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Abstract

We propose a new approach called “appearance clustering”
for scene analysis. The key idea in this approach is that the
scene points can be clustered according to their surface nor-
mals, even when the geometry, material and lighting are all
unknown. We achieve this by analyzing an image sequence
of a scene as it is illuminated by a smoothly moving distant
source. Each pixel thus gives rise to a “continuous appearance
profile” that yields information about derivatives of the BRDF
w.r.t source direction. This information is directly related to the
surface normal of the scene point when the source path follows
an unstructured trajectory (obtained, say, by “hand-waving”).
Based on this observation, we transform the appearance pro-
files and propose a metric that can be used with any unsuper-
vised clustering algorithm to obtain iso-normal clusters. We
successfully demonstrate appearance clustering for complex
indoor and outdoor scenes. In addition, iso-normal clusters
serve as excellent priors for scene geometry and can strongly
impact any vision algorithm that attempts to estimate mater-
ial, geometry and/or lighting properties in a scene from im-
ages. We demonstrate this impact for applications such as dif-
fuse and specular separation, both calibrated and uncalibrated
photometric stereo of non-lambertian scenes, light source esti-
mation and texture transfer.

1 Why Cluster Appearance?

Our world contains scenes of vastly varying appearances.
These appearances depend on several different factors such as
materials, 3D shapes of scenes and lighting and viewing geom-
etry. Extracting these properties from images (or image se-
quences) for scene analysis is an important inverse problem in
vision. Unfortunately, these properties usually interact non-
linearly and estimating them becomes difficult.

In order to make this problem tractable, several works have
assumed prior knowledge of either lighting or BRDFs or
scene structure. Methods that assume known lighting include
Woodham’s classical photometric stereo ([31]) for lambertian
scenes, as well as several extensions for non-lambertian low
parameter BRDFs, such as the micro-facet model and the
dichromatic model ([13],[23],[8],[30],[2],[28],[17],[29],[16]).
Particularly, in the work of Goldman et al ([8]), clustering of
material properties is shown to help with scene analysis. Com-
plementary to the above methods is the class of ’inverse render-
ing’ algorithms that estimate low parameter BRDFs and light-
ing ([27],[18]) using scanned 3D scene geometry. Recently,
Ramamoorthi’s thesis ([24]) provides a formal analysis of
when exactly inverse rendering is possible for general BRDFs
and lighting that are represented using Spherical Harmonics.
Finally, Hertzmann and Seitz, ([11]) recover the geometry of
objects by estimating combinations of “basis example spheres”
that best describe scene BRDFs.

In this work, we present a novel approach for appearance
analysis of static scenes containing a broad range of BRDFs,
without requiring any knowledge about scene geometry, mate-
rial properties, lighting or example calibration objects1. Our
approach involves two key steps: (a) dividing a complex scene
into geometrically consistent clusters (scene points with same
or very similar surface normals) irrespective of the material
properties and lighting, and (b) bootstrapping scene parameter
estimations with this partial geometric information. The num-
ber of unknowns is reduced within each cluster, resulting in a
reduced dimensional and more robust optimization for appear-
ance parameters. The closest related work is by Healey ([10]),
who segments a Lambertian scene into regions that have the
same local geometry, using two images. Our approach uses
many more images to extend these results to a much larger
class of BRDFs. We note that our work is part of a recent
trend ([8],[11]) to split the problem of appearance analysis into
smaller, more manageable parts.

Our main contribution is a physically based technique to obtain
iso-normal clusters of a static scene illuminated by a smoothly
moving distant (directional) light source. The video camera
observing the scene is assumed to be orthographic. As the
source moves, observations at each scene point over time re-
sult in a continuous appearance profile. We believe that the
smoothness (continuity) of the appearance profile is a power-
ful notion that has not yet been fully exploited in computer
vision2. We present a comprehensive analysis of the informa-
tion contained in these derivatives of this profile (specifically,
extrema or inflection points) and how they relate to the surface
normal of a scene point.

Unfortunately, direct unsupervised clustering of appearance
profiles is not sufficient to obtain geometrically consistent clus-
ters since profiles vary significantly with different material
properties. Instead, we show that simply “hand-waving” a light
source in an uncontrolled fashion (along an unstructured tra-
jectory) minimizes the dependency of the appearance profile
on the material properties. Based on the analysis of extrema
locations, we then apply a transformation to the appearance
profile that reduces this material dependency further. Finally,
we present a metric that matches appearance profiles of same
surface normals and can be used with any supervised or un-
supervised clustering technique to obtain robust geometrically
consistent scene clusters.

We mathematically analyze our clustering algorithm for a large
class of linearly separable BRDFs introduced by Narasimhan
et al., [19]. Within this broad group of models, we explore

1In previous work, this was achieved only for simple BRDF models such
as lambertian or Torrance-Sparrow ([22],[21],[7],[1]).

2Exceptions include the space-time stereo [32] and the work of Hayakawa
([9]) that uses an arbitrary moving light source to alleviate the ambiguity in
photometric stereo for Lambertian objects.
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Figure 1. Appearance Profile and Extrema: Image sequence ob-
tained by illuminating a static scene with a moving point source. The
appearance profile of a scene point is the observed intensities at a sin-
gle pixel over time. The appearance profiles show several extrema
(peaks and valleys) as illustrated on the right. More often than not,
scene points with same surface normal exhibit extrema at the same
time instances. Similarly, most extrema locations do not match for
scene points different normals. This makes extrema locations excel-
lent features for our clustering algorithm.

more formally the notion of orientation consistency. This idea
was first proposed by Hertzmann and Seitz ([11]) and used to
compute the surface normal at a scene point by comparing it
with an “example” object with known shape and BRDF. In
constrast, we compute orientation consistencies between scene
points of unknown normals and BRDFs, without requiring any
example object. Of course, the trade-off here is that we require
a longer sequence of images. Therefore, we also analyze the
relationship between the length of the image sequence and the
“complexity” of the BRDFs for a desired clustering error.

We experimentally demonstrate the accuracy of our clustering
algorithm for several real scenarios with a broad range of ma-
terials. Our approach also shows good results with scenes not
satisfying the assumptions of our method (anisotropic materi-
als, outdoor scenes). Using iso-normal clusters makes estimat-
ing the lighting, geometry and material properties of a scene
more robust. We demonstrate a range of applications such as
separation of diffuse and specular components, calibrated and
uncalibrated photometric stereo of non-lambertian scenes, es-
timation of light source directions, and lighting and geometri-
cally consistent texture replacement. In addition, this approach
can be also extended to methods like relighting and inverse ren-
dering. Furthermore, because all our method requires is for a
user to hand-wave a light source, image acquisition is very sim-
ple in contrast to methods that require complex illumination se-
tups ([4]). Thus, we believe our approach to scene appearance
analysis is broadly applicable in vision and graphics.

2 Appearance Profiles and their Extrema

Consider a static scene illuminated by a continuously mov-
ing distant point light source. An appearance profile is a
vector of intensities measured at a pixel over time, as illus-
trated in Fig. 1. Direct clustering of these profiles fails, even
after removing scale and offset, since the profile intensities
are non-linear functions of geometric and material proper-
ties at a scene point. Hence, it is critical to obtain a feature
from the appearance profile that is invariant (or insensitive) to
material properties.

The continuity (smoothness) of an appearance profile yields
information about the derivatives of the BRDF of the scene
point w.r.t source direction. Our key observation is to exploit
this smoothness by detecting brightness extrema (peaks and
troughs), where the first order profile derivatives are zero. We
will show analytical and empirical reasons why iso-normal ap-
pearance profiles exhibit the same extrema at the same time
instance. (see Fig. 1). This makes extrema locations excel-
lent features for clustering. In the remainder of this section,
we will formalize this observation by mathematically analyz-
ing extrema for a large class of BRDFs.

2.1 Extrema in Linearly Separable BRDF Models

The observed radiance of a scene point at a time instant t can be
modeled as a dot product between “material terms” Mi (func-
tions of material properties like diffuse and specular albedo,
roughness) and “geometry terms” Gi (functions of surface nor-
mal n, viewing v, and illumination directions s(t)) [19]:

E(t) =

k∑
i

Mi(ρ, σ)Gi(n,v, s(t)) . (1)

The above linearly separable BRDF model represents a broad
class of BRDFs (since no specific expressions for Mi’s or
Gi’s are assumed) and many well known BRDF models used
in computer vision (lambertian, Oren-Nayar, dichromatic) are
special instances of this model ([5],[6],[25],[12]).

The extrema of the appearance profile E(t) are found by set-

ting its first order derivative, E
′

(t) w.r.t time t to zero:

E
′

(t) =
k∑
i

Mi(ρ, σ)G
′

i(n,v, s(t)) = 0 (2)

One solution to this linear system occurs when ∀i G
′

i = 0 , at
a particular time instant t, irrespective of material terms Mi

(which are assumed to be non-zero). These are precisely the
extrema - which we call Geometry-Extrema - that we are in-
terested in. All other solutions to Eq. 2 are Material-Extrema
since their location depends on the material properties of the
scene point Mi’s. Two questions remain to be addressed: (a)
How are the Geometry-Extrema related to surface normals?
(b) How can we reduce the influence of Material-Extrema and
increase the occurrences of Geometry-Extrema in appearance
profiles? We will address these issues next.
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2.2 Geometry-Extrema and Iso-Normal Clusters

Extrema are said to be shared between two appearance profiles
if they occur at the same time instance in both profiles. Our
key idea is to acquire images in a way that increases the num-
ber of shared Geometry-Extrema, while decreasing the number
of shared Material-Extrema. Both goals are achieved by sim-
ply “hand-waving” the light source in an uncontrolled fashion
(along an unstructured trajectory).

If the user does not plan a path, then hand-waving a light
source is a random action. The light source changes its po-
sition smoothly, but randomly, at every time-step. Therefore
the appearance profiles at every scene point are generated sto-
chastically. We will now show, that as the number of shared
Geometry-Extrema increases, the probability that two scene
points have the same normal increases. As our results demon-
strate, we require only a few Geometry-Extrema to achieve ac-
curate clustering in practice.

Consider two scene points with appearance profiles E1(t) and
E2(t) and normals n1 and n2 respectively. Let the Geometry-
Extrema of these profiles occur at the same time instances
{tj | j = 1..g}. Then, we must decide whether or not n1

is equal to n2. For this, let us compute the probability
P (n1 �= n2). From Eq. 2,

∀i Gi

′

(n1, s(tj)) = 0 ; Gi

′

(n2, s(tj)) = 0 . (3)

Let there be R (finitely many) roots of the function

G
′

i(n2, s(tj)). Trivially, one of them is n2 = n1 . Let us as-
sume all roots are equally likely (later we relax this require-
ment). Thus, P (n1 �= n2) = (R − 1)/R for a single extrema
and term of the model. Given that there are k terms in Eq. 2,
and g shared Geometry-Extrema, the probability is bounded by

P (n1 �= n2) =

(
R − 1

R

)k g

. (4)

As the number of shared Geometry-Extrema, g, increases, the
probability of the two appearance profiles being generated by
different normals decreases. In the argument above we assume
that all roots are equally likely. Even if this is not the case,
the probability of any one root occurring in a particular video
frame is less than 1. Thus, the product of such probabilities
over the entire sequence of captured frames is bound to con-
verge to zero if a long enough sequence is acquired. Note, that
the appearance profiles of the scene points from the same nor-
mal may be vastly different due to material terms. In the next
section we address how to ensure that material extrema do not
break the clustering algorithm.

2.3 Acquiring Extrema by Hand-waving

How do we distinguish between Geometry-Extrema and
Material-Extrema without knowing the material or geometric
properties of the scene points? The key idea is that passing
the source directly over a scene-point’s normal gives rise to
a Geometry-Extrema by creating a maxima in foreshortening
(see Section 3 in [15]). Since real scenes contain several dif-
ferent surface normals, an unstructured, random path (as op-
posed to a structured one) will eventually cross many normals,

Figure 2. Structured versus Unstructured Paths for Light Source.
Since scenes often contain many different surface normals, unstruc-
tured paths have a greater probability of inducing Geometry-Extrema,
while keeping the acquisition process simple.

generating enough geometry-dependent extrema to create ac-
curate clusters (see Fig. 2). This acquisition method is simple
and does not require complicated illumination setups (such as
in [4]).

While light source hand-waving produces shared Geometry-
Extrema, it is critical that Material-Extrema are not shared
since that would adversely influence the clustering algorithm
described in Section 3. Consider two appearance profiles from
two scene points with different local surface normals. We
will show that the probability that these profiles share many
Material-Extrema becomes significantly small over the course
of a long hand-waving sequence.

From Eq. 2, if material extrema for two scene points with the
same material terms M (written as a vector of Mis), but with

different geometry derivative terms K
′

and L
′

(written as vec-

tors of G
′

is), are coincident at time instance tj then:

M.K
′

(s(tj)) = 0; M.L
′

(s(tj)) = 0 (5)

which means K
′

(s(tj)) and L
′

(s(tj)) both exist on the hyper-
plane in Rn defined by the normal M. Now consider many
time instances, {tj |j = 1, 2...n}, where material extrema oc-
cur in both profiles. Since the s(tj)s are generated randomly
and independently by waving a light source, the likelihood that

all (K
′

(s(tj)), L
′

(s(tj))) pairs occur on the same plane de-
fined by M becomes small as n becomes large. We can apply
a similar argument to scene points of different materials.

Therefore, for a long hand-waving sequence, material-extrema
will not adversely effect our clustering algorithm. Note, that
there may indeed be controlled and structured paths where our
algorithm may work for particular scenes, but we believe these
are rare and in any case, hard to prove and acquire. Thus, we
advocate random paths over structured paths.

3 Algorithm to Create Iso-normal Clusters

The final clustering algorithm can be divided into four steps
which are summarized in Table 1. These steps are 1) collect
images of a scene and detect brightness extrema, 2) transform
the appearance profiles (Figure 3) and 3) use a common simi-
larity metric to 4) cluster the scene. Note that since we detect
extrema occurrences using a moving window, we do not need
to store the whole sequence of images in memory. Also our
algorithm does not use the extrema locations by themselves,
since different profiles may have different numbers of extrema.
Instead, we transform the appearance profile by linearly inter-
polating between extrema locations, bounding the error due
to Material-Extrema (see Sections 1 and 2 of our technical
report [15]).
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Figure 3. Transformation Applied to Appearance Profiles: This
illustration shows the effect of transformation on two hypothetical ap-
pearance profiles. Consider the ’segments’ between extrema. The
slope of transformed profile is the sign of the first derivative of a
segment. Therefore two segments that have positive first derivative
(monotonically increasing), get the same positive slope of 1. Note
that in segments where there are no material dependent extrema, the
transformed values are identical.

Table 1

Step 1 (Input):

While acquiring frames by randomly waving a light,

Detect intensity extrema at each pixel and

store their occurrences in time.

(No need to store whole image sequence)
end

Step 2 (Transformation):

Construct a feature vector from each scene point’s profile by piece wise
linear interpolation of its extrema stored in Step 1 (Figure 3).

Step 3 (Metric):

Compute distance metric between (unit) feature vectors �A and �B using

dot-product: Distance = 1 - �At �B.

Step 4 (Output):

Cluster the normals based on the metric in Step 3.

Table 1. Algorithm: Our method is simple to implement. The input

to the algorithm is a sequence of scene images that are collected by

hand-waving a light source. At each pixel, we only store the locations

of all the brightness maxima and minima. We then linearly interpo-

late these extrema locations as shown in Figure 3. Therefore each

pixel location is associated with a transformed profile. These profiles

are then grouped using the dot-product dissimilarity metric with any

clustering algorithm, such as k-means or hierarchical clustering.

Figure 4. Our acquisition setup with a Canon XL2 video camera, a
60 watt light attached to a wand. In real experiments the camera and
light source are further away to satisfy orthographic assumptions.

Finally, we use the “dot-product” metric which is shown to be
accurate for matching extrema locations of two profiles ([26]).
Mathematically, if A and B are the transformed appearance
profiles of two scene points, the “dot-product” metric is simply
1 − AT B.

Any number of sophisticated learning techniques (such as
SVMs or spectral methods) can be used for the clustering part
of our algorithm. However, the transformation and metric dis-
cussed above are powerful enough to allow the relatively sim-
ple k-means algorithm to produce accurate results.

4 Experiments: Simulated and Real Scenes

We will now demonstrate the accuracy of our algorithm using
both simulations and a wide range of real indoor and outdoor
scenes with complex scene structure and BRDFs.

Simulations: We performed extensive simulations with a
scene containing 50 unique surface normals that were sampled
from the hemisphere of directions. Our simulations spanned
the entire parameter space of four models (Lambertian, Oren-
Nayar, Torrance-Sparrow, Oren-Nayar + Torrance-Sparrow)
with 20000 profiles per normal (we show only a few pro-
files in Fig. 5 for clarity). We recorded the extrema loca-
tions that were shared by over 95% of a normal’s profiles.
We compared these extrema locations across different normals
using the dot-product measure and found that these shared ex-
trema are unique to a particular normal. This supports our ear-
lier idea that, compared to profiles from different normals, pro-
files from the same normal share more extrema. We also con-
ducted experiments using our clustering algorithm, for simu-
lated data of 8000 different profiles generated by the Torrance-
Sparrow + Oren-Nayar model and with a scene of 60 different
normals, getting 95% accuracy in iso-normal clustering.

Real Scenes: Our setup consists of a Canon XL2 digital video
camera observing at a static scene as shown in Fig. 4. We
first tested our algorithm on simple planar scenes consisting of
real textures from the CURET project ([3]). Note the boxed
regions at the top of Fig. 7. Our algorithm clustered all these
textures together accurately, even though their materials prop-
erties were very different (specularities, roughness, 3D tex-
tures). In Fig. 8, our algorithm clusters anisotropic materials,
implying that our method works even in some cases that do not
satisfy our assumptions. We also show results for non-planar
objects which contain an infinite number of normals. In these
cases, our method degenerates gracefully by creating a piece-
wise approximation of the continuous curved surface.

In Fig. 9 we show more complex planar scenes, containing
occlusion, cast shadowing and inter-reflection. In these re-
gions, our method may over-cluster the scene, but note that the
smaller clusters are still geometrically consistent. In Fig. 10,
we show the clustering results obtained for outdoor images of a
scene collected from the WILD database ([20]). We believe the
diverse illumination due to weather (sunny, cloudy, fog, mist)
creates appearance profiles with enough intensity variation to
produce a good result.

Comparing two clustering algorithms: In Fig. 6 we show
the results of experiments conducted to analyze and compare
our clustering accuracy using two common unsupervised clus-
tering methods, k-means and hierarchical clustering. We com-
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Figure 5. Simulations showing the link between Extrema and Surface Normal: Appearance profiles are simulated for four BRDFs over
a range of 20000 material properties (only a few are shown for clarity). We only show two normals, although we simulated profiles for 50
(marked by blue dots on the hemisphere). The extrema location of a profile is marked on the x-axis by a colored dot. Note that profiles from
the same local normal (top row) share most of the extrema locations, whereas profiles from different normals (bottom row) do not.

Figure 7. Results obtained when our algorithm is used to cluster materials in the CURET Database. We acquired image sequences of
the real sample materials by waving a light source (and did not use the still images distributed by Columbia University). Notice the top row
containing materials such as artificial grass and straw and the middle row with examples of real wool and steel wool. Despite significant
appearance differences, these samples cluster together accurately because they share the same surface normal. Please see video at [14] for
better visualization.

Figure 6. K-means versus Hierarchical Clustering. The factor of
improvement is the ratio of the clustering accuracy using our metric
to the clustering accuracy using the Euclidean metric. The left hand
side plot shows the factor of improvement variation with increase in
number of clusters. As expected, this graph plateaus due to over clus-
tering. The right hand side plot shows the factor of improvement ob-
tained for different number of extrema used in the appearance pro-
files. Note that the k-means graph is jagged because initialization is
non-deterministic. In both cases, our recommended metric performs
significantly better than the Euclidean metric.

pared the results obtained using both our dot-product metric
and the commonly used Euclidean distance metric. We plot the
factor of improvement achieved with varying numbers of clus-
ters and numbers of extrema used in clustering. In all cases, our
recommended metric shows significant improvement. We have
used k-means in all our real experiments and obtained accurate
results. We note that, in addition to k-means, our method can
be used with any sophisticated clustering techniques.

5 Scene Analysis using Geometry Clusters

Thus far, we described our method to cluster a scene into
regions of same (or similar) surface normals. We will now
demonstrate how this clustering can be used to estimate impor-
tant scene properties such as shape and material properties, and
light source directions.

The key benefits of clustering geometry of the scene before
estimating the appearance properties are two-fold. First, the
total number of unknowns is reduced, making the inverse esti-
mation easier; only one surface normal per cluster needs to be
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We demonstrate a range of materials that include satin, fur, velvet and shiny paper

Curved Surfaces are Approximated by Planar Cluster Strips

Figure 8. Clustering curved surfaces with complex (possibly anisotropic) materials When anisotropic BRDFs are present in the scenes, our
method still produces meaningful clusters. Furthermore, for curved surfaces, our method produces a piecewise planar approximation.

Figure 9. Clustering surfaces with cast shadows. When complex effects such as cast shadows and inter-reflections are present in the scenes,
our method works for simpler scenes such as on the left. For more complex scenes, such as on the right, our method may fail to group all pixels
in the scene that have the same normal. Instead, the algorithm simply over clusters the scene into smaller iso-normal clusters.

estimated instead of one normal per scene point. Second, clus-
tering provides important spatial coherency in scene geometry.
It is common practice in computer vision to use smoothness
priors to ensure stability of any estimation algorithm. Anal-
ogously, iso-normal clusters are excellent priors to estimate
scene geometry.

Consider the 2k terms of Gi’s and Mi
′s in the linearly sepa-

rable BRDF model of Eq. 1 that describe the intensity at any
pixel. Let these terms be represented by analytic forms of spe-
cific models (say, Lambertian, Oren-Nayar, Torrance-Sparrow,
etc see Table 1 in [19]). Estimating the Gi’s and Mi

′s allows
us to explicitly estimate scene properties such as surface nor-
mals, albedos, and source directions.

Note that all pixels within a cluster share the same normal and
hence, the same values for Gi’s. Now, consider the observed
intensities of the pixels within a cluster over k frames, where
k is the number of terms in Eq. 1. These measurements can be
written in matrix form as:

⎛
⎜⎜⎜⎝

M11M12 ...M1k

.

.

.
Mp1Mp2 ...Mpk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

G11 ...Gk1

.

.

.
G1k ...Gkk

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

Ek1

.

.

.
Ekp

⎞
⎟⎟⎟⎠ (6)

where Mij is the jth material term at pixel i, Gpq is the pth

geometry term at frame q, and Ekl is the appearance profile of
length k at pixel l.

The estimation of the model parameters consists of two steps,
(a) Start with an initial guess for the k2 geometry terms Gij

and then use non-negative least squares to solve the above lin-
ear system to obtain the kp material terms Mij within each
cluster, and (b) Use the computed material terms to estimate
the geometry terms for all the frames of the sequence (not just
k frames).

We iterate this alternate estimation material and geometry
terms until convergence. In many vision algorithms, k = 2
suffices and the above problem requires a 4-dimensional opti-
mization. We now demonstrate the accuracy of the algorithm
for the case k = 2 using several applications. Note that there
exists an ambiguity in the estimation of M and G. In our ex-
ample application, this ambiguity is resolved by constraining
the form of the material (M) and geometry (G) terms. For ex-
ample, in the 2-dimensional case, we constrained the first term
to be Lambertian (M1 = ρ, the albedo, and G1 = �n.�s, the
foreshortening term). We will leave a more formal treatment
of the optimization for k > 2 for future work.

Separating Diffuse and Specular Components: On the left
of Figure 11 we show a frame from a real video sequence. We
use the 4-dimensional estimation described above to separate
this sequence into diffuse and specular components. The center
and right images are frames from the two extracted sequences.
Note that the large highlight present in the leftmost book has
been completely removed in the diffuse image.

Extracting 3D Shape: Once we extract the diffuse component
from a video sequence, we can apply algorithms that assume
a Lambertian model. One example of such an algorithm is
calibrated photometric stereo. In Figure 12 we show a few
frames of a video sequence of a cup. Note that there is a sharp
specularity and the cup is not lambertian. After clustering and
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K-Means Our Method

Images of an Outdoor Scene

Figure 10. Clustering WILD Database: Note the complex appearance effects that occur in this data set. Our transformation of the appearance
profile and the metric does significantly better than using Euclidean distance metric. In both cases, k-means was used to cluster appearance
profiles. Note: some sub-clusters were merged by user for better viewing only. Please see video at [14] for the variation in appearances in
the input image sequence.

Real Image Diffuse Component Specular Component

Figure 11. Separation of Specular and Lambertian Components: When the number of components that make up the input video sequence
is 2, then we can set up a 4-dimensional optimization to extract diffuse and specular terms as shown.

extracting the diffuse component, 3D shape is estimated with
photometric stereo using measured light directions.

We also used Hayakawa’s method for uncalibrated photometric
stereo ([9]) with extracted diffuse components. In Figure 13,
we were able to estimate the structure from the normals with
no input light directions. This method also gives us lighting
directions up to a rotation, and we display them at the bottom
of the figure. Please view [14] for many more views of these
estimated 3D shapes.

Appearance Consistent Texture Transfer: Profiles in ap-
pearance clusters share the same intensity extrema at the same
time. Copying profiles from one part of an appearance clus-
ter to another creates new pixels that vary consistently within
their cluster. In Figure 14 is a screen shot is shown where the
replaced profiles come from pixels in the same cluster with dif-
ferent texture. The complex appearance effects of the materials
are preserved through the length of the video sequence.

Non-Lambertian Scene

Recovered Shape

Figure 12. Extracting Scene Structure: We extract the Lambertian
terms from a scene and apply Photometric Stereo. Integrating the
normals gives us 3D shape. We show two views of the structure, and
for more views on this and other results please see [14].

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



Two Lighting Directions Fur Transfer Brick Transfer

Figure 14. Texture transfer of complex materials (such as fur, and brick) between similar surface normals in a scene. A patch of the original
scene is chosen by the user and a simple repetitive texture synthesis method is used to transfer this patch onto other areas of the scene with
the same surface normal. Note the consistency in geometry and lighting in the transferred regions. Please see video at [14] for many more
lighting variations.

Figure 13. Uncalibrated Photometric Stereo: Our clustering and
optimization allow algorithms that assume diffuse model to work with
non-Lambertian objects. Here we use Hayakawa’s method ([9]) to get
the 3D structure of the books and the corresponding lighting. Note
that we obtain only the normals from photometric stereo, and we have
to compute the book planes in an extra step.

One Image From Input Sequence

Computed Structure

Estimated Light Sources

6 Conclusions

In this paper we described how the derivatives of BRDF (en-
coded as extrema locations) are related to scene geometry. We
demonstrated an algorithm to exploit these extrema to create
iso-normal clusters of a scene and to use these clusters for ef-
fective scene analysis. Our algorithm has no prior information

about geometry, material or light sources. We believe that our
method is simple and has several applications for vision and
graphics.
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