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Abstract

We present the first method to compute depth cues from im-

ages taken solely under uncalibrated near point lighting. A

stationary scene is illuminated by a point source that is moved

approximately along a line or in a plane. We observe the

brightness profile at each pixel and demonstrate how to obtain

three novel cues: plane-scene intersections, depth ordering

and mirror symmetries. These cues are defined with respect

to the line/plane in which the light source moves, and not the

camera viewpoint. Plane-Scene Intersections are detected by

finding those scene points that are closest to the light source

path at some time instance. Depth Ordering for scenes with

homogeneous BRDFs is obtained by sorting pixels according

to their shortest distances from a plane containing the light

source. Mirror Symmetry pairs for scenes with homogeneous

BRDFs are detected by reflecting scene points across a plane

in which the light source moves. We show analytic results for

Lambertian objects and demonstrate empirical evidence for a

variety of other BRDFs.

1. Distant vs. Near Lighting

Many vision algorithms assume that the scene is illumi-

nated by light sources that are far away, such as the sun or the

sky. In this setting, the incident illumination angles at each

scene point are identical, allowing easier estimation of scene

properties. Approaches that exploit this fact to recover scene

normals and albedos include the classical photometric stereo

technique ([28]) and several extensions for non-lambertian

low parameter BRDFs (Dichromatic ([11]), Diffuse + Spec-

ular ([4], [23],[15],[24]), Microfacet ([17],[27])).

Although these algorithms are popular, there are many sce-

narios where the distant lighting assumption is invalid. These

include indoor, underground and underwater scenes, as well

as outdoor scenes under night lighting. Scene analysis using

near-field lighting is difficult since the incident angles at each

scene point are different. However, the advantage is that the

intensity fall-off in distance from the near light source is en-

coded in the images. Therefore it becomes possible to extract

both depths and normals of the scene, and many methods have

shown this (Shape from shading ([20], [19], [9]), Photomet-

ric stereo ([8], [3], [2], [10]), Calibrated camera-light source

pairs ([15], [7]), Helmholtz stereopsis ([29])). Exploiting the

intensity fall-off requires the 3D position of the source and

therefore most of these techniques assume calibrated lighting.

Instead, if the near light source is uncalibrated, can we still

extract useful information about scene depth?

Let a near point light source move along a line or in a plane.

Our key idea is to use this light source path as a ’baseline’ with

respect to which scene depth cues can be extracted. Analysis

of the intensities at each pixel yields the following depth cues:

Plane-Scene Intersections: Let a lambertian scene be il-

luminated by a point source moving along a line. By sim-

ply detecting intensity maxima at a scene point, we produce

plane-scene intersections similar to those obtained by sweep-

ing a sheet of light over the scene. Intersections with planes

of other orientations are produced by changing the direction

of the light source path.

Depth Ordering: A point light source moving in a plane

illuminates a homogeneous lambertian scene under ortho-

graphic viewing. Under certain conditions, it is possible to

obtain an ordering of the scene in terms of perpendicular dis-

tances to this ’base plane’. This is done simply by integrating

the measured intensities at scene points over time.

Mirror Symmetries: An orthographic camera views a

lambertian scene illuminated by a light source moving along

a line. We detect mirror symmetries by reflecting scene points

across a plane containing the light source path. These sym-

metric pairs will observe identical incident angles and light

source distances and are detected by simply matching scene

points with the same brightnesses over time.

In practice, we relax many of the restricting assumptions

described above. First, we do not require the source to move

precisely along a line or in a plane. Instead, a user can simply

move the source with his/her hand, making image acquisition

easy. Second, simple heuristics can be used to extend all of

our results to non-Lambertian BRDF’s containing diffuse and

specular components. We show strong supporting evidence

using both rendered and real scenes with complex geometry

and material properties.

Our approach computes depth information by moving the

light source, complementing traditional stereo methods that

exploit changes in viewpoint. An interesting similarity to

camera-based methods is that increasing the length of the

source path is similar to increasing stereo baseline and results

in more reliable depth cues. One difference, however, is that

our cues are defined with respect to the light source path. This

allows us to obtain depth cues from different ’viewpoints’,

without moving the camera. These novel scene visualizations

provide strong constraints for any depth estimation technique,

while avoiding the correspondence problem. Our approach

is simple, requiring neither geometric/radiometric calibration

nor a complex setup. Therefore we believe our depth cues

have broad application in computer vision.
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2. Detecting Plane-Scene Intersections

Consider a scene with unknown geometry. Let it be illumi-

nated by an isotropic point light source moving in a straight

line (see Figure 1) at constant speed. At a line position d = i,

the source S is nearest to scene points lying on a plane per-

pendicular to the light source path. In this section, we show

that maxima will occur in the brightness profiles of all of these

scene points, owing to a minimum in the inverse-square fall-

off from the point light source. By simply detecting brightness

maxima occurring at every light source position (or frame), we

obtain plane-scene intersections. Our results appear to be cre-

ated by intersecting the scene with a plane that is translating

along the source path. This is similar in spirit to structured

light striping where a sheet light is swept across the scene.

In the case of structured light striping, brightness maxima are

detected by simply thresholding each image. The difference

here is that we obtain the same effect using an uncalibrated

isotropic near point light source.

2.1. Maxima in Brightness Profiles

Let us assume, without loss of generality, that the light

source has unit intensity. If the BRDF is given by B, the fore-

shortening by f , the incident light angles by θs and φs, the

viewing angles given by θv and φv , and the distance between

the light source and the scene point at line position d by R(d),
then the brightness profile E(d) at a scene point is:

E(d) =
B(θs(d), φs(d), θv, φv).f(d)

(R(d))2
=

F (d)

(R(d))2
(1)

where the F term contains both BRDF and foreshortening.

Taking the derivative with respect to position, d, gives us an

expression for when the maxima of E(d) should occur,

E
′

(d) =
(R(d))2 F

′

(d) − 2 R
′

(d)R(d) F (d)

(R(d))4
= 0 (2)

In the next sub-section we will investigate the maxima of

E(d) that occur when the light source is closest to a scene

point. We call these iso-planar maxima since they indicate

scene points that are located on the same plane (Figure 1).

We assume that the scene is Lambertian and that the distance

between the light source path and the scene point is small.

2.2. Plane-Scene Intersections for a Lam-
bertian Scene

Without loss of generality, consider a scene point located at

the origin, P = (0, 0, 0), and let the light source move along

a line parallel to the z-axis, and let its 3D position be ~S(d) =
(D, 0, d) where D is its closest distance to the origin. The

Figure 1. Detecting a Plane-Scene Intersection using Brightness

Maxima: Consider a light source moving in a line in front of a scene.

At any line position d = i, the scene points that are closest to the

light source path will display a maxima in their profiles. We use this

maxima to create plane-scene intersections, similar to structured light

results created by intersecting a sheet of light with the scene.

Figure 2. Plane-scene intersections on a Lambertian Pot: In this

figure we show results of our method applied to a Lambertian clay

pot. We obtain both horizontal and vertical plane intersections by

moving a near point light source as shown by the marked paths.

These results are similar to those obtained from structured light. The

discontinuity in the result for horizontal planes is due to merging the

intersections for the right and left halves of the pot. These were done

separately to avoid blocking the camera view. Please see [13] for

better visualization.

distance from the scene point to the light source is R(d) =
(D2 + d2)0.5. For a scene point with albedo ρ and surface

normal ~n = (nx, ny, nz) we write:

F (d) =
ρ ~n.(~S(d) − ~P )

R(d)
(3)

An iso-planar maxima occurs if F
′

(d) is zero when the

light source reaches the closest distance to the scene point.

Consider the expressions for F
′

(d) and R
′

(d),

F
′

(d) =
ρR(d).(nz) − ρR

′

(d)(Dnx + nzd)

(R(d))2
(4)

R
′

(d) =
d

R(d)
(5)



Putting these into E
′

(d),

E
′

(d) =
−ρ(2nzd

2 + 3Dnxd − D2nz)

(R(d))5
(6)

Setting E
′

(d) = 0 gives us a quadratic equation in d with

two possible solutions. By checking the sign of the second

derivative, E
′′

(d), for all possible normals, we found that one

of these solutions is always a maxima and is given by,

dmaxima = D





− 3

4
+

√

( 3

4
)2 + 1

2
(nz

nx

)2

nz

nx



 (7)

Ideally, iso-planar maxima should occur when d = 0, since

that is when the light source is closest to the scene point and

R(0) = D. Therefore, Equation 7 represents the error in

the iso-planar maxima location. However, simulations show

that this error remains bounded as nz

nx

is varied. For in-

stance, dmaxima is zero when nz

nx

→ 0 and becomes D
√

2
when

nz

nx

→ ∞. Although we will investigate this bound more thor-

oughly in future work, here we assume the error is negligible

if the light source path is close to the scene point (D is small).

In Figure 2 we show both horizontal and vertical plane-

scene intersections for a lambertian pot, created by moving

the light source first sideways and then upwards. We code the

planes from blue to red, obtaining a continuum of color coded

plane-scene intersections. For the second result, we merged

two experiments for the left and right halves of the pot, to

avoid blocking camera’s view of the scene. Although these

results appear similar to structured light images obtained by

sweeping a plane over the scene, they were obtained by a user

hand-waving a near point light.

Shadows and Specularities: Non-isoplanar brightness

maxima are usually rare in lambertian scenes illuminated by

a near light source. In fact, for a maxima to occur when

R
′

(d) 6= 0, a fortuitous occurrence of values for R
′

(d), R(d),
F (d) and F

′

(d) would be required in Equation 2, which is

less likely. However, scenes with sharp specularities still show

non-isoplanar maxima. Fortunately, since specularities are

characterized by a rapid rise in brightness, these are detected

by thresholding the second derivative of the measured intensi-

ties. Glossy highlights are similarly removed using a method

proposed by [16]. Shadows can eliminate iso-planar maxima

from a profile, but are handled by repeating the experiment

with different parallel light source paths. Since a scene point

shadowed in one experiment may be illuminated in another,

we usually detect an iso-planar maxima. Finally, many scenes

may still exhibit non-isoplanar maxima due to material proper-

ties. We remove these by simply enforcing neighboring scene

points to have iso-planar maxima that occur closely in time.

Figure 3. Plane-Scene Intersections for Rendered Scenes: We used

a ray tracing software ([18]) to render two objects (dragon and bunny)

using both the Lambertian + Torrance-Sparrow and the Oren-Nayar

models. For each set of images, we created plane-scene intersections,

and we show two examples of these at the top of the figure. We fit a

plane to each intersected region and measure the plane fit error. The

average of these errors is plotted, as a percent of the longest distance

contained in the object. These empirical results support the idea that

the plane-intersection algorithm can be used with a variety of non-

lambertian scenes.

2.3. Experimental Results

It is possible to create iso-planar maxima in profiles if the

derivative of the BRDF, F
′

(d), is zero around a small interval

where R
′

(d) = 0. In other words, the change in BRDF must

be negligible for a short interval around the maxima location.

This seems a reasonable assumption for diffuse BRDFs. In

Figure 3, we show empirical evidence supporting this idea

for scenes created using a ray-tracing tool ([18]). We ren-

dered the bunny and dragon models by varying the parame-

ters of the Oren-Nayar model (facet angle from 0 to π
2

) and

of a Lambertian + Torrance-Sparrow model (σ of facet distri-

bution from 0 to 1). The light source was moved along the



Figure 4. Plane-Scene Intersections for Real Scenes: At the top

of the figure we show horizontal and vertical plane-scene intersec-

tions for a painted house, even though this scene demonstrates glossy

specularities. We also show plane-scene intersections for an office

desk made of metal and plastic. At the bottom we show the sub-

surface scattering effects of a wax candle, by shining a point laser.

Our method is able to create horizontal plane-scene intersections for

this object with complex BSSRDF ([6]) appearance.

x− and then y− axes to create horizontal and vertical plane-

scene intersections. Using ground-truth, we fit a plane to the

3D locations of scene points in the plane-scene intersections

and plotted the sum-of-squared errors. The low errors indicate

the robustness of our technique for non-lambertian BRDFs.

At the top of Figure 4, we show horizontal and vertical

plane-scene intersections for a painted house model, which

are detected despite glossy specularities in the scene. Our

algorithm also produces good results for scenes with sharp

specularities, such as the metal office desk in Figure 4 and

for rough objects with cracks, such as an earthen pot in Figure

4 (see [13] for the input sequence and a better visualization

of the plane-scene intersections). We are also able to create

plane-scene intersections for objects with sub-surface scatter-

ing (since BSSRDF ([6]) is smooth) such as a wax candle

shown in Figure 4. The scattering effects are demonstrated

using a laser pointer, and horizontal plane-scene intersections

are shown. Such a result would be hard to obtain using tradi-

tional structured light methods.

Figure 5. Overlap of incident angles for a simple 2D scene: A light

source moving in a line illuminates a 2D scene with homogeneous

BRDF. Let scene point P be at a greater depth than Q and let both

have the same surface normal. Some of the incident angles at P are

repeated in Q, and we show these overlapped angles in gray. Because

of inverse-square fall-off, the measured intensities in the overlapped

region will be higher in Q than in P. We extend this idea to create

scene depth ordering for 3D scenes as well.

3. Depth Ordering for Homogeneous Scenes

Consider a scene with homogeneous BRDF viewed by an

orthographic camera. This scene is illuminated by a point

source moving in a plane. Intuitively, scene points closer to

the light source tend to be brighter than scene points further

away. If we somehow manage to remove the effect of BRDF

for any two scene points, then their appearance would de-

pend only on their distances to the light source. Although this

is not possible generally, we describe certain conditions un-

der which we obtain scene depth ordering with respect to the

”base plane” containing the light source path. We will pro-

vide two heuristics to achieve good results for depth ordering:

a) Move the light source over a large area of the base plane

and b) Bring the base plane as close as possible to the scene.

We support our method with strong empirical evidence using

both simulations and real scenes.

3.1. Integrating the Brightness Profile

Consider a scene point P illuminated by a light source

moving in a plane. As before, we will assume the light source

has unit intensity and let F contain both the BRDF and fore-

shortening. If R(d) is the distance between the source and

this scene point at position d on the light source path, then the

measured intensity profile of P is given as:

Ep(d) =
Fp(d)

(Rp(d))2
. (8)

Let Sp be the sum of the P ’s intensities along the light

source path from positions d1 to dn,

Sp =

dn
∑

d=d1

Fp(d)

(Rp(d))2
. (9)

Let there be another point Q whose perpendicular distance

to the plane containing the light source is less than that of P .



Figure 6. Light Source Moves in a Path with Finite Length: A

light source moving in a line illuminates a scene with homogeneous

BRDF. Our depth ordering method works for scenes where any point

at a greater depth than Q must be further away from the light source

at every time instance. This restricts us to a non-planar region around

Q as shown.

At different light source positions, P and Q may observe iden-

tical incident angles. We term these as overlapped incident

angles, and they are shown in gray in Figure 5. In this simple

2D scene, the longer the length of the light source path, the

greater the overlapped region. For an infinite path, all the inci-

dent angles at P and Q will overlap. Since the inverse-square

fall-off is smaller at Q than at P , Sp < Sq.

This result is harder to demonstrate for real 3D scenes

where P and Q can have different surface normals. To make

the analysis easier, we assume that the light source is always

further from P than Q. This assumption of Rp(d) > Rq(d)
for all positions along the light source path is illustrated in

Figure 6. We will show that this drawback is not severe since,

in practice, we get good depth ordering results for scenes with

a variety of geometries.

Sp and Sq consist of two components, one of which (de-

noted by O) comes from overlapped incident angles, as in the

gray region in Figure 5. The other comes from non-overlapped

or different incident angles (denoted by N ). Since the order of

the summation does not matter, we let the overlapped angles

occur from d1 to di, and the non-overlapped from di+1 to dn.

We separate the summation accordingly as:

Sp =

di
∑

d=d1

Fp(d)

(Rp(d))2
+

dn
∑

d=di+1

Fp(d)

(Rp(d))2
(10)

which we write concisely as:

Sp = Op + Np (11)

Similarly for scene point Q we have Sq = Oq + Nq. The

overlapped terms, Op and Oq, have the same incident an-

gles. Since P is further away than Q, the inverse-square fall-

off from the light source ensures that Op < Oq. Therefore,

Sp < Sq if Np < Nq. Consider a pair of the summation terms

from Np and Nq. If the inequality holds for each of these

pairs, then,

Figure 7. Simulations of convex and concave Lambertian objects:

Our depth ordering method always works for convex lambertian ob-

jects. We show results with very low errors on renderings of a convex

shape whose curvature we gradually increase. We also render con-

cave objects at different curvatures. Although the depth orderings are

much worse in this case, they stabilize and do not degrade with time.

In addition, bringing the light source closer creates better orderings

for shallow concave objects.

Fp(d)

(Rp(d))2
≤

Fq(d)

(Rq(d))2
(12)

3.2. Depth Ordering for Lambertian Scenes

When does Equation 12 hold? We answer this question by

first investigating depth ordering for lambertian scenes. We

divide the problem into two cases, based on whether the lo-

cal geometry between the scene points P and Q is convex or

concave.

Convex neighborhood: If the normals at P and Q are

given by np and nq and if the 3D position of the light source

is s(d) then we can rewrite Equation 12 as,

np.(s(d) − P)

nq.(s(d) − Q)
≤

(

Rp(d)

Rq(d)

)3

(13)

For a convex object, a scene point’s foreshortening to the

light source is higher than one farther away. Therefore the

LHS of Equation 13 is always less than one, and our method

always works for pairs in a convex lambertian neighborhood.

In Figure 7 we show simulations of depth orderings for con-

vex objects of different curvatures demonstrating above 97%

accuracy. Small errors occur due to violations of the assump-

tion in Figure 6. We also present results on non-lambertian

convex objects, such as corduroy and dull plastic (Figure 9).



Figure 8. Depth Ordering for Rendered Scenes: We used the PBRT

software ([18]) to render three scenes using both the Lambertian +

Torrance-Sparrow and Oren-Nayar models. We covered the space of

roughness parameters for each of these models. Using ground truth

depths for these scenes, we measured the percentage of correctly or-

dered scene points and we plot the results above. These results pro-

vide empirical evidence supporting the use of our method with dif-

fuse non-lambertian BRDFs.

Concave neighborhood (shadows and interreflections):

The foreshortening of P and Q are now opposite to the convex

case, and the LHS of Equation 13 is always greater than 1. In

fact, the further the two points are, the larger the left hand side

of the equation will be. Fortunately, our method still performs

well thanks to the effect of shadows. We rewrite Equation 13

by adding a visibility term, V (d),

V (d)
np.(s(d) − P)

nq.(s(d) − Q)
≤

(

Rp(d)

Rq(d)

)3

(14)

Since P is further away from the light source than Q, it is

more often in shadow. Whenever this happens, V (d) = 0 and

Equation 14 is true. Concave depth ordering has more errors

Figure 9. Depth Ordering Results on Real Convex Scenes: We

acquired images by waving a near point light in a plane. For each

scenes we display the depth ordering obtained as a ”pseudo depth”,

by plotting the ordering in 3D. The objects presented are made up of

a variety of materials such as plastic and corduroy.

than the convex case (Figure 7), the results are still reason-

able (above 82%). In addition, the closer we bring the light

source to the scene, the better the results get since the RHS

of Equation 14 increases. Finally, we note that smooth inter-

reflections do not severely degrade performance, since the er-

rors for concave depth ordering remain roughly constant with

increase in curvature.

3.3. Experimental Results

In Figure 8, we have rendered three scenes (buddha, bunny

and dragon), using ray tracing ([18]). As before, we varied the

roughness parameters for the Oren-Nayar model (facet angle

from 0 to π
2

) and the Lambertian + Torrance-Sparrow model

(σ of facet distribution from 0 to 50), getting 10 sets of images,

each with 170 different light source locations. We compare

the depth ordering with ground truth depth and show accuracy

above 85% for the Oren-Nayar model and above 75% for the

Lambertian + Torrance-Sparrow model. In Figure 10 we dis-

play the ordering for a polyresin statue containing shadows

and interreflections as a ”pseudo depth” in Maya. We have

shown different views as well as its appearance under novel

lighting. Finally, an advantage of our method is that these

depth orderings are with respect to the light source and not

the camera. We obtain orderings from different planes, with-

out camera motion and avoiding the difficult problem of scene

point correspondence. In Figure 11 we show ordering results

for a wooden chair, for three different planes.



Figure 10. Depth Ordering Results for a Statue: In the top row we

show a polyresin statue and a 2D depth ordering image obtained from

an uncalibrated near light source moving in a plane. We visualize the

ordering as a ”pseudo depth” in the bottom row, applying novel light-

ing, viewpoint and BRDF. Although this object has complex effects

such as interreflections and self-shadowing, our depth ordering is ac-

curate, as we show in the close-up. Please see [13] for many other

view points.

4. Mirror Symmetries in Homogeneous Scenes

In this section, we will investigate a way of finding mir-

ror symmetry pairs for scenes with homogenous BRDFs. Al-

though our method is simple, it is useful for objects that have

the mirror symmetry in their shapes and produces very sparse

pairs otherwise.

Mirror Symmetry Pairs in Lambertian Scenes Consider

a point P in a homogeneous Lambertian scene containing a

mirror symmetry, viewed by an orthographic camera. Let the

scene be illuminated by a point light moving in a plane parallel

to the viewing direction. Reflecting P and its surface normal

across such a plane does not change its incident elevation an-

gles and light source distances (Figure 12). Therefore, all the

reflected pairs will have identical appearance over time and

can be easily located. We show the result of matching iden-

tical profiles for a homogeneous Lambertian pot at the top of

Figure 13. The pot has a reflection symmetry across a vertical

plane passing through its center and perpendicular to the im-

age plane. We wave a point light source in this plane and mark

the matched scene points with the same color. Note that if the

light source was moved in a different plane, different symme-

try pairs would be obtained. However, these would most likely

Figure 11. Depth Ordering from different viewpoints: Here we

show depth ordering of a wooden chair from the viewpoints of three

different planes. Brighter scene points are closer than farther ones.

The second depth ordering is from the camera point of view, and is

similar to conventional depth results obtained from stereo algorithms.

We also get the orderings from the left and right planes without mov-

ing the camera. This allows us to obtain novel visualizations of the

scene, while avoiding the problem of scene point correspondence.

be sparse, since the reflection plane would not coincide with

the mirror symmetry of the object.

Shadows and Inter-reflections: A scene with mirror sym-

metry has the same geometry across the plane of reflection.

Therefore, geometric appearance effects such as shadows and

inter-reflections will be identical between symmetry pairs, cre-

ating identical intensity profiles.

Isotropic BRDFs: In homogeneous non-lambertian scenes

the effect of the incident azimuth angles must be considered.

In general these will be different for P and its symmetry pair.

However, the absolute difference between the azimuth angles

are the same, and therefore our method works for isotropic

BRDFs. As before, the symmetry pair of P is found by re-

flection across the plane containing the light source path and

the orthographic viewing direction. Using the laws of symme-

try we can easily show that P and its symmetric pair have the

same light source distances, the same elevation angles, and

identical absolute differences between the azimuth angles of

viewing and illumination. We find symmetry pairs by match-

ing identical intensities for an office desk at the bottom of Fig-

ure 13, even though this scene contains non-lambertian mate-

rials such as metal and plastic.



Figure 12. Matching Identical Profiles to give Symmetry Pairs:

We show a light source moving in a line illuminating a scene point P.

We find a symmetry pair by reflecting P across a plane containing the

light source path and the orthographic viewing vector. The elevation

angles (θ) and the absolute differences in azimuth angles (φ) are the

same for the pair.

Figure 13. Symmetry Pairs in Real Scenes: We show two real

scenes, a lambertian pot and a office desk. A near point light source

was hand-waved approximately along the axis of reflection. We

match identical profiles in the scene and mark them with the same

color, giving us symmetric pairs in the scene.

5. Conclusions

Algorithms for obtaining scene geometric information

from uncalibrated, varying lighting are well known in the case

of distant light sources. For example, many photometric stereo

methods have been introduced that handle unknown, distant il-

lumination ([5], [12], [1], [26]). In addition, variation in shad-

ows has been used extensively ([22], [14], [21]) to obtain cues

such as depth edges. Recently, Takahiro and Sato ([25]) com-

bined near and distant-lit images to obtain scene shape. How-

ever, none of these methods have been extended beyond the

distant illumination scenario. This is surprising, since, intu-

itively, the more complex the set of rays that illuminate the

scene, the richer should be the information obtained from that

scene. In this paper, we have made a first step towards under-

standing this concept for near point light sources.
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