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In this paper, we formalize locally distributed predicates, a concept previously introduced to ad-
dress specific challenges associated with modular robotics and distributed debugging. A locally

distributed predicate (LDP) is a novel construction for representing and detecting distributed prop-

erties in sparse-topology systems. Previous work on LDPs presented empirical validation; here we
show a formal model for two variants of the LDP algorithm, LDP-Basic and LDP-Snapshot, and

establish performance bounds for these variants. We prove that LDP-Basic can detect strong sta-

ble predicates, that LDP-Snapshot can detect all stable predicates, and discuss their applicability
to various distributed programming domains and to spatial computing in general. LDP detection

in bounded-degree networks is shown to be scale-free, making the approach particularly attractive
for specific topologies even though LDPs are less efficient than snapshot algorithms in general

distributed systems.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems; D.1.3 [Programming Techniques]: Concurrent Programming—distributed program-

ming; D.3.2 [Programming Languages]: Language Classifications—concurrent, distributed,
and parallel languages; F.1.2 [Computation by Abstract Devices]: Modes of Computation—

parallelism and concurrency

General Terms: Languages, Theory

Additional Key Words and Phrases: distributed predicates, distributed computing, snapshots,

consistency

1. INTRODUCTION

Distributed systems have had a long and active history in the research and scien-
tific computing communities. Recently, they have found widespread acceptance in
such applications as modular robots [Rus and Chirikjian 2001; Butler et al. 2002],
pervasive environmental sensing [Levis et al. 2004], and large-scale wireless net-
works [Karp and Kung 2000]. These applications are distinguished by their highly
dynamic topologies, and their large size, numbering in the thousands of processes.
The emergence of such massive and dynamic systems has led to a need for robust,
scalable algorithms to program, manage, and reason about distributed processes.

The same qualities of scale and dynamism that make distributed systems excit-
ing also pose certain challenges. Fundamentally, the difficulties of programming
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distributed systems stem from distributed state. For a system to be distributed,
it must in some way make use of the state of multiple processes, or else it is just
a number of disconnected computations. Making use of distributed state requires
transferring state information over communications links between processes, which
introduces delay and potential message loss. If the processes in a distributed system
are not centrally coordinated, then there may be no common notion of time shared
by all processes. If there is no common time-base, then what does it mean to say
that processes Pi and Pj are in the same state? The issue of asynchronicity makes
reasoning about distributed systems difficult.

Without a global clock, the notion of the state of the entire distributed system
becomes ill-defined, as there is no shared moment in time that all processes can
be examined. In his seminal paper, Lamport [1978] described the happens-before
relationship imposed by causality. Briefly, the happens-before relationship states
that, for a system to be consistent with causality, the sending of a message must
precede its reception (at all observers). This relationship can be used to create
a partial-ordering on a set of distributed events, and thus show whether or not a
particular view of a distributed system is consistent with causality. This observation
by Lamport led to a large number of algorithms for dealing with distributed state,
relying on the use of the happens-before relation to ensure consistency.

Interest in proving properties of distributed systems led to the creation of many
distributed predicate detection algorithms. Properties such as deadlock [Obermarck
1982] and termination [Tel and Mattern 1993] can be expressed as predicates over
the state of distributed processes. The complete state of the distributed system
can then be gathered and evaluated, to determine if the predicate is true. However,
there is a problem with such a naive approach. The gathered state creates an
implicit serialization of the parallel event streams in the system. There may be
multiple consistent serializations, and the predicate may be true in some of them,
but not others. This leads to a situation where predicates can be possibly-true
(true in at least one consistent serialization) or definitely-true (true in all consistent
serializations) [Cooper and Marzullo 1991].

To eliminate the need to explore an exponentially-bounded number of serializa-
tions, much of the research in distributed predicate detection has been targeted at
the class of stable predicates [Babao et al. 1993]. Stable predicates are distributed
predicates that, once evaluated as true under any consistent serialization, will re-
main true for all subsequent serializations. The classical algorithm for detecting
such predicates is the Chandy-Lamport snapshot algorithm [Chandy and Lamport
1985]. There have been many subsequent algorithms [Kshemkalyani et al. 1995]
focused either on improving the performance of distributed snapshots, or on delin-
eating subclasses of stable predicates with more tractable properties.

LDPs are differentiated from more traditional classes of distributed predicates in
that they are concerned with topology, rather than state. They form an orthogonal
categorization schema to stable properties and their subclasses. Specifically, in sys-
tems where there is a sparse communications topology, and topology is important,
it is our assertion that locally distributed predicates are a more natural and efficient
way to model and detect distributed properties.

This paper begins with a brief review of distributed systems and common dis-
Submission to ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 08 2009.
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tributed predicate classes, before describing the characteristics of LDPs. We then
present two algorithms for detecting important subclasses of locally distributed
predicates, including proofs of correctness and complexity measures. We close with
a discussion of the utility of LDPs, as demonstrated in previous work on distributed
debugging [De Rosa et al. 2008] and programming modular robots [De Rosa et al.
2009].

2. PRELIMINARIES

A distributed system is a graph (P,L), where P is the set of processes (nodes) and
L is the set of communication links (edges) connecting them. Let n =| P | and
l =| L |.

The execution history at process Pi ∈ P is the alternating sequence of states and
events 〈s0

i , e
1
i , s

1
i , e

2
i , s

2
i , e

3
i , · · · 〉, where s0

i is the initial state of the process and ek
i

is the kth event at that process. An event at a process can be message reception,
message transmission, or an internal event. We denote an arbitrary state from Pi

as s∗i , and the current state (observed locally by Pi) as si.
The state of a process is composed of an application-dependent number of named

state variables, with numeric or boolean values. The value of state variable var at
the kth state of process Pi is denoted by vark

i , and the current value of a particular
state variable is likewise denoted vari.

A channel Cij is a reliable, unidirectional FIFO link between processes Pi and
Pj , with a finite (but not bounded) delay. For two processes Pi and Pj , the channel
Cij exists if Lij ∈ L. The graph is undirected, thus Lij ∈ L ⇒ Lji ∈ L. We
say that two processes Pi, Pj are neighbors if Lij ∈ L. The state of a channel
SCij = transit(exi

i , e
xj

j ) is the set of messages sent by Pi up to event exi
i and not

received by Pj up to event e
xj

j . We denote the kth message sent along Cij from Pi

to Pj as mk
ij .

An execution of a distributed system with n processes is (E,≺), where ≺ is the
Lamport happens-before relation on E, the set of events E =

⋃
i∈P e ∈ Ei. Ei is

the totally ordered event sequence at process Pi.
A consistent cut K is a subset of E such that if e ∈ K then (∀e′) e′ ≺ e⇒ e′ ∈ K.

We can define a consistent sub-cut of a distributed system as a consistent cut over
some subset of P . To show that a sub-cut K is consistent, it is sufficient to show:

(1) there is no orphan message mij such that receive(mij) ∈ K ∧ send(mij) 6∈ K

(2) if ek
i ∈ K, then (∀j < k)ej

i ∈ K

Less formally, a sub-cut K is consistent if all message reception events in K have
matching message transmissions, and the events of Pi included in K form a prefix
of the execution history at Pi [Raynal 1999]. K2 is subsequent to K1 iff all e ∈ K1

are also in K2, and for some e2 ∈ K2, ∃e1s.t.e1 ≺ e2.

3. CLASSICAL DISTRIBUTED PROPERTIES

The field of distributed predicate detection is a well-established and active one.
There are a large number of algorithms and predicate types described in the liter-
ature. We briefly summarize several of the more important classes of predicates,
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deferring a more thorough categorization to several excellent survey papers on the
topic [Kshemkalyani et al. 1995; Baldoni and Raynal 2002].

stable: A predicate that, once found to be true by a global snapshot, will remain
true [Chandy and Lamport 1985]. This class of predicate explicitly
includes channel state, and can be used to detect deadlock, termination,
and the number of tokens in a token-passing system.

strongly stable: A stable predicate that, if true on some cut (consistent or not),
must remain true on all subsequent cuts [Lai and Yang 1987]. Deadlock
is not strongly stable.

strong stable: A stable predicate that, if true on some consistent cut, must remain
true on all subsequent consistent cuts [Schiper and Sandoz 1994]. Ter-
mination and deadlock are strong stable, though distributed garbage
collection is not.

locally stable: A stable predicate such that, once it becomes true, none of the vari-
ables used by the predicate change in value [Marzullo and Sabel 1994].
Termination, deadlock, and global virtual time are locally stable, deter-
mining the number of tokens in a token-passing system is not.

conjunctive stable: A predicate formed from the conjunction of local predicates,
each of which is individually stable [Fidge 1991; Raynal 1999].

Strongly stable, strong stable, locally stable, and conjunctive stable are all sub-
classes of stable predicates. Conjunctive stable predicates are a subclass of strong
stable predicates. There is no proven relationship between the classes of strong
stable and locally stable, though Schiper and Sandoz speculated that they were
similar.

Each of these classes of predicates is differentiated by the requirements they place
on detection algorithms: the presence/absence of channel state, the need for consis-
tent cuts, and the ways in which process state may change once a predicate becomes
true. Algorithms for detecting various classes of stable predicates are distinguished
by the particular class of predicates they detect, the type of communication channel
they assume (FIFO, non-FIFO, or causal delivery), and the degree to which they
interfere with existing message traffic.

4. LOCALLY DISTRIBUTED PREDICATES

Locally distributed predicates are distinguished from most classical categories of
properties in that they are defined by their topology, rather than their detectability.
An LDP is a distributed predicate over a fixed-size, linearly-connected group of
of processes. A set of processes that satisfies the LDP must form a connected
chain, with communication channels linking each of them. This formulation allows
LDPs to easily express communication distance (number of hops) and other simple
topological constraints, such as adjacency (whether of not two processes share a
channel), shared adjacency (whether or not two processes share a neighbor), etc.
Note that an LDP is limited to describing predicates that can be expressed in terms
of a fixed number of linearly-connected processes. This includes chains of processes
and rings, but excludes trees and other arbitrary DAGs.
Submission to ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 08 2009.
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4.1 Formal Properties

A locally distributed predicate (LDP) is Q(a1, a2, · · · , ak), a predicate over the state
of k abstract processes. Let | Q |= k be the size of the predicate. We say that Q is
satisfied by V if, for some vector of states V = 〈s∗i1 , s

∗
i2

, · · · 〉from distinct processes,
where | V |≤ k:

(1) Li1i2 ∈ L,Li2i3 ∈ L, · · · for all pairs of P which are adjacent in V

(2) Q← V = true, where ← is element-wise state substitution of V into Q

We will refer to these two properties as adjacency and substitution, respectively.
Adjacency requires that, if s∗i1 and s∗i2 are adjacent in the state vector V , then
their respective processes Pi1 and Pi2 must be neighbors. Taken as a whole, this
requires that the processes represented in V form a linear, connected chain via their
communications channels.

4.2 State Substitution Operator

Substitution is the second requirement for LDP satisfaction. An LDP is expressed
in terms of abstract processes, creating a predicate from their state and imposing
a restriction on their valid topology. Take the simple LDP:

Q(a1, a2) = flaga1 ∧ flaga2

This is a predicate over two abstract processes, ai and a2, which must be neighbors
(due to adjacency). Both a1 and a2 have a boolean state variable flag, whose
value must be true. Note that this formulation explicitly omits any reference to
consistency or detectability, it is concerned only with topology.

To instantiate this LDP over the state of two processes Pi and Pj , we first con-
struct a vector with their state:

V = 〈s∗i , s∗j 〉

Element-wise state substitution yields:

(flaga1 ∧ flaga2)← 〈s∗i , s∗j 〉 = (flag∗i ∧ flag∗j )

Where a1 has been instantiated as Pi and a2 has been instantiated as Pj . If this
predicate is true, and Pi and Pj are neighbors, then Q is satisfied by Pi and Pj .

Once state substitution has been performed, the predicate can be evaluated to
produce one of three output values: true, false, and undefined. As | V |≤| Q |
in Q ← V , there may be instances where the predicate can not be definitively
evaluated as either true or false. In this case the predicate’s value is undefined

4.3 Example LDPs

Using LDPs, it is easy to formulate topology-limited versions of many classical
distributed properties. One need merely decide on the number of abstract processes,
and state the property in terms of those processes. For example, the termination
of two adjacent processes is represented as:

Q(a1, a2) = terminateda1 ∧ terminateda2

While the presence of more than 1 token in a 3-process ring is:

Q(a1, a2, a3) = tokena1 + tokena2 + tokena3 > 1
Submission to ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 08 2009.
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Process Pi begins detection of Q:

if Q← 〈si〉 = true then
return 〈Pi〉 as matching Q

else
m =〈si〉;
send m to all neighbors of Pi;

end

Process Pj receives message m = 〈s∗i1 , s∗i2 , s∗i3 , · · · 〉:
V = 〈s∗i1 , s∗i2 , s∗i3 , · · · sj〉;
if Q← V = true then

return 〈Pi1 , Pi2 , Pi3 , · · · , Pj〉 as matching Q

else
if | V |<| Q | then

m′ = V ;

send m′ to all neighbors of Pj not already represented in V ;

else
failed to match;

end

end

Algorithm 1: LDP Detection (Non-Inhibitory)

Finally, mutual deadlock of two neighboring processes is:

Q(a1, a2) = (waitingOna1 == ida2) ∧ (waitingOna2 == ida1)

It is obvious that the detectability of the above LDPs is consistent with their
classical categorization. In other words, though all of the examples are locally
distributed predicates, they also fall into categories such as stable, strong stable, etc.
We can therefore define a strong stable LDP, for example, as a locally distributed
predicate that, once it becomes satisfied for a particular subset of processes, remains
satisfied for that subset.

5. THE LDP-BASIC ALGORITHM

To detect subgroups that match a given LDP, we have developed a simple dis-
tributed search algorithm. This algorithm, which we call LDP-Basic, gathers a
state vector to be substituted into a given LDP. We show that the state gathered
by LDP-Basic is a consistent sub-cut of the system. From Schiper and Sandoz
[1994], we know that this property allows LDP-Basic to detect properties that are
strong stable, an important subclass of stable properties.

5.1 Algorithm

Detection begins at the initiator process Pi, where the current local state is substi-
tuted into Q. If this substitution evaluates to true, then Pi alone satisfies the LDP.
If not, the 1-element vector 〈si〉 is sent to all neighbors of Pi.

When a message containing a state vector is received at process Pj , the process
appends its current state sj to the vector, and performs substitution into Q. If this
substitution evaluates to true, then the processes represented by the state vector
satisfy Q. If not, the size of the vector is compared to the number of processes
specified by Q. If | V |<| Q |, then the state vector V is sent to all neighbors of Pj

Submission to ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 08 2009.
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Fig. 1. Progression of the LDP-Basic algorithm from initiation at P1 (a), through two phases of

spreading (b,c). Processes are labeled circles, with messages at those processes located adjacent
to them.

not already represented in V . In this way, we sequentially gather the current state
from Pi1 , then Pi2 , etc.

Figure 1 illustrates the operation of LDP-Basic over a predicate Q of size 3. In
Figure 1a, process 1 has created a vector containing its current state. In Figure
1b, that state has been transmitted to processes 2 and 3, which have appended
their current state to the vector, and so on in Figure 1c. If any other these vectors
satisfied Q, that condition would have been detected at the last process necessary
to fulfill the predicate. Note that the algorithm supports multiple overlapping
initiators, and will correctly identify multiple overlapping subgroups that satisfy
Q, identifying them by their distinct vector of processes.

5.2 Consistency Proof

To show that the state captured by this algorithm is a consistent sub-cut, we must
show that all states that are captured obey the Lamport happens-before relation.
There are two components to this proof. The first is to show that if ek

i ∈ C, then
(∀j < k)ej

i ∈ C. This is trivially true, as sk
i encompasses the effect of (∀j < k)ej

i

by definition. Next, we must show that there are no orphan messages within the
sub-cut. This requires the use of the following lemma:

Lemma 1. Under LDP-Basic, if state vector V contains sxi
i and s

xj

j , where sxi
i

appears in V before s
xj

j , then sxi
i ≺ s

xj

j .

Proof. Process state is only appended to V . Each process appends only one
element, its current state. If process Pj appends s

xj

j to V while sxi
i is already a

member of V , then Pj must have received V (and thus sxi
i ) from another process.

Thus, by the causality of message delivery, sxi
i ≺ s

xj

j .

Theorem 5.2.1. The state vector gathered by LDP-Basic is a consistent sub-
cut.
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Process Pi begins detection of Q:

Obtain an exclusive lock on spanning subtree Ti, of depth | Q |;
Send 〈Suppress, Ti〉 to c(Ti, Pi);

Process Pj ∈ Ti receives 〈Suppress, Ti〉:
Suppress transmission of any message not related to Pi’s detection attempt ;
Send 〈Suppress, Ti〉 to all neighboring Pk ∈ Ti;

Once Pj has received 〈Suppress, Ti〉 from all neighboring Pk ∈ Ti, send 〈Ready, Pj〉to Pi;

Process Pi receives 〈Ready, Ti〉 from all Pj ∈ Ti:

Pi begins Algorithm 1 ;
Pi releases lock on subtree Ti ;

Process Pj ∈ Ti is unlocked from Ti:
Resume transmission of any message not related to Pi’s detection attempt ;

Algorithm 2: LDP Detection (Inhibitory)

Proof. By contradiction: Take any two states from V , (sxi
i , s

xj

j ) where sxi
i

appears before s
xj

j . Suppose that there is an orphan message mji, such that
receive(mji) is known at sxi

i , but send(mji) is not known at s
xj

j . From Lemma 1,
sxi

i ≺ s
xj

j . From the causality of message delivery, send(mji) ≺ receive(mji). From
the assumption that mji is an orphan, receive(mji) ≺ sxi

i and s
xj

j ≺ send(mji).
As ≺ is commutative, s

xj

j ≺ receive(mji), and thus s
xj

j ≺ sxi
i . This contradicts

sxi
i ≺ s

xj

j , and thus there can be no such message mji.

This proof shows that any sub-cut produced by LDP-Basic is a consistent one;
from Schiper and Sandoz, we know that this means that LDP-Basic can detect
strong properties, including the sub-categories of conjunctive stable and (poten-
tially) locally stable properties. This includes such properties as termination,
deadlock, and virtual time, when the properties are restricted to finite chains of
processes.

6. DETECTING STABLE LOCALLY DISTRIBUTED PREDICATES

The LDP-Basic algorithm is sufficient to detect LDPs in the class of strong stable
predicates, but it will not detect the more general stable LDPs. In particular, LDP-
Basic cannot detect predicates whose satisfiability may depend on channel state.
We therefore introduce a second algorithm, which can detect a broader range of
predicates.

6.1 Algorithm

Our second algorithm, LDP-Snapshot, is an extension of the basic detection method,
and allows for the capture of all stable LDPs. It does so by coercing sub-graphs of
the system into configurations where there is no channel state, and then performing
the basic detection operation. By ensuring that all channels are empty, any stable
LDP must reside purely in process state, and thus be observable via a consistent
sub-cut. We model our work on on the inhibitory algorithms of Critchlow and
Taylor [1990], which used a similar technique to create consistent cuts in non-FIFO
systems.

LDP-Snapshot operates as follows: Let Ti be the spanning subtree of depth | Q |
rooted at Pi. It is obvious that all vectors of processes that match Q and begin
Submission to ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 08 2009.
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Fig. 2. Progression of the LDP-Snapshot algorithm from initiation at P1 (a) Initial state of T1,

with depth 3. (b) P1 sends 〈Suppress〉 to its neighbors, and suppresses its outbound channels
(represented in grey). (c) P1 has received a suppression message from all neighbors in T1, and

is now 〈Ready〉, represented by a double outline. (d) All processes have sent 〈Ready〉 messages.

(e) Process P1 initiating LDP-Basic, showing local state vector. (f,g) Continuation of LDP-Basic,
showing state vectors growing.

in Pi must be contained within Ti. To obtain a snapshot, Pi begins by obtaining
an exclusive lock on all processes in Ti, to prevent overlapping snapshots. Once
the lock has been obtained, Pi distributes the message 〈Suppress, Ti〉 downwards
through the tree, as seen in Figure 2. Once Suppress has been sent via a channel,
transmission via the channel is delayed until after the snapshot is taken. Once a
process has received Suppress messages from all neighbors that belong to Ti, it
sends 〈Ready, Ti〉to Pi via the spanning tree. Once Pi has received Ready messages
from all members of Ti, it proceeds with LDP-Basic, and then unlocks the subtree.

6.2 Snapshot Consistency Proof

From Chandy and Lamport [1985], we know that distributed snapshots require a
consistent set of process and channel state. In LDP-Snapshot, we first empty and
suppress as communications channels within a subtree, and then take a consistent
cub-cut of the process state in that subtree. Consistency of the sub-cut is obtained
via the use of LDP-Basic, whose properties are described in Section 5. Proving that
all channels are empty is as follows:

Theorem 6.2.1. When LDP-Basic is executed by Pi, SCjk = ∅,∀(Pj , Pk) ∈ Ti.

Proof. Once a process Pj receives 〈Suppress, Ti〉 from Pk, it is guaranteed that
SCkj = ∅, and that all further messages along Ckj will be inhibited. A process Pj

will not send 〈Ready, Pj〉 until it has received 〈Suppress, Ti〉 from all neighbors in
Ti. Therefore, sending 〈Ready, Pj〉 guarantees that ∀Pk ∈ Ti, SCkj = ∅. Once the
initiator Pi has received 〈Ready, Pj〉 from all Pj ∈ Ti, then ∀(Pj , Pk) ∈ Ti, SCjk =
∅. Therefore, when the basic LDP detection algorithm runs after Pi has received
〈Ready, Pj〉 from all Pj ∈ Ti, it will be guaranteed that SCjk = ∅,∀(Pj , Pk) ∈

Submission to ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 08 2009.
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Table I. Complexity Measures of Detection Algorithms (Degree-d Topology)
Metric C-L LDP-Basic LDP-Snapshot

Messages (Single Initiator) O(n2) O(dk−1) O(d2k−2)

Messages (n Initiators) n/a O(ndk−1) O(nd2k−2)

Bandwidth O(n) O(dk−2) O(dk−1)

Storage O(n) O(k) O(k)

Table II. Complexity Measures of Detection Algorithms (Arbitrary Topology)
Metric C-L LDP-Basic LDP-Snapshot

Messages (Single Initiator) O(n2) O(nk−1) O(nk−1)

Messages (n Initiators) n/a O(nk) O(nk)

Bandwidth O(n) O(nk−2) O(nk−2)

Storage O(n) O(k) O(k)

Ti.

As channel state is empty, the state captured by LDP-Basic is a consistent capture
of both channel and process state, and thus a distributed snapshot. From Chandy
and Lamport, LDP-Snapshot is thus able to detect all properties in the class of
stable LDPs.

7. PERFORMANCE AND COMPLEXITY

In evaluating our algorithms for detecting LDPs, we will show complexity results for
three important metrics: overall message traffic, maximum channel bandwidth, and
required state storage. We compare our algorithms to the classic Chandy-Lamport
distributed snapshot algorithm. While there are more efficient snapshot algorithms
[Kshemkalyani and Wu 2007; Venkatesan 1989], the Chandy-Lamport algorithm is
both widely known and very succinct.

We present upper bounds for systems of bounded degree (Table I), which are
reflective of the sparse-topology systems that LDPs were designed for. Additionally,
we present upper bounds for general graphs (Table II). Scale-free properties are
indicated by bold text in both tables. In all of our analyses, the number of processes
is n, the maximum degree of the system is d, and the size of the relevant LDP is k.

7.1 Messaging Cost

Message complexity is measured by assigning a cost of 1 to each message trans-
mission. We assume that messages are not merged or batched in any way, though
they would be in most concrete implementations. In a similar vein, the cost of a
message carrying a single boolean value, and one containing the entire state of a
process are both 1.
Submission to ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 08 2009.
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The base-line Chandy-Lamport snapshot algorithm has a message complexity of
O(n2), dominated by two factors. The first is the need to to send a marker message
along each channel (of which there are potentially O(n2)). The second is the need
to aggregate the state of each process at some distinguished initiator, which involves
n processes sending their recorded state to the initiator, along paths that can be
O(n) hops long.

LDP-Basic’s messaging complexity is determined by the spread of the state vector
from the initiator, to each of its neighbors, to each of their neighbors, etc. for up to
k processes. In a fully connected system, each process has O(n) neighbors, giving a
cost of O(nk−1) for a detection of a size-k LDP starting at some process Pi. Starting
a detection attempt at every process raises the total cost to O(nk) messages.

The cost of LDP-Snapshot, exclusive of the application-dependent cost of ac-
quiring a lock on Ti, is determined by three factors: the cost to send suppression
messages along each channel in Ti, the cost for all members of Ti to send Ready
messages back to Pi, and the cost to run LDP-Basic once. These costs are O(| Ti |2)
(for any spanning tree), O(| Ti |2) (for the worst -case spanning tree), and O(nk−1).
As the maximum size of a depth-k spanning tree is n, these costs are O(n2), O(n2),
and O(nk−1) respectively, for a total complexity of O(nk−1) for an attempt rooted
at a given Pi. The complexity for each process to initiate the algorithm is O(nk)
messages.

In a system with a maximum degree of d, these metrics change in important
ways. The complexity of Chandy-Lamport is still O(n2), as aggregating state at
a central location is an O(n) operation for each process. The cost of LDP-Basic
becomes dependent on the maximum degree d, leading to a cost of O(dk−1) for
a single initiator, or O(ndk−1) for all processes to be initiators. It is important
to note that O(dk−1) is a constant for a given predicate and maximum degree.
Similarly, as the maximum size of a depth-k subtree becomes dk−1 in a system
with maximum degree d, the cost of LDP-Snapshot becomes O(d2k−2) for a single
initiator, or O(nd2k−2) for n initiators.

7.2 Bandwidth

We measure bandwidth complexity by observing the number of messages sent along
each channel, and taking the maximum over all channels as the complexity. Chandy-
Lamport has a bandwidth complexity of O(n), in the case where the initiator
process has only a single channel connecting it to the remainder of the system.
In that case, all n− 1 processes must route their state along this edge.

The bandwidth complexity of LDP-Basic can be determined as follows: assume
that the channel Cab is the channel with the highest bandwidth. Furthermore,
assume that Pb is located at distance k − 1 from initiator Pi. The bandwidth
through Pab is then the number of distinct paths of length k − 2 from Pi to Pa, as
each of these paths will produce a distinct state vector, which must be forwarded
to Pb. The maximum bandwidth is thus O(nk−2) for arbitrary systems, or O(dk−2)
for systems with a maximum degree of d.

The maximum bandwidth needed for LDP-Snapshot is derived from two terms:
the cost of every member of Ti sending a Ready message to Pi, and the cost of
executing LDP-Basic. Using similar reasoning to Chandy-Lamport, the maximum
bandwidth for each member of Ti to send a Ready message to Pi is O(n) in an
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arbitrary system, or O(dk−1) in a degree-d system. The maximum bandwidth for
LDP-Snapshot is therefore O(nk−2) for arbitrary systems, or O(dk−1) for degree-d
systems.

7.3 State Storage

Once a snapshot or sub-cut has been initiated, the state of the involved processes
must be gathered and processed in some manner, so that the satisfiability of the
distributed predicate can be evaluated. In Chandy-Lamport, the distinguished
initiator must gather state from every process, requiring O(n) space to store it
before the global predicate can be evaluated. In the case of both LDP-Basic and
LDP-Snapshot, state is carried in a vector message, and each vector is processed
individually, requiring a maximum of O(k) storage at any given process.

7.4 Optimization

The presented algorithms for LDP-Basic and LDP-Snapshot are deliberately simple,
and there is much room for improvement. As a simple optimization, replace the
condition

if | V |<| Q |

on line 13 of LDP-Basic (Alg.1) with

if (| V |<| Q |) ∨ (Q← V = false)

This optimization enables aggressive Boolean short-circuiting in LDPs. That
is to say that, if a state vector fails state substitution, then that vector, and all
subsequent vectors that it would generate, are removed from consideration early. In
previous work on distributed debugging, we showed that this optimization provided
significant benefit for predicates that failed early, or matched infrequently.

7.5 Mitigation of Cost Growth

An important shortcoming of the Chandy-Lamport approach is that as the system
is scaled up, the costs of running the algorithm grow. As these costs depend only
on n, there is nothing a system designer can do to control them. With LDPs, these
costs depend instead on the degree of the connectivity graph and the complexity
of the predicate and not, in general, on n. Hence, there are parameters available to
the system designer, which allow some control of the costs of running distributed
predicate detection, even as the system size grows. For example, limiting the de-
gree of connectivity between nodes or the length of predicates allowed can keep
algorithmic complexity low despite a large value of n.

8. LDP APPLICATIONS

Because messaging costs for LDP-Basic and LDP-Snapshot grow exponentially with
the degree of a system’s connectivity graph, LDPs are best suited to large-scale
distributed systems with sparse connectivity, and especially when computation and
communication patterns are driven by network locality. Systems of this type include
wireless sensor networks, modular robots, and large-scale WLANs.

An obvious use for LDPs is in distributed monitoring and debugging. By speci-
fying predicates corresponding to incorrect or important state, predicates can flag
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Detecting Locally Distributed Predicates · 13

the presence of the errors and other conditions. This is especially important in the
case of distributed errors, which manifest across the state of multiple processes,
and are thus not amenable to traditional debugging/logging techniques. As an ex-
ample, take the problem of distributed leader election. Determining the presence
of multiple leaders is, in many cases, impossible given the state of just one process.
There are many similar properties, e.g. the problem of disconnection detection in
modular robotics. For a more comprehensive treatment of distributed debugging,
utilizing a precursor to locally distributed predicates, please see our previous work
on the subject [De Rosa et al. 2008].

LDPs can also form the basis for a distributed, declarative programming system.
By binding an action to the detection of a given predicate, we can create a simple
declarative language. This approach to distributed programming is powerful, in
that it is based based on network locality, and is thus highly responsive to the
underlying topology of the system.

This approach is easiest to illustrate with the simple example of constructing a
spanning tree. Take a distributed system with the following state variables:

id : A unique integer identifier for each process.
isRoot : A boolean flag identifying the root of the spanning tree.
parent : An integer variable, initialized to the constant nil.

To create a spanning tree rooted at the process marked by isRoot, we use fol-
lowing predicate/action pairs (where predicate and action are separated by →):

Q1(a1, a2) : isRoota1 → parenta1 = ida1

Q2(a1, a2) : (parenta1 6= nil) ∧ (parenta2 = nil)→ parenta2 = ida1

Predicate Q1 identifies the root of the tree, and sets the root’s parent to its
id. Predicate Q2 finds pairs of processes where process a1 is a member of the
spanning tree, while process a2 is not. Process a2 then sets its parent variable to
point to a1. These two predicate/action pairs, when executed by every process,
form a global spanning tree in the system. Importantly, they do so without any
explicitly specified messaging, and without requiring any multi-hop communication.
We discuss this topic at length in our work on declarative programming for modular
robots [De Rosa et al. 2008; Ashley-Rollman et al. 2007].

9. CONCLUSIONS

In this paper, we have formally introduced the concept of locally distributed predi-
cates, and shown two algorithms for detecting them in FIFO systems. The first is a
consistent cut protocol, capable of detecting strong stable properties, while second
is an inhibitory algorithm that creates distributed snapshots. We have shown that,
although their complexity in fully-connected networks is inferior to that of exist-
ing algorithms, the message- and state-complexity of the algorithms is scale-free in
constant-degree graphs. Finally, we have demonstrated the utility of LDPs as the
foundation for programming and debugging tools in modular robotics and sensor
networks.

While LDPs represent a first step in developing topology-aware predicates, there
are numerous opportunities to improve and refine them. The most obvious lack in
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LDPs is the inability to describe topologies other than linear chains. The ability
to represent trees, DAGs, or arbitrary subgraphs in predicates would allow the
expression of a much larger set of properties. The detection algorithms for LDPs
can also be improved, as they are relatively expensive. Finally, the creation of
new algorithms for detecting non-stable LDPs, or for performing detection over
non-FIFO channels, would increase the set of applications for which LDPs are
appropriate.
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