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Figure 1. Thick and Thin Powder Samples.

1. Powder List

We collected 100 powders from 6 categories: Food (44
powders), Colorant (20), Skincare (10), Dust (10), Cleans-
ing (9), and Other (7). See Table 1 for the list of powder
names, categories, and legends for segmentation labels. See
Figure 1 for snapshots of thick and thin powder samples.

2. Pseudocode for NNCV Band Selection

See Algorithm 1.



Name Category Legend

1 Ajinomoto Food
2 Almond Flour Food
3 Aqua Glow Colorant
4 Aspirin Other
5 Baby Powder Skincare
6 Baking Soda Food
7 Barley Water Food
8 BB Powder Skincare
9 Beach Sand Dust

10 Blackboard Chalk Dust
11 Black Frit Dust
12 Black Iron Oxide Colorant
13 Black Pepper Food
14 Black Toner Colorant
15 Blue Pigment Colorant
16 Borax Detergent Booster Cleansing
17 Boric Acid Cleansing
18 Bronze Metallic Colorant
19 Brown Dye Colorant
20 Brown Sugar Food
21 Calcium Carbonate Dust
22 Cane Sugar Food
23 Caralluma Food
24 CC Powder Skincare
25 Celtic Sea Salt Food
26 Charcoal Colorant
27 Chaste Tree Berry Food
28 Chicken Bath Dust
29 Citric Acid Food
30 Cobalt Frit Dust
31 Cocoa Food
32 Coconut Flour Food
33 Coconut Oil Food
34 Coffe Mate Food
35 Corn Starch Food
36 Cream of Rice Food
37 Cream of Tartar Food
38 Cream of Wheat Food
39 Cyan Toner Colorant
40 Detox Powder Dust
41 Dragon Blood Other
42 Dry Milk Food
43 Espresso Food
44 Eye Shadow Skincare
45 Fake Moss Other
46 Flower Fuel Other
47 Fuchsia Dye Colorant
48 Fungicide Cleansing
49 Garlic Food
50 Ginger Food

Name Category Legend

51 Green Bean Water Food
52 Green Glow Colorant
53 Green Pigment Colorant
54 Guar Gum Food
55 Gym Chalk Dust
56 Hibiscus Food
57 Iodized Salt Food
58 Loose Powder Skincare
59 Lotus Food
60 Magenta Toner Colorant
61 Matcha Food
62 MCT Oil Food
63 Meringue Food
64 Milk Replacer Food
65 Moringa Food
66 Nail Dipping Colorant
67 Onion Food
68 Orange Glow Colorant
69 Orange Peel Food
70 Pearl Powder Skincare
71 Pet Moist Cleansing
72 Potassium Iodide Other
73 Potato Starch Food
74 Quick Blue Bleach Cleansing
75 Red Bean Water Food
76 Root Destroyer Cleansing
77 Sandalwood Other
78 Schorl Tourmaline Dust
79 Shaving Powder Skincare
80 Silver Metallic Colorant
81 Smelly Foot Powder Cleansing
82 Sodium Alginate Food
83 Spanish Paprika Food
84 Stain Remover Cleansing
85 Stevia Food
86 Stone Cement Dust
87 Sun Powder Skincare
88 Talcum Skincare
89 Teal Azul Dye Colorant
90 Tide Detergent Cleansing
91 Urea Other
92 Vanilla Food
93 Vitamin C Food
94 Wheat Grass Food
95 White Pepper Food
96 Yellow Dye Colorant
97 Yellow Glow Colorant
98 Yellow Pigment Colorant
99 Yellow Toner Colorant

100 Zinc Oxide Skincare

Table 1. Powder List. Powder names, categories, and legends for segmentation labels are listed.



Algorithm 1 NNCV Band Selection
Input: Number of SWIR bands to be selected Ns
Output: Selectd SWIR bands Bs
Bs ← ∅
Bn ← all SWIR bands
for i = 1 : Ns do

for each b ∈ Bn do
scoreb ← mean class accuracy of nearest neighbor
cross validation using RGBN and Bs ∪ {b} bands

end for
b← argmax

b∈Bn

scoreb

Bs ← Bs ∪ {b}
Bn ← Bn − {b}

end for
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Figure 2. Band Selection Comparison on an Additional
Patch Dataset. Mean sample accuracy calculates the mean
accuracy of all samples (200 powder samples and 200 com-
mon material samples), while mean class accuracy calcu-
lates the mean accuracy of 101 classes (100 powder classes
and 1 background class). NNCV performs better than the
others in most settings.

3. Band Selection Comparison on Additional
Patch Dataset

We captured an additional patch dataset (200 powder
patches and 200 common material patches) under light

sources Set B. We classify a new patch by finding near-
est neighbor in the patch dataset captured under Set A. The
Split Cosine Distance between mean patch intensities is
used. Figure 2 shows the accuracy vs. #SWIR bands curve
of different selection methods. NNCV performs better than
the others in most settings.

4. From Kubelka-Munk Model to Beer-
Lambert Blending Model

The Beer-Lambert Blending model can be deduced from
the Kubelka-Munk model [4] via approximation. The chan-
nel subscript c is ignored below.

Let R, R∞, and Rg (0 < R,R∞, Rg < 1) be the ab-
solute reflectance of thin powder, infinitely thick powder,
and background, and S be the scattering coefficient. The
Kubelka-Munk model is:

R =
R−1∞ (Rg −R∞)−R∞(Rg −R−1∞ )eSx(R

−1
∞ −R∞)

(Rg −R∞)− (Rg −R−1∞ )eSx(R
−1
∞ −R∞)

(1)
Let κ = S(R−1∞ −R∞), Equation 1 can be re-written as:

R =
(1−R2

∞)(Rg −R∞)

(R∞Rg −R2
∞)− (R∞Rg − 1)eκx

+R∞ (2)

Since 0 < R∞, Rg < 1, we assume R2
∞ and R∞Rg are

small enough to be ignored. The approximate model is:

R =
Rg −R∞

eκx
+R∞ = (1− e−κx)R∞ + e−κxRg (3)

Under constant shading L, I = LR, A = LR∞, B = LRg .
Then we obtain the Beer-Lambert Blending Model:

Ic = (1− e−κcx)Ac + e−κcxBc (4)

Since κ = S(R−1∞ −R∞), it means that if S does not change
much across channels, the κ signature and SWIR signature
(κ and R∞) should show negative correlation.

5. Calibrating κ with Different Backgrounds
The Beer-Lambert Blending model assumes that the at-

tenuation coefficient κ is independent of the background.
This section checks if the calibrated κ is invariant to the
background used for calibration.

We choose three different backgrounds (Black Alu-
minum Foil, Brown Leather Hide, Sand Paper) and image
a thick sample, three thin samples, and three bare back-
grounds in the same filed of view for each powder. We cal-
ibrate κ values using different backgrounds. We calculate
the coefficient of variation cv (std/mean) for each powder
and each channel. Usually the data is considered low vari-
ance if cv < 1. Figure 3 shows the histogram of mean cv
values for RGBN and SWIR channels separately. About



Figure 3. Histogram of Coefficient of Variation cv of
κ Calibrated using Different Backgrounds. Usually the
data is considered low variance if cv < 1. About 95% of
the powders show cv < 0.3, which means that κ calibrated
with different backgrounds has a very low variance.

Blending RMSE (mean±std)

RGBN SWIR

Alpha 0.023±0.021 0.022±0.024
Beer-Lambert 0.014±0.016 0.012±0.018

Table 2. Fitting error on Multi-background Dataset.
RMSE is calculated based on pixel values divided by white
patch. Beer-Lambert Blending shows a smaller error than
Alpha Blending.

95% of the powders show cv < 0.3, which means that κ
calibrated with different backgrounds has a very low vari-
ance.

We also calculate the fitting error on this multi-
background dataset. As shown in Table 2, Beer-Lambert
Blending has a smaller error than Alpha Blending.

6. Hyperparameters for Deep Learning

We use group normalization [6] instead of batch normal-
ization [3] in DeepLab v3+ network [2]. CRF [1] postpro-
cessing is used.

We use the AdamWR [5] optimizer and cosine anneal-
ing with warm restart scheduler. We set initial restarting
period= 8, and Tmult = 2. Thus, the scheduler restarts at
8, 24, 56, 120, and 248 epochs. We use batch size = 8 and
weight decay = 1e-4 for all experiments.

We first train the model from scratch on synthetic pow-
ders against synthetic backgrounds with initial learning rate
= 1e-3 for 248 epochs. In each iteration, we find a ran-
dom synthetic background for the current powder mask, and
blend them to render a scene. We call it an epoch when it
goes through all powder masks once.

Then we fine-tune it on synthetic powders against real
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Figure 4. Band Selection Comparison. Grid Sampling
is tested on square numbers only. The accuracy of NNCV
saturates after four bands, outperforming the other methods.

backgrounds from Scene-bg and Scene-sl-train with initial
learning rate = 1e-4 for 56 epochs.

We finally fine-tune it on real powders against real back-
grounds from Scene-sl-train with initial learning rate = 5e-5
for at most 56 epochs. Model selection is done according to
performance on validation set.

7. More about Recognition with Known Pow-
der Location

Band Selection: See Figure 4 for separate results on Scene-
val and Scene-test.

Confusion Matrix: As shown in Figure 5, we visualized
the confusion matrix of using inpainting background, Beer-
Lambert Blending, and RGBN and 4 SWIR bands selected
by NNCV. We show the confusion matrix for individual
powders, and the one aggregated into 6 categories.

Top-N Accuracy: Top-N accuracy is meaningful for real
applications. Table 3 show that top-3 predictions achieve
over 80% accuracy and top-7 predictions achieve about 90%
accuracy.
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Figure 5. Confusion Matrix. The confusion matrix for
individual powders, and the one aggregated into 6 cate-
gories are shown. The proposed method shows strong per-
formance.

Top-N Scene-val Scene-test Scene-sl-train Scene-sl-test

1 72.0 64.0 62.50 62.50
3 81.0 86.0 82.00 83.50
5 87.0 88.5 87.25 87.75
7 90.0 92.5 89.50 90.75

Table 3. Top-N Accuracy. Inpainting background, Beer-
Lambert Blending, RGBN channels and 4 SWIR bands se-
lected by NNCV are used. Top-3 predictions achieve over
80% accuracy and top-7 predictions achieve about 90% ac-
curacy.

8. More about Recognition with Unknown
Powder Mask

PR curve: People usually care about whether there exists
a specific powder in the image rather than the mask of the
powder. We slightly modify the algorithm to answer this
”Yes-or-No” question. We set a threshold of confidence,
and check the confidence of being the specific powder for
each pixel. We say ”Yes” if there exists a pixel with confi-
dence higher than the threshold. By adjusting the threshold
, we plot the PR curve in Figure 8. The curve shows that
our method significantly outperforms the baseline method.
More Qualitative Results: See Figure 7.

RGB Ground Truth Prediction

Figure 6. Failure cases. Row 1 misdetects small square
objects; Row 2 misses powders on cluttered background.

Failure Cases: Figure 6 shows failure cases where the algo-
rithm misdetects some small objects as powder, and misses
some powders on cluttered background.

9. Spectral Specifications
White Patch: The white patch has a 98% reflectance with
a approximately flat spectral curve in 400-1700nm. We di-
vide the scene by the white patch intensity.
Light Source: The light sources are halogen and incandes-
cent lamps made by 6 different manufacturers. Experiments
show that our method works across different sources
Mirror/Beamsplitter: See Figure 9 for spectral specifica-
tions. The mirror has > 70% reflectance in 400-1700nm.
Beamsplitter 1 transmits SWIR while reflects VIS and NIR.
Beamsplitter 2 has transmittance:reflectance=50:50 in VIS-
NIR range.
Theoretical SWIR Spectral Transmittance: Figure 10
shows the theoretical spectral transmittance of different
voltage settings (step size=0.6V).
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Figure 7. More Qualitative Results. Some images are from Scene-sl-test, which only has selected bands. But the two
baseline methods (Per-pixel Nearest Neighbor and Standard Semantic Segmentation) require all bands. So the baseline
results are not shown.
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Figure 8. PR curve on Scene-test. Incorporating band
selection and data synthesis, our method outperforms Per-
pixel Nearest Neighbor, and achieves huge improvement
over simply training on limited real data with all bands.
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Figure 9. Spectral Specifications of Mirror/Beamsplitters.
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Figure 10. Theoretical SWIR spectral transmittance of different voltage settings.


