate highlight- error in the reprojection of the reconstructed visual hulls is less
ing the performance for our technique. than 1% of the silhouette pixels for the real objects.

where, « is a user-defined weight. While the idea of mini-



kS A
Exa

(a) Photo (b) Acquired shadowgrams (9 out of 56) (c) Initial reconstruction
Figure 12: A palm-tree object model with a large number of thin structures. The real photograph of the object is shown in (a). (b) Fifty six
shadowgrams with average resolution 52825 pixels are acquired by the setup shown in Figure 4. (c) Initial and (d) final reconstruction of the
object by coplanar shadowgrams.

(d) final reconstruction
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