A Case for a RISC Architecture
for Network Flow Monitoring

Vyas Sekar*, Michael K. Reiterf, Hui Zhang*
* Carnegie Mellon University, f UNC Chapel-Hill

ABSTRACT exclusively on developing application-specific sampling

Several network management applications require high fi- Strategies. This is exempl{ﬁed by the proliferation Qf a
delity estimates of flow-level metrics. Given the inadequac Wide range of data streaming algorithms for computing
of current packet sampling based solutions, many proposalslifferent specific traffic metrics, e.g., flow size distri-
for application-specific monitoring algorithms have enestg ~ Pution [25], entropy [29], superspreader detection [41],
While these provide better accuracy, they increase routerdegree histogram estimation [44], change detection [24],
complexity and require router vendors to commit to hard- and several other applications in the literature.
ware primitives without knowing how useful they will be to ~ While this body of work has made valuable algorith-
future monitoring applications. We argue that such complex ™mic contributions, this ShlfJF toward application-specific
ity is unnecessary and build a case for a “RISC” approach for 2Pproaches is undesirable in practice for two reasons.
flow monitoring, in which generic collection primitives on First, the set of network management applications is a
routers provide data from which traffic metrics can be com- oving target, and new applications arise as the nature
puted using separate, offline devices. We demonstrate onet both normal and anomalous traffic patterns changes
such RISC approach by combining two well-known primi- over time. Application-specific alternatwes rgqmre router
tives: flow sampling and sample-and-hold. We show that al- vendors and network managers to commit in advance
locating a router’'s memory resources to these generic prim-t© their metrics of interest. Second, a large number of
itives can provide similar or better accuracy on metrics of Monitoring primitives operating independently greatly
interest than dividing the resources among several metric-ncreases the implementation complexity and resource
specific algorithms. Moreover, this approach better irtegla ~ reduirements of routers — each application-specific al-

router implementations from changing monitoring needs, ~ 8otithm requires separate processing and memory re-
sources for maintaining relevant data structures.

In this paper, we reflect on these trends in flow mon-
itoring and answer a fundamental question:
Is such complexity necessary for flow monitoring or can

1. INTRODUCTION

Flow monitoring supports several critical network man-

agement tasks such as traffic engineering [18], account-
ing [13, 17], anomaly detection [27, 28], identifying and

understanding end-user applications [10, 21], understand-

ing traffic structure at various granularities [43], detect-
ing worms, scans, and botnet activities [44, 41, 36], and
forensic analysis [42]. These require high-fidelity esti-
mates of traffic metrics relevant to each application.
High traffic rates exceed the monitoring functionality
of modern routers, and since traffic is scaling at least as
fast as router monitoring capability, some form of sam-
pling or data reduction is inevitable. The de-facto stan-
dard for flow-level monitoring is NetFlow [9] and similar
implementations from other router vendors (e.g., [3]),
which are intended as application-agnostic primitives.
These employ packet sampling where each packet is
selected with a sampling probability and the selected
packets are aggregated into flow records. However, sev-
eral studies have demonstrated the inadequacy of packet
sampling for many of the applications mentioned above
(e.g., see [33, 20, 14, 25, 6, 36, 17]). One consequence
is that the research community has been focused almost

a simpler “RISC” approach [35], that has a small num-
ber of primitives, provide performance comparable to
application-specific approaches?

A RISC approach would employ a small number of
simple, generic collection primitives — analogous to a
reduced instruction set [35] — on each router and man-
age these in an intelligent network-wide fashion, to en-
sure that the collected data will support computation
of metrics of interest to various applications. There
are two qualitative benefits of this approach: it enables
“late binding” of which application-specific traffic met-
rics to consider and it enables vendors to develop effi-
cient hardware implementations of a few primitives.

The key insight is that a RISC approach decouples
the collection and computation involved in traffic moni-
toring (Figure 1). Application-specific alternatives (e.g.,
data streaming algorithms) work well for the specific
applications for which they are designed, precisely be-
cause they tightly couple the collection to the metrics to
be computed. The RISC approach, on the other hand,

1 Application 1
_—

\
: \ / :
\ h
Traffic Stream ~~@&Z=ap- "~

Application-specific flow monitoring on a router

Application 1

s WEstimate' L

Application 2

\‘ Application 3
\\ \ J P
Traffic Stream™~ . \ licati
-Application n

T

RISC flow monitoring on a router

Figure 1: Schematic comparison between the
application-specific architecture and the RISC
architecture. The application specific architec-
ture runs multiple algorithms each with its asso-
ciated collection and computation components.
The RISC architecture runs a small number of
generic collection algorithms. The applications
can use the collected data later (possibly offline).

collects generic data that can be used for multiple appli-
cations. The applications can use offline computation
devices that need not strictly work at line rates.

One rationale to suggest that a RISC approach can
perform favorably compared to application-specific al-
ternatives is that the primary bottleneck for high-speed

monitoring is maintaining counters in fast memory (SRAM).

Each application-specific alternative not only requires

independent hardware implementations, but also requires

dedicated data structures and counters in SRAM. By
aggregating this available pool of memory resources for
use by a small number of RISC primitives, we hope to
operate the RISC primitives at sufficiently high fidelity
(i.e., high sampling rates) so as to enable accurate esti-
mation of traffic metrics relevant to a wide spectrum of
applications. In other words, when we look at each ap-
plication in isolation, application-specific strategies are
likely to work better. When we consider the portfolio of
applications in aggregate, however, the RISC approach
has an advantage.

We describe one such RISC architecture that is prac-
tical and provides sufficient fidelity for a broad class of
applications. For single-router sampling algorithms, we
leverage sample-and-hold [17] and flow sampling [20].
For network-wide management we use Coordinated Sam-
pling (cSAMP) [39]. Our contribution is to synthesize
these components in a RISC architecture and to quan-
titatively demonstrate the benefits of this approach.

We use trace-based analysis to evaluate the gener-
ality of this approach with respect to six application
scenarios and their respective application-specific al-
gorithms: detecting heavy hitters [17], detecting su-
perspreaders [41], computing the entropy of different
traffic subsets [29], estimating the flow size distribu-

tion [25], computing the outdegree histogram for de-
tecting stealthy spreaders [44], and change detection
using sketches [24]. When the RISC approach has the
same memory resources as required by these applica-
tions in aggregate, it provides comparable or better esti-
mation performance relative to the application-specific

approaches. Moreover, because this approach is application-

agnostic, it enables computation of not-yet-conceived
measures that will be interesting in the future.

2. BACKGROUND AND RELATED WORK

Packet sampling and extensions: In uniform packet
sampling, a router selects a subset of packets to log,
aggregates the sampled packets into flow reports, and
exports the flow reports. Packet sampling at a low sam-
pling rate p (e.g., p < 0.01) has low overhead requiring
only DRAM counters [9], and can support applications
such as traffic engineering and accounting (e.g., [15, 14,
18]). Researchers have proposed strategies to adapt the
sampling rate to changing traffic conditions, or to tune
the processing, memory, and reporting bandwidth over-
heads [16, 23]. There have also been efforts to get better
traffic estimates from sampled measurements [13, 15].

However, packet sampling is known to have several
inherent limitations. For example, there are known bi-
ases towards sampling larger flows (e.g., [20, 25, 33]).
Further, several studies have questioned the fidelity of
packet sampling for many network management appli-
cations (e.g., see [33, 20, 14, 25, 6, 36, 17]).

The inadequacy of packet sampling has motivated a
large number of application-specific data streaming al-
gorithms and proposals for flexible sampling algorithms
(both application-specific and application-agnostic). Fur-
ther, there is a growing body of work that demonstrates
the need for network-wide sampling solutions. We briefly
describe these three classes of related work next.
Application-specific data streaming algorithms:
Several application-specific data streaming algorithms
and counting data structures have been proposed; see [34]
for a survey. The high-level approach is to use a small
number of (SRAM) counters pertaining to the specific
metric of interest and subsequently use an estimation al-
gorithm to recover traflic statistics from these counters.
The seminal work of Alon et al. [5] provides a frame-
work for estimating frequency moments. Kumar et al.
use a combination of counting algorithms and Bayesian
estimation for accurate estimation of the flow size distri-
bution [25]. Streaming algorithms have also been pro-
posed for identifying heavy hitters [17] and for comput-
ing traffic distribution statistics such as entropy [29].
Sketch-based techniques have been used for detecting
changes and anomalies [24]. However, these lack the
generality to serve as primitive operations on routers.

There are some efforts in designing data structures
that allow a variety of metrics to be computed effi-

ciently. Notably, count-min sketches [11] can estimate
frequent items, quantiles, etc. However, sketches have
two key limitations. First, they are designed primarily
for volume queries and thus less suited for more fine-
grained applications such as entropy estimation, super-
spreader detection, degree histogram reconstruction, or
for understanding the flow size distribution. Second, a
sketch data structure operates over a specific “flowkey”
defined over one or more fields of the IP 5-tuple (srcip,
dstip, srcport, dstport, protocol). Each such flowkey
of interest requires a separate instance of the sketch on
a router. Understanding combinations of two or more
fields is often necessary when operators run diagnos-
tics or investigate anomalies. A separate sketch struc-
ture per flowkey not only incurs memory and processing
overhead but also requires advance knowledge of which
flowkeys will be useful, which may not be known until
after the operator begins to investigate specific events.
Flexible sampling extensions: A natural extension
to uniform packet sampling is to classify packets into
different categories and assign a different sampling rate
to each category. For example, in size-dependent sam-
pling [26, 36|, the sampling rate depends on the flow
size. Other approaches allow network operators to de-
fine specific flow categories and only log flows relevant
to these categories (e.g., [45, 1, 4, 32, 7]). These ap-
proaches can serve as additional primitives for a RISC
approach. However, they need to be configured with
the categories and sampling rates to suit the applica-
tion requirements in advance. In contrast, our RISC
approach operates at the granularity of a generic IP flow
5-tuple, agnostic to the specific types of analyses that
may be performed on the collected flows. The collected
flows can then subsequently projected appropriately to
answer specific queries of interest. As Section 6 shows,
our approach works well for a wide class of applications.
The work closest in spirit to our approach is due
to Keys et al. [22]. They design a system for provid-
ing summaries of global traffic counters and “resource
hogs”. To do so, they use a combination of flow sam-
pling [20] and sample-and-hold [17], similar to our ap-
proach in Section 4. Our work extends theirs in two sig-
nificant ways, however. First, we take a network-wide
view and show how to combine these primitives with the
resource management capabilities of CSAMP, in contrast
to the single-vantage-point view in their work. Second,
we look beyond simple traffic summaries and heavy hit-
ters, and demonstrate that this hybrid approach can in
fact support a much wider range of applications.
Network-wide sampling: Recent work has stressed
the importance of network-wide measurements, e.g., to
meet operational requirements [18, 27] or for anomaly
detection [27, 38, 28]. In this theme, Cantieni et al. [8]
provide a formulation to optimally set the packet sam-
pling rates on a set of routers to achieve traffic engi-

neering objectives. Our architecture uses CSAMP [39],
to ensure that the available monitoring resources are
used in an efficient, non-redundant manner.

3. DESIGN CONSIDERATIONS

Given this background, we synthesize key require-
ments for a RISC architecture for flow monitoring and
also derive some guiding design principles.

3.1 Reguirements

Generality across applications: There is already a
wide spectrum of network management and network se-
curity applications as highlighted in the introduction.
Further, the set of applications continues to grow and
evolve as both normal and anomalous traffic patterns
change over time. Since it is hard to ascertain the ap-
plication mix a priori, flow monitoring primitives on
routers should be application-agnostic or provide suffi-
cient coverage over a large class of applications.

Low complexity: Due to technological and resource
constraints on routers, sampling is inevitable. The ques-
tion then is what sampling primitives should be imple-
mented. Each such primitive may require a different set
of operations and attendant data structures on routers.
Implementing a separate algorithm for each monitor-
ing application increases router complexity as the set of
applications grows over time.

Support a network-wide view: For network oper-
ators of medium-to-large ISPs, the utility of measure-
ment data is based on gaining a network-wide view of
events. This network-wide view is crucial for several
operational requirements [18, 27] and as user applica-
tions and attacks become massively distributed [38, 27,
28, 10]. For example, understanding the structure of
peer-to-peer traffic [10], detecting botnets [36] and hit-
list worms [31], understanding DDoS attacks [38], and
network forensics [42] inherently require a network-wide
view aggregated from multiple vantage points.

Enable diagnostics: Network operators not only want
to understand the properties of the traffic traversing
their network, but also need to go one step further to
diagnose the root cause of certain events such as anoma-
lies or attacks. Thus, monitoring primitives should be
able to support diagnostic tasks, e.g., decomposing the
traffic into different subsets or considering different com-
binations of traffic patterns. For example, NetFlow
style flow reports not only provide the ability to com-
pute statistical properties of the traffic but also enable
more fine-grained diagnostics.

3.2 Design Principles

Decouple collection and computation: The key in-
sight is to decouple the collection and computation in-
volved in traffic monitoring. This is already implicit in
the operational model of ISPs using NetFlow, export-

ing flow reports to a central collection center, and run-
ning analysis/diagnostics on the flow data. Application-
specific algorithms tightly couple the collection and com-
putation and only report summary statistics relevant to
each application. As a consequence, they are suitable
only for the applications to which they cater and do not
enable diagnostic drill-down capabilities.

Few, simple, and generic primitives: The monitor-
ing primitives on routers should be amenable to simple
implementations, and at the same time provide a suf-
ficiently general abstraction to support a wide variety
of management tasks. We hypothesize that such simple
collection primitives, if provided with resources com-
mensurate to that consumed by the application-specific
alternatives in aggregate, will perform similar to the
application-specific algorithms. In addition to retain-
ing independence from today’s applications, this also
improves the likelihood of supporting future applica-
tions.

Network-wide management: A network-wide ap-
proach will need to take into account (a) the resource
constraints (e.g., memory) on each router in the net-
work, and (b) the network-wide objectives outlined by
the particular management applications. Based on (a)
and (b), the network-wide approach should assign mon-
itoring responsibilities to routers that both respect each
router’s resource constraints and effectively utilize these
resources toward network-wide goals.

3.3 Challenges and Roadmap
Given the above considerations, two questions remain:

1. Concrete Design: What primitives should be
implemented on routers to support a range of ap-
plications? How should monitoring responsibili-
ties be divided across routers to meet an ISP’s
network-wide measurement objectives?

2. Performance: Does the appeal of a RISC ap-
proach translate into quantitative benefits for a
wide spectrum of applications?

We describe our RISC architecture in the next section
to answer the first question. Then, we compare this
specific RISC design against six applications and their
associated application-specific algorithms.

4. ARCHITECTURE

Our RISC architecture combines three ideas: flow
sampling [20], sample-and-hold [17], and cSAMP [39].

4.1 Singlerouter sampling

Choice of primitives: Flow monitoring applications
can be divided into two broad classes: (1) those that re-
quire an understanding of volume structure (e.g., heavy-
hitter detection, traffic engineering) and (2) those that
depend on the communication structure of the traf-

fic (e.g., network security applications, anomaly detec-
tion). Our choice of primitives is guided by these two
broad classes. Flow sampling is well suited for security
and anomaly detection applications that depend on un-
derstanding communication structure, i.e., “who talks
to whom” [20, 33, 31]. Similarly, sample-and-hold is
well suited for traffic engineering and accounting appli-
cations that depend on volume estimates [17].

For the following discussion, a flow refers to the IP 5-
tuple: (srcaddr, dstaddr, srcport, dstport, protocol). We
use flow sampling and sample-and-hold at this 5-tuple
granularity. The rationale is to collect flows at the most
general definition possible. The collected flows can be
sliced-and-diced after the fact by projecting from this
general definition to more specific definitions (e.g., per
destination port, per source address).
Sample-and-Hold (SH): Estan and Varghese pro-
posed sample-and-hold [17] for tracking heavy hitters,
i.e., flows with large packet counts. While packet sam-
pling can detect heavy hitters, the estimation errors are
quite high. The motivation for SH is to keep near-exact
counts of the heavy hitters. We briefly describe how SH
works below.

As each packet arrives, the router checks if it is al-
ready maintaining a counter corresponding to the flowkey
for the packet, defined over one or more fields of the IP
5-tuple. If yes, then the router simply updates that
counter. In addition, each packet is sampled indepen-
dently with probability p. If the flowkey corresponding
to the sampled packet is y, and y has not been selected
earlier, the router keeps an exact count for y subse-
quently. Since this might require per-packet counter
updates, the counters are maintained in SRAM [17].

To configure SH, we specify the flowkey (e.g., src-
port, srcaddr, or 5-tuple), the total number of packets a
router will see in a specific time interval (numpkts), and
the total memory resources available (L). The proba-
bility p is set to nfpkts.l Instead of using a separate
instance for each possible flowkey, we use one instance
defined on the full IP 5-tuple.

Hash-based flow sampling (FS): The key idea be-
hind flow sampling (F'S) is to pick flows rather than
packets independently at random. One possible imple-
mentation of FS is as follows. Each router has a sam-
pling manifest — a table of one or more hash ranges
indexed using a key derived from the packet headers.
On receiving a packet, the router computes the hash of
the packet’s 5-tuple (i.e., the flow identifier). It then se-
lects the appropriate hash range from the manifest and
logs the flow if the hash falls within this range. In this

'If the goal is to track heavy hitters who contribute more
than a fraction % to the total volume, then the probability

p is set to #Xp,ﬁw, where O is an oversampling factor [17].

Our configuration can be viewed as determining x and O
from the memory budget L.

case, the hash is used as an index into a table of flows
and it updates the byte and packet counters and other
statistics for the flow.

We can treat the hash as a function that maps the in-
put 5-tuple uniformly into the interval [0, 1]. Thus, the
size of each hash range determines the flow sampling
rate of the router for each category of flows in the sam-
pling manifest. The above approach implements flow
sampling [20], since only those flows whose hash lies
within the hash range are monitored.

Similar to SH, FS requires per-packet table lookups;
the flow table must therefore be implemented in SRAM.
It is possible to add a packet sampling stage to make
DRAM implementations possible [23]. For simplicity,
we consider only configurations in which the counters
are stored in SRAM.

4.2 Resource management

Combining the primitives on a single router: Let
us first consider the single router case with a fixed mem-
ory (SRAM) budget L split between the SH and FS
primitives. A simple way to split L is to give a fraction
f to FS and the remaining 1 — f to SH. We show in
Section 6.1.4 that f ~ 0.8 is a good choice.
Network-wide case: Let us now consider the network-
wide case. Typical network management tasks are spec-
ified in terms of Origin-Destination pairs, specified by
an ingress and egress router (or PoP). OD-pairs are con-
venient abstractions since they naturally fit many of
the objectives (e.g., traffic engineering) and constraints
(e.g., routing paths) for network-wide resource manage-
ment. A natural extension to the single router combined
primitive for the network-wide case is to consider the
resource split per OD-pair [8, 39].

Here, we observe a key difference between FS and SH.
It is easy to split and coordinate the FS functionality
by assigning non-overlapping sampling responsibilities
across routers on the path for the OD-pair. However,
because SH logs heavy hitters, the same set of heavy hit-
ters will be reported across routers on the same path.
Thus, replicating SH functions across routers on a path
will result in duplicate measurements and waste mem-
ory resources.

To address this issue, we make a distinction between
ingress and non-ingress routers. Ingress routers imple-
ment both FS and SH, splitting the aggregate memory
as in the single router case. At each ingress router, the
SH resources are split between the OD-pairs originat-
ing at the ingress, proportional to the traffic volume
in packets per OD-pair. Non-ingress routers only im-
plement FS. Given the resources available for F'S on the
routers (both ingress and non-ingress), we use CSAMP [39]
for assigning F'S responsibilities in a network-wide coor-
dinated fashion. We choose CSAMP because for a given
set of router resource constraints it (1) provides the op-

timal flow coverage (number of distinct flows logged),
(2) provides a framework to specify fine-grained network-
wide flow coverage goals, (3) efficiently leverages avail-
able monitoring capacity and minimizes redundant mea-
surements, and (4) naturally load balances responsibil-
ities to avoid hotspots.

Overview of cSampP: The inputs to CSAMP are the
flow-level traffic matrix (approximate number of flows
per OD-pair), router-level path(s) for each OD-pair,
the resource constraints of routers, and an ISP objec-
tive function specified in terms of the fractional flow
coverages per OD-pair. The output is a set of sam-
pling manifests specifying the monitoring responsibility
of each router in the network. Each sampling manifest
is a set of tuples of the form (OD, [start, end]), where
[start, end] C [0, 1] denotes a hash range. In the context
of the F'S algorithm described earlier, this means that
the OD-pair identifier is used as the “key” to get a hash
range from the sampling manifest.?

The key idea is to bootstrap routers with the same
hash function but assign non-overlapping hash ranges
per OD-pair, so that flows sampled by different routers
do not overlap. This coordination makes it possible to
achieve network-wide flow coverage goals specified as a
function of per-OD-pair flow coverage values.

cSAMP formulation: Each OD-Pair OD; (i = 1,..., M)
is characterized by its router-level path P; and the es-
timated number T; of IP-level flows per measurement
epoch (e.g., five minutes).? Eachrouter R; (j =1,...,N)
is constrained by the available memory for maintain-
ing per-flow counters in SRAM; L; captures this con-
straint, and denotes the number of flows R; can record
and report in a given measurement interval. d;; de-
notes the fraction of flows of OD; that router R; logs.
Fori=1,..., M, let C; denote the fraction of flows on
OD; that is logged.

CSAMP can support a variety of network-wide objec-
tives, though here we describe its use for one in particu-
lar, namely achieving the best flow coverage subject to
maximizing the minimum fractional flow coverage per
OD-pair. First, the largest possible minimum fractional
coverage per OD-pair min;{ C;} subject to the resource
constraints is found. Next, this value is used as the pa-
rameter « to the linear program shown below (in (4))
and the total flow coverage Y .(T; x Cj) is maximized.
The rationale behind the two-step objective is as fol-
lows. Maximizing the minimum coverage provides fair-
ness in apportioning resources across OD-pairs. Since
it is hard to ascertain which OD-pairs might show in-
teresting traffic patterns, allocating resources fairly is

20SAMP can be reformulated to not require a router to de-
termine the OD-pair for each packet [40], though here we
describe the simpler approach using OD-pairs.

3For simplicity, we assume that each OD-pair has one route,
though ¢SAMP accommodates multi-path routing [39].

Ingress router is assigned
SH and FS responsibilities
for OD-pairs P1, P2, P.

P1: S$

P2: SH
P3: SH

Non—”ingress routers are
onlyl assigned FS

Legend: AN N
OD-Pair P1; me— Flow sample
OD-Pair P2: mmssmmis sampling| fang holc|
OD-Pair P3:mmmmw config config

Figure 2: Example of a network-wide configura-
tion for the RISC approach

a reasonable choice. Given such a fair allocation, the
second step ensures that the residual resources are used
in an efficient manner to achieve maximum aggregate
coverage.

Maximize) ,(T; x C;), subject to

v, Yinyep, (dij X Ti) < Lj (1)
Vi, Ci=2j.rep; dij (2)
Vi, ¥j, dij 20 (3)
Vi, a< (<1 (4)

The solution d* = {dj;} to this two-step procedure
yields the optimal sampling strategy. This solution is
then translated into the sampling manifests specifying
the FS responsibilities per router.

Example configuration: Figure 2 shows how the dif-
ferent components are combined in the network-wide
case. There are three OD-pairs P1, P2, and P3 origi-
nating at the left-most router. We envision a configu-
ration module at the network operations center which
disseminates configurations to routers in the network.
This module takes into account the prevailing network
conditions, policies, constraints, and the flow monitor-
ing objectives to generate the F'S and SH configurations
for each router. In the example, the ingress router is as-
signed SH responsibilities for P1, P2, and P3. The non-
ingress routers are not assigned any SH responsibilities
for these OD-pairs. The other edge routers could be as-
signed SH responsibilities for OD-pairs for which they
are the origin, but these are not shown. The FS respon-
sibilities are generated using CSAMP as discussed earlier
— each router is only assigned F'S responsibilities for the
paths of OD-pairs it lies on and these are specified as
non-overlapping hash ranges per OD-pair.

5. EVALUATION METHODOLOGY

Overview: The goal of our evaluation is to compare

responsibilies (using cSamp)

the performance of the RISC approach against application-
specific approaches when their total resource consump-
tions are suitably normalized. In order to do so, we
need to specify the different applications of interest, the
application-specific algorithms, and the configurations
for determining the amount of resources provisioned for
each algorithm and the RISC approach.

This section describes the applications and configu-
rations we use in our evaluations. For each application,
we first describe the corresponding data streaming al-
gorithms, i.e., the online collection and offline inference
components, and accuracy metrics in Section 5.1. Then
in Section 5.2, we describe how we compare the RISC
approach against the application-specific algorithms. Ta-
ble 1 summarizes the applications and the correspond-
ing application-specific algorithms, accuracy metrics,
and configuration parameters. The table also shows the
default configuration parameters we use for each case.

5.1 Applicationsand accuracy metrics

For each application, we give a brief formal descrip-
tion of the problem, some representative network man-
agement applications that require their use, and the
respective accuracy criteria.

Flow size distribution (FSD) estimation: Con-
sider the set of all flows in a traffic stream. Let F
denote the total number of flows and F; denote the
number of flows with size ! (in number of packets per
flow). The FSD estimation problem is to determine
Vi=1...2,¢; = %, where z is the size of the largest
flow. Understanding the FSD is useful for a number
of measurement and management applications such as
estimating gains from proxy caches, configuring flow-
switched networks, accounting, attack detection, and
traffic matrix estimation [14, 25]. We use the data
streaming and expectation-maximization algorithm pro-
posed by Kumar et al. [25].

A natural accuracy metric for the FSD estimation
problem is the weighted mean relative difference (WMRD)
between the actual distribution F}; and the estimated

distribution F; [25]. The WMRD is defined as E"+:?‘

D
Heavy-hitter detection: The goal of heavy-hitter de-
tection is to identify the top k items with the most
traffic along specific traffic dimensions (e.g., source ad-
dresses, source ports etc.). Such measures are routinely
used by network operators to understand end-to-end
application patterns and resource hogs [12, 2] as well as
for traffic engineering and accounting [17].

We use the SH algorithm [17] described earlier. We
configure it to run with six instances, one each for the
six following flowkeys: source port, destination port,
source address, destination address, 5-tuple, and source-
destination address pairs. The accuracy metric is the
top-k detection rate: get the top k exact heavy hitters

Application Accuracy/Error | Algorithm | Parameters
Metric (defaults)

FSD WMRD [25] fsd (0.7)
estimation
(5-tuple)
Heavy hitter Top-k detection [17] hh, k (0.3, 50)
detection rate
(5-tuple,sip,dip,
sport,dport
sip-dip)
Entropy Relative Error [29] €,6 (0.5,0.5)
estimation
(5-tuple,sip,
dip,sport,dport)
Superspreader Detection [41] K,b,6
detection accuracy (100, 4,0.5)
Change falsepos + [24] h,k,0
detection falseneg (10,1024, 0.05)
(sip,dip)
Deg. histogram JS-divergence [44] -
estimation

Table 1: Summary of applications, accuracy

metrics, algorithms, and default parameters. In
the first column, the attributes in parentheses
specify the flowkeys over which the application
is run (e.g., FSD estimation uses the IP 5-tuple;
heavy-hitter detection uses six flowkeys). fsd
and hh are expressed as a fraction of the number
of distinct IP flows per epoch. ¢,§ denote error
tolerances. K, b implies that any host contacting
> K distinct destinations is a superspreader; and
flagging any host contacting < % distinct desti-
nations is a false positive. h is the number of
hash functions and k is the number of counters
per hash function in the sketch data structure
and 0 is the change detection threshold.

and the top k estimated heavy hitters and compute the
set intersection between these two sets. The RISC ap-
proach also uses SH; the difference is that it uses only
one instance at the 5-tuple granularity and uses offline
projections to other dimensions.

Entropy estimation: The entropy of traffic distri-
butions (e.g., packets per destination port) has been
shown to aid monitoring applications such as anomaly
detection [28] and traffic classification [43]. The moti-
vation for entropy-based analysis is that it can capture
fine-grained properties that cannot be understood with
simple volume-based analysis. For these applications,
it is useful to normalize the entropy between zero and
one as Hyormm (X) = 101;12(()(1\,)0), where Ny is the number
of distinct x; values present in a given measurement
epoch [28] and H(X) = — 32N, Pr(z;)log, (Pr(x;)) is
the entropy of the random variable X, where x1,...,xxn
is the range of values for X, and Pr(z;) represents the
probability that X takes the value x;. .

We use the data streaming algorithm proposed by
Lall et al. [29]. We consider five traffic distributions of
interest: 5-tuple, source port, destination port, source
address, and destination address. The accuracy metric

is the relative error in estimating the normalized en-
tropy. If the actual value is H, ., and the estimated

| Hporm = Hnorm |

value is H,orm, the relative error is v

Superspreader detection: For many security appli-
cations such as scan, worm, and botnet detection, it
is useful to identify “superspreaders” — source IPs that
contact a large number of distinct destination IPs. This
is different from the heavy-hitter detection problem since
it involves finding sources that communicate with dis-
tinct destinations as opposed to finding sources gener-
ating large traffic volumes.

We use the one-level superspreader detection algo-
rithm proposed by Venkataraman et al. [41]. The algo-
rithm is characterized by three parameters K, b, and J.
The goal of the algorithm is to detect all hosts that con-
tact at least K distinct destinations with probability at
least 1 — 9, while guaranteeing that a source that con-
tacts at most % distinct destinations is reported with
probability at most §. The accuracy metric is the detec-
tion accuracy which is the number of true superspread-
ers that are reported. For brevity, we do not report the
false positive rate since it was zero for the RISC and
application-specific approaches in almost all cases.

Change detection: Change detection is an important
component of anomaly detection for detecting DDoS
attacks, flash crowds, and worms [24]. The problem
of change detection can be formally described as fol-
lows. Suppose we discretize the traffic stream into five-
minute measurement epochs (¢ = 1,2,...). Let each
I, = 31, B2,... be the input traffic stream for epoch t.
Each packet 3; is associated with a flowkey y; and a
count ¢; (e.g., number of bytes in the i*" packet or sim-
ply 1 if we are interested in counting packets). Let
Obsy(t) = >_,.,.—, ¢ denote the aggregate observed
count for flowkey y in epoch ¢. Let Fcast,(t) denote
the forecast value (e.g., computed using exponentially
weighted moving average) for item y in epoch ¢t. The
forecast error for y then is Err, (t) = Obs, (t)—Fcast,(t).
Let F2Err, = Y, Erry(t)* denote the second moment
of the forecast errors. The goal of the change detection
is to detect all y with Erry(t) > 0 x /F2Err,, where 0
is a user-defined threshold. We define the change detec-
tion accuracy as the sum of the false positive (flowkeys
that did not change significantly but were incorrectly re-
ported) and false negative rates (flowkeys that changed
but were not reported).

We use the sketch-based change detection algorithm
proposed by Krishnamurthy et al. [24] because sketches
have a natural “linearity” property that makes them
well-suited for change detection. We use an EWMA
model Feast(t) = aObs(t) + (1 — «)Feast(t — 1), with
a = 0.9. Note that since we are only interested in
the relative performance of the RISC vs. sketch-based
approaches, the specific forecast model we use is not

important. We consider two instances for identifying
changes in (1) the number of packets per source address
and (2) the number of packets per destination address.

Degree histogram estimation: Finally, we consider
the problem of computing the outdegree histogram of
a traffic stream. The outdegree of a source IP is the
number of distinct destination IPs it contacts in a mea-
surement epoch. Consider the following histogram. For
bucket i, let m; denote the number of sources whose out-
degree d is at least 2¢ and at most 2¢t1 — 1. The goal
is to estimate these m; values. A specific application is
to detect botnets involved in coordinated scans [44] by
detecting changes in the outdegree histogram; the out-
degree distribution might also be independently useful
for understanding traffic structure. We use the “sam-
pling algorithm” proposed by Gao et al. [44].

Given the exact distribution {my, mg,...} and an es-
timated distribution {7y, Mg, ...}, the accuracy metric
we consider is the Jensen-Shannon (JS) divergence.*

5.2 Assumptionsand Approach

In order to compare the RISC and application-specific
approaches, we need to normalize the total resource us-
age in each case. To do so, we make three conserva-
tive assumptions shown below. We realize and acknowl-
edge the difficulty in exactly normalizing the resource
usage and implementation costs of the different algo-
rithms. In Section 7, we discuss why these assumptions
are reasonable and conservative in that they underesti-
mate the performance of a RISC approach compared to
application-specific algorithms.

e Both the application-specific algorithms and the
RISC primitives have feasible implementations that
can operate at line-rates. Some algorithms require
key-value style data structures while others require
simple counter arrays. We assume that both incur
similar processing costs.

e Fach key-value pair for the RISC primitives use 4 x
as much memory as a corresponding “counter” for
the application specific algorithms. Some stream-
ing algorithms also require key-value structures;
we conservatively assume that these do not incur
any memory overhead. For example, if each array
entry is 2 bytes, we assume that it takes 8 bytes
to store one key-value pair for the RISC primitives
but that it only takes 2 bytes to store one key-value
pair for the application-specific algorithms.

e All approaches can use offline computation resources.

In the RISC approach, this means that we run es-
timation algorithms over the collected flow records
without further sampling.

“Gao et al. [44] use the Kullback-Leibler (KL) divergence.
However, it is not always well-defined. The JS divergence is
based on KL divergence, but is always well-defined.

5.2.1 Configuring the application-specific algorithms

1. The FSD estimation algorithm uses an array of
fsd x F counters, where F' is the number of distinct
flows in a measurement interval. Following the
guidelines of Kumar et al. [25], we set fsd = 0.7.

2. We configure the heavy-hitter detection algorithm
with hh x F counters with hh = 0.3, divide these
equally among the six instances, and focus on the
top-50 detection rate.

3. The entropy estimation algorithm is an (e, d) ap-
proximation, i.e., the relative error is at most €
with probability at least 1 — §. The number of
counters it uses increases as we require tighter guar-
antees, (lower € and ¢). However, Lall et al. [29]
show that in practice it works well even with loose
bounds. Thus, we set e = § = 0.5.

4. For superspreader detection, we set K = 100 and
b = 4. Again, since loose bounds work well in
practice, we set 6 = 0.5.

5. The sketch data structure has three parameters:
h, the number of hash functions; &, the size of the
counter array per hash function; and the detection
threshold 0. Following Krishnamurthy et al. [24],
we set h = 10, K = 1024, and 6 = 0.05.

6. For degree histogram estimation, we use the same
configuration as Gao et al. [44].

5.2.2 Configuring the RISC approach

The RISC approach has two configuration parame-
ters per router: the number of flow records it can col-
lect (L) and, for ingress routers, the FS-SH split (f).
L is determined by the configurations of the individ-
ual application-specific primitives described above. We
measure the aggregate memory usage Lgpp-spec Of the
different algorithms and scale it down by a factor of
4. This models a key-value data structure being more
memory intensive than a counter array as discussed ear-
lier. We set f = 0.8, giving 80% of the resources to FS
on each ingress router.

5.2.3 Computing estimates in the RISC approach

We take the union of the flow records reported by SH
(after normalizing the packet counts by the sampling
rate [17]) and the flow records reported by FS. If the
same flow record is reported by both FS and SH, we use
the FS record because the packet count in FS is exact
whereas the count reported by SH is approximate. We
compute the FSD, entropy, and detect heavy hitters or
changes per-source (or destination) on this merged set
of flow records. Additionally, we logically retain the
set of FS records alone. We use this set for detecting
superspreaders and computing the degree histogram.

Note that, since the RISC approach exports the ac-
tual flow records, it is possible to run offline estimation

Trace Description Avg # pkts | Avg # flows

‘ (millions) (thousands)
Caida 2003 OC-48, large ISP 6 400
Univ-2 UNC, 2003 2.5 91
Univ-1 USC, 2004 1.6 93
Caida 2007-2 OC-12 1.3 45
Caida 2007-1 OC-12 0.7 30

Table 2: Traces used in the single router exper-
iments; averages are over 5-minute epochs

procedures on these flow records to compute any appli-
cation metric, even unforeseen ones.

5.2.4 Measure of success

Let Accgpecific denote the accuracy of the application-
specific algorithm and let Acc.is. denote the accuracy
of the RISC approach for that application after the
merge operation and computing the relevant metric on
the merged data. We define the relative accuracy dif-
ference as W By construction, a positive
value indicates that the accuracy of the RISC approach
is better; a negative value indicates otherwise.®

6. TRACE-DRIVEN EVALUATIONS

6.1 Singlerouter evaluation

Datasets and roadmap: Table 2 summarizes the five
different one-hour packet header traces (binned into 5-
minute epochs) used in this section. Using trace-driven
evaluations, we answer the following questions:

e How does the accuracy of the RISC approach com-
pare with the application-specific approaches when
configured to use the aggregate resources on a sin-
gle router? (Section 6.1.1)

e How sensitive is each application to the parameters
of the RISC approach? (Section 6.1.2)

e How does the success of the RISC approach de-
pend on the set of application-specific algorithms
that we assume are implemented on the router
(we call this an application portfolio)? That is,
at what point does it make sense to adopt a RISC
approach instead of implementing the application-
specific alternatives? (Section 6.1.3)

e How should we split the resources between FS and
SH? (Section 6.1.4)

6.1.1 Accuracy: RISC vs. application-specific

For this comparison, we use the default parameters
from Table 1, run the RISC approach configured with

®Some of the criteria in this section denote “error” while
others denote “accuracy”. For error metrics (FSD, entropy,
degree histogram, change detection) the relative accuracy
as defined is negative when the RISC approach performs
better. For ease of presentation, we reverse the sign of the
numerator in these cases.

the total memory used by the six algorithms, and com-
pute the relative accuracy difference for each applica-
tion. Figure 3 shows the relative accuracy difference on
the different traces. Recall that this metric is positive
when the RISC approach performs better and negative
otherwise.

The result shows that the RISC approach outper-
forms the application-specific alternative in most ap-
plications. Only in heavy-hitter detection (Figure 3(b))
does the RISC approach perform worse; even then the
accuracy gap is at most 0.08. This answers the second
challenge from Section 3:

The RISC approach provisioned with the total resources
used by the sixz application classes performs better than
or comparable to the application-specific approaches.

We now proceed to answer to two natural questions:
(a) what if we consider each application class in isolation
and (b) what types of application portfolios does the
RISC approach perform favorably in. For brevity, we
only present the results from the Caida 2003 trace.

6.1.2 Application Sensitivity

In the following experiments, we try two to three con-
figurations for each application-specific algorithm. For
each configuration, we consider a RISC approach pro-
visioned with Gx as much memory as that used by
the algorithm in isolation. The magnification factor G
captures the sharing effect—configuring the RISC ap-
proach with the aggregate resources used by an appli-
cation portfolio. In the next section, we explore the
effect of changing the application portfolio.

As before, we focus on the relative accuracy difference
between the RISC and application-specific approach.
Figure 4(a) plots the relative accuracy difference be-
tween the RISC approach and the FSD estimation al-
gorithm. We show three different configurations with
the FSD algorithm using fsd = 0.7, 1, and 1.5. For
some configurations (e.g., fsd > 0.7, G < 2), the RISC
approach performs worse. The large negative values of
the relative accuracy of RISC in these is an artifact of
the low WMRD values at these points. Since we nor-
malize the difference by the WMRD of the application-
specific case, the gap gets magnified. The absolute ac-
curacy of the FSD algorithm improves (i.e., the WMRD
goes down) as it is provisioned with more resources (not
shown). For example, for the configuration fsd = 1.5
and G = 1, the WMRD for the FSD EM algorithm was
0.02 and the WMRD for the RISC approach 0.05. Both
values are small for many practical purposes [25].

Figure 4(b) shows similar results for heavy-hitter de-
tection, with hh set to 0.3,0.5, and 0.7. For clarity, we
average the relative accuracy difference across the six
heavy-hitter instances. The RISC approach is indeed
worse than the application-specific approach. But as
G increases, the accuracy gap closes significantly. One

°

o
®

o
207

wi

o

>
)

°
@

-0.02

S

-0.04

Relative difference in WMI
o o o
@

9

-0.06

°
2

Relative difference in detection accuracy

Univl Univ2 Caida07_1 Caida07_2 Caida03

1
I 5-tuple Il SrciP B DstiP [SrcPort DstPort

0.9r

Relative difference in error
o
o

—0.

(a) FSD (fsd = 0.7)

Univl Univ2 Caida07_1Caida07_2 Caida03 Univl

(b) Heavy hitter (hh = 0.3)

Univ2 Caida07_1Caida07_2 Caida03

(c) Entropy (e =0 = 0.5)

9
El sclP

°
3
S
R
o
3 @ w©

>

Relative difference in detection accuracy
=
2
g
&
Relative difference in JS-divergence
S o o o o o o
S 88 &

)
2
3
°

I
o
o

Univl Univz Caida07_1 Caida07_2 Caida03 Univl

(d) Superspreader (K, b,6=100,4,0.5)

Univz Caida07_1 Caida07_2 Caida03

(e) Degree histogram

0.8 DstIP

0.7
0.6
0.5
0.3
0.2
0.1

[

Univl Univ2 Caida07_1Caida07_2 Caida03

(f) Change Detection

Relative difference in detection accuracy
o
Y

Figure 3: RISC vs. application-specific approach. In each graph, a positive value of the relative
accuracy indicates that the accuracy of the RISC approach was better; a negative value indicates
otherwise. For most applications, the RISC approach outperforms the application-specific alterna-
tives. In the cases where the performance is worse, it is only worse by a small relative margin.

reason for the poor accuracy is that we configure the
SH algorithm in the RISC approach to operate at the
5-tuple granularity and then subsequently project re-
sults to individual subpopulations. In fact, the RISC
approach performs better if we only consider the 5-
tuple granularity, but it performs worse for the other
flowkeys due to some loss of accuracy in the projection
phase (see Figure 3(b)). We could also configure the
SH algorithm in the RISC approach to operate at all
flowkey granularities. We tradeoff a small reduction in
accuracy for a significant reduction in implementation
complexity since we only need to run one instance of
the algorithm on a router as opposed to six instances.
Entropy estimation (Figure 4(c) with e = ¢ set to 0.2
and 0.5) and superspreader detection (not shown) show
similar trends. If we consider each application in isola-
tion, the RISC approach performs worse. But, the gap
closes as (G increases and the RISC approach eventually
outperforms the application-specific algorithm.

6.1.3 Sensitivity to Application Portfolio

For each portfolio, we use the default configurations
from Table 1 and run the RISC approach configured
with the aggregate resources contributed by this port-
folio. The relative accuracy is computed with respect to
these default configurations. For heavy-hitter detection
and entropy estimation, we average the accuracy across
the different instances.

Figure 5 shows the portfolios in increasing order of
memory usage. The configuration labeled “Sketch +
Histogram” uses resources only from sketch-based change

1

0.5|

Relative accuracy difference

Il ~sD IlHH IlEntropy [Superspreader [_Deg. Histogram[_]ChangeDetection

5!
Sketch+Histogram HH+Entropy+SS ~ Al-FSD FSD Al
Application portfolio

-0.

Figure 5: Effect of application portfolio on the
accuracy of the RISC approach

detection and degree histogram estimation (the most
lightweight applications). At the other extreme, the
configuration labeled “All” uses the aggregate resources
(as in Figure 3).

We observe two effects. First, for larger application
portfolios (i.e., as the requirements of network man-
agement applications grow), there is a clear win for
the RISC approach (the relative accuracy difference be-
comes more positive), as the sharing effect improves the
accuracy across the entire portfolio. Second, if there
are some resource-intensive applications in the portfo-
lio (e.g., FSD estimation), then it makes more sense to
adopt a RISC approach since it provides improvements
across the entire spectrum of applications.

6.1.4 Configuring the split between FS and SH
So far, we fixed the FS-SH split to be f = 0.8. Fig-

Relative difference in WMRD
.
Relative difference in detection accuracy
| . . \

-©-FsD-0.7
i —¥%=FSD-1.0
—+-FsD-15

Relative difference in error
. . .

-©-HH-03 o8
—X-HH - 05 a
H-HH-07

-©-Entropy - 0.2

=¥ Entropy - 0.5,

1 15 2 25 3 4] 2
Resource magnification factor

(a) FSD

3 4 5 6 7 8
Resource magnification factor

(b) Heavy hitter

9 10 1 2 9 10

3 a4 5 6 7 8
Resource magnification factor

(c¢) Entropy

Figure 4: Exploring the sensitivity of applications in isolation. The zero line represents the point
at which the RISC approach starts to outperform the application-specific approach. The resource
magnification factor captures the sharing effect of aggregating resources across applications.

o
St
o

Relative accuracy difference

Entropy
SuperSpreader |
DegHist

.
0.1 0.2 »OS 0.4 05 0.6 0.7 . 0.8 0.9
Fraction of resources allotted to flow sampling

Figure 6: Varying the split between FS and SH

ure 6 shows the effect of varying f. The x-axis is f,
the fraction of resources allocated to FS. For most ap-
plications, increasing f improves the accuracy of the
RISC approach, but there is a diminishing returns ef-
fect. For heavy-hitter detection, as expected, giving
more resources to SH helps, but the improvement is
fairly gradual. In light of this, the 80-20 split is a rea-
sonable tradeoff across the different application classes.

6.2 Network-wide evaluation

Dataset and Setup: We use a one hour snapshot of
flow data collected across eleven routers from the Inter-
net2 backbone. There are roughly 1.4 million distinct
flows and 9.5 million packets in aggregate per 5-minute
interval. We map each flow entry to the corresponding
network ingress and egress points [18]. The dataset has
two limitations. First, unlike the packet traces used ear-
lier, these are flow records with sampled packet counts
(with p = 0.01). We assume that the sampled flow
records represent the actual traffic in the network, i.e.,
the sampled counts are used as the actual packet counts.
Second, the IP-addresses in the dataset are anonymized
by zero-ing out the last 11 bits; this may affect some
applications (e.g., entropy, outdegree). We ignore this
effect and treat each anonymized IP address as a unique
IP address. Thus, the entropy and outdegree measures
are computed at this granularity. Since we are only in-
terested in the relative accuracy difference, this dataset

11

is still valuable for understanding network-wide effects.
(This is the only network-wide dataset we are aware of.)

We configure each application-specific algorithm on a
per-ingress basis, i.e., operating on packets originating
from the router. From this, we obtain the total memory
usage on each router. The coordinated RISC approach
from Section 4 operates on a per OD-pair granularity
using the equivalent per-router memory obtained above
and scaling it down by a factor of 4.

Per-ingress results: Figure 7 shows for each ingress
router, the relative accuracy difference between the co-
ordinated RISC approach and the application-specific
algorithms configured per ingress. As before, a posi-
tive value indicates that the accuracy of the RISC ap-
proach was better; a negative value indicates otherwise.
As with the single router evaluation, we see that the
RISC approach outperforms the application-specific al-
gorithms, except in heavy-hitter detection.

Benefits of coordination: We consider two other us-
age scenarios: computing the application metrics on a
network-wide basis and on a per OD-pair basis. Note
that the application-specific alternatives as configured
for Figure 7 cannot provide per OD-pair results. They
work on a per-ingress basis and we cannot compute
the application metrics on per-OD projections. This
is not an inherent limitation of application-specific ap-
proaches; we can configure them on a per-OD basis.
However, this significantly increases the complexity since
we need an instance per application per OD-pair.

As a point of comparison, we consider an uncoor-
dinated RISC approach: a per-router RISC approach
without network-wide resource management. Each router
is provisioned with the same resources as the coordi-
nated case (i.e., add up the resources used by the per-
ingress application-specific algorithms and divide by 4).
The key difference is that each router independently
runs the RISC algorithms on the traffic it sees.

Table 3 compares the application-specific, uncoordi-
nated, and coordinated approaches. The entry corre-
sponding to the entropy row is empty for the application-
specific column because we cannot recover the network-

Il 5-tuple
I SrcIP
[DstIP

[Src-DstiP
[CIsrcPort
[_IDstPort

Relative difference in WMRD
Relative difference in detection accuracy

I 5-tuplelll SrciP Il DstiP Il SrcPort [l DstPort

Relative difference in error

ATLA CHIC DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

(a) FSD (fsd = 0.7)

ATLA CHIC DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

(b) Heavy hitter (hh = 0.3)

ATLA CHIC DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

(c) Entropy (e =0 = 0.5)

001t

Relative difference in detection accuracy
Relative difference in JS-divergence

ATLA CHIC DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

(d) Superspreader (K, b,6=100,4,0.5)

ATLA CHIC DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

(e) Degree histogram

HElsclP
[_JpstiP

°
®

°
2

°
>

°
@

°
b

°
©

°

Relative difference in detection accuracy
9

°
2

ATLA CHIC DNVR HSTN IPLS KSCY LOSA NYCM SNVA STTL WASH

(f) Change Detection

Figure 7: Comparing the relative accuracy difference between the coordinated RISC approach and
the application-specific algorithms per ingress router. A positive value indicates that the accuracy of
the RISC approach was better; a negative value indicates otherwise.

Fraction of OD-pairs
Fraction of OD-pairs

— Coordinated — Coordinated
= = =Uncoordinated - = =Uncoordinated
B

Fraction of OD-pairs

Fraction of OD-pairs

— Coordinated — Coordinated
= = =Uncoordinated = = =Uncoordinated
7

0z o 06 07 08 09 0o 1

I
Number of top-10 heavy hitters missed

(b) Heavy hitter

0s 05
FSD WMRD

(a) FSD

10

002 004 006 016 018 02

08 09 o 008
Js—divergence of degree histogram

02 03 04 05 06
Error in entropy estimation

(c¢) Entropy (d) Degree histogram

Figure 8: Comparing the coordinated and uncoordinated approaches on a per-OD basis.

Application/Metric | App-Specific | Uncoord | Coord
FSD (WMRD) 0.16 0.19 0.02
Heavy hitter (miss rate) 0.02 0.3 0.04
Entropy (relative error) n/a 0.03 0.02
Superspreader (miss rate) 0.02 0.04 0.009
Deg. histogram (JS) 0.15 0.03 0.02

Table 3: Comparing the error rates of different
approaches for network-wide metrics

wide entropies from the per-ingress entropy values. There
are two main observations here. First, the coordinated
RISC approach has the lowest error overall. The gain
in accuracy for the heavy hitter and FSD estimation
applications with coordination is especially significant.
Second, while the uncoordinated RISC approach is gen-
eral (e.g., it can also provide per OD-pair estimates
whereas the per-ingress application-specific algorithms
cannot), it performs worse in the network-wide evalu-
ation. One reason for this is that the per-ingress con-
figuration for the application-specific algorithms implic-
itly coordinates routers avoiding redundancy when we
merge the results for the network-wide case. The unco-
ordinated RISC approach does not have this advantage

12

and multiple sources of ambiguity and bias arise when
we try to merge flow reports across multiple routers.
For example, routers may have different flow sampling
rates as they see different traffic volumes, flows that
traverse longer paths get higher sampling rates result-
ing in some bias, and large flows are reported multiple
times by SH. An additional practical benefit of the co-
ordinated approach is that the merging and estimation
algorithms are much simpler and more accurate.
Finally, Figure 8 shows four accuracy metrics for the
per OD-pair case. Since superspreader detection and
change detection are meaningful only when viewed across
all OD-pairs, we do not consider these. Also, we focus
on the top-10 heavy hitters per OD-pair. The CDFs
show that the coordinated RISC approach performs well
across most OD-pairs. The 80th percentile of the WMRD,
heavy-hitter miss rate, average relative error in entropy
estimation, and JS-divergence for the degree histogram
are 0.1,2,0.05, and 0.03 respectively. The correspond-
ing results for the uncoordinated case are 0.4,5,0.15,
and 0.06. Further, the OD-pairs where the coordinated

approach has poor accuracy have low traffic volume (not
shown), which indicates that it performs very well for
the dominant traffic patterns.

6.3 Summary of main results

e The accuracy of the RISC approach configured
with the aggregate resources used by the six dif-
ferent applications is better than or comparable to
the application-specific approaches.

e With large application portfolios or if there are
one or more resource-intensive applications in the
portfolio, there is a clear win for a RISC approach
vs. application-specific approaches.

e A 80-20 split between FS and SH is a reasonable
tradeoff across the spectrum of applications.

e In a network-wide setting, a coordinated RISC ap-
proach gives greater accuracy in projecting results
to different spatial aggregations compared to un-
coordinated and application-specific approaches.

7. DISCUSSION

Hardware feasibility: Some application-specific al-
gorithms require an array of counters (e.g., [24, 44]),
while others (e.g., [17, 29, 41]) and the RISC primi-
tives F'S, SH [20, 17] involve key-value data structures.
That said, recent proposals have demonstrated that it
is possible to efficiently implement such key-value data
structures in routers [19, 37]. Further, Lu et al. [30]
show that it is possible to implicitly maintain such key-
value pairs with low overhead using an online “counter
braid” architecture and an offline decoding algorithm.
Memory overhead: Note that the entire flow record
(the IP 5-tuple, and counters) need not actually be
maintained in SRAM; only the counters for byte and
packet counts need to be in SRAM. Thus, we can of-
fload most of the flow fields to DRAM and retain only
those relevant to the online computation [30, 39].

We assume a 4x overhead for maintaining flow coun-
ters as key-value pairs in SRAM for the RISC approach
compared to the application-specific approaches. We
justify why this 4x factor is conservative.

1. Notice that some application-specific algorithms
also require key-value counters—we conservatively
assume that these incur no memory overhead com-
pared to an array of counters.

2. Suppose each counter for the application-specific
algorithms is 2 bytes [46]. We ran experiments
with a sparse hash data structure and found that
it can store 10° flow counters in 8 MB, i.e., 8 bytes
per counter. In other words, a simple, software
only implementation has just % = 4% overhead.

3. With smarter hardware for storing flow counters
such as counter braids [30], the overhead will be
even lower— maintaining 1 million flow counters
requires 1.4 MB of memory, i.e., % < 4x.

13

Bandwidth overhead for data collection: A natu-
ral concern is the bandwidth overhead for transferring
flow records from routers to a network operations cen-
ter. We give a back-of-the-envelope calculation to es-
timate the worst-case overhead. The Internet2 dataset
has roughly 1.7GB of flow data per PoP per day. Given
a sampling rate of 0.01, this conservatively translates
into 170 GB per PoP per day or 0.6GB per five min-
utes. This is conservative because we are normalizing
the number of flows by the packet sampling rate. Sup-
pose, we collect this data every five minutes with a near
real-time requirement that the data is shipped before
the start of the next five minute interval. The band-
width per PoP required for full flow capture would be
%5x8 Gbits — (.016 Gbps. Given OC-192 backbone lin-
erates of 10 Gbps today, it is not unreasonable to expect
ISPs to use 0.16% of the network bandwidth per PoP
for measurement traffic to aid network management.
Processing overhead: There are two processing com-
ponents in the RISC approach: online collection and
offline computation. By construction, the online col-
lection overhead of a RISC approach is lower. In the
application-specific architecture, each packet requires as
many counter updates as the number of application in-
stances. With the RISC approach, each packet requires
only two updates, one for F'S and one for SH.

With respect to the offline computation, we currently

assume that it is possible to run exact estimation algo-
rithms on the collected flow data (i.e., without further
sampling) to provide near real-time estimates. How-
ever, this is not strictly necessary. Omnce we collect
the flow measurements, the RISC approach can accom-
modate multiple computation modes — either an exact
mode if its feasible or use application-specific streaming
algorithms if necessary.
Adaptivity: Another natural question is how does the
RISC approach deal with network dynamics and ad-
versarial traffic conditions. Keys et al. discuss how to
adapt the single-router primitives (FS, SH) to changing
traffic conditions [22]. Similarly, Sekar et al. discuss how
CSAMP can adapt to network dynamics or deal with es-
timation errors in inputs [39]. The RISC approach can
leverage these techniques as well.

8. CONCLUSIONS

This paper is a reflection on recent trends in net-
work monitoring. There is a growing demand for a
wide variety of high-fidelity traffic estimates to support
different network management applications. The inad-
equacy of current packet-sampling-based solutions has
given rise to a proliferation of many application-specific
algorithms, each catering to a narrow application.

In contrast to these application-specific alternatives,
we revisit the case for a RISC architecture for low mon-
itoring. A RISC architecture dramatically reduces the

complexity of routers; enables router vendors and re-
searchers to focus their energies on building efficient
implementations of a small number of primitives; and
allows late binding to what traffic metrics are impor-
tant, thus insulating router implementations from the
changing needs of flow monitoring applications.

As a starting point, we showed that a RISC archi-
tecture combining flow sampling, sample-and-hold, and
CSAMP performs favorably across a wide spectrum of
applications compared to application-specific approaches.
However, we do not claim that this is the “optimal”
RISC architecture. We believe that there is great scope
for designing better RISC primitives, implementing bet-
ter techniques for merging data collected from multiple
RISC primitives, developing better models for reasoning
about application performance using such primitives,
and providing efficient router implementations of these
primitives. We hope that our work spurs the commu-
nity to focus on these directions.

9. REFERENCES

[1] Flexible Netflow. http://www.cisco.com/en/US/products/ps6965/
products_ios_protocol_option_home.html,.

[2] Ipmon - packet trace analysis.
http://ipmon.sprintlabs.com/packstat/packetoverview.php.

[3] Juniper cflowd. http://www.juniper.net/techpubs/software/
junos/junos91/swconfig-policy/cflowd.html.

[4] NetFlow Input Filters. http://www.cisco.com/en/US/docs/ios/
12_3t/12_3t4/feature/guide/gtnfinpf.html.

[5] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In Proc. STOC, 1996.

[6] D. Brauckhoff, B. Tellenbach, A. Wagner, A. Lakhina, and
M. May. Impact of Traffic Sampling on Anomaly Detection
Metrics. In Proc. IMC, 2006.

[7] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
Proc. ACM SIGMOD, 2003.

[8] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and
P. Thiran. Reformulating the Monitor Placement problem:
Optimal Network-Wide Sampling. In Proc. CoNeXT, 2006.

[9] B. Claise. Cisco Systems NetFlow Services Export Version 9.
RFC 3954.

[10] M. P. Collins and M. K. Reiter. Finding Peer-to-Peer
File-sharing using Coarse Network Behaviors. In Proc.
ESORICS, 2006.

[11] G. Cormode and S. Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal
of Algorithms, 55, 2005.

[12] D. Moore, K. Keys, R. Koga, E. Lagache, and k. claffy.
CoralReef software suite as a tool for system and network
administrators. In Proc. LISA, 2001.

[13] N. Duffield, C. Lund, and M. Thorup. Charging from sampled
network usage. In Proc. IMW, 2001.

[14] N. Duffield, C. Lund, and M. Thorup. Estimating Flow
Distributions from Sampled Flow Statistics. In Proc. of ACM
SIGCOMM, 2003.

[15] N. Duffield, C. Lund, and M. Thorup. Learn more, sample less:
Control of volume and variance in network measurement. IEEE
Transactions in Information Theory, 51(5):1756-1775, 2005.

[16] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a
Better NetFlow. In Proc. ACM SIGCOMM, 2004.

[17] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting. In Proc. ACM SIGCOMM,
2002.

[18] A. Feldmann, A. G. Greenberg, C. Lund, N. Reingold,

J. Rexford, and F. True. Deriving Traffic Demands for
Operational IP Networks: Methodology and Experience. In
Proc. ACM SIGCOMM, 2000.

[19] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast
Hash Table Lookup Using Extended Bloom Filter: An Aid to
Network Processing. In Proc. ACM SIGCOMM, 2005.

14

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

N. Hohn and D. Veitch. Inverting Sampled Traffic. In Proc.
IMC, 2003.

T. Karagiannis, D. Papagiannaki, and M. Faloutsos. BLINC:
Multilevel Traffic Classification in the Dark. In Proc. ACM
SIGCOMM, 2005.

K. Keys, D. Moore, and C. Estan. A Robust System for
Accurate Real-time Summaries of Internet Traffic. In Proc.
SIGMETRICS, 2005.

R. Kompella and C. Estan. The Power of Slicing in Internet
Flow Measurement. In Proc. IMC, 2005.

B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen.
Sketch-based change detection: Methods, evaluation, and
applications. In Proc. ACM IMC, 2003.

A. Kumar, M. Sung, J. Xu, and J. Wang. Data Streaming
Algorithms for Efficient and Accurate Estimation of Flow
Distribution. In Proc. ACM SIGMETRICS, 2004.

A. Kumar and J. Xu. Sketch Guided Sampling — Using On-Line
Estimates of Flow Size for Adaptive Data Collection. In Proc.
IEEE Infocom, 2006.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing
Network-Wide Traffic Anomalies. In Proc. ACM SIGCOMM,
2004.

A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using
traffic feature distributions. In Proc. ACM SIGCOMM, 2005.
A. Lall, V. Sekar, J. Xu, M. Ogihara, and H. Zhang. Data
Streaming Algorithms for Estimating Entropy of Network
Traffic. In Proc. ACM SIGMETRICS, 2006.

Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and
A. Kabbani. Counter Braids: A Novel Counter Architecture for
Per-Flow Measurement. In Proc. SIGMETRICS, 2008.

M. P. Collins and M. K. Reiter. Hit-list Worm Detection and
Bot Identification in Large Networks Using Protocol Graphs. In
Proc. RAID, 2007.

H. Madhyastha and B. Krishnamurthy. A Generic Language for
Application-Specific Flow Sampling. ACM CCR, 38(2):7-15,
Apr. 2008.

J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Is
Sampled Data Sufficient for Anomaly Detection? In Proc.
IMC, 2006.

S. Muthukrishnan. Data streams: algorithms and applications.
http://athos.rutgers.edu/~muthu/stream-1-1.ps.

D. A. Patterson and D. R. Ditzel. The case for the reduced
instruction set computer. ACM SIGARCH Computer
Architecture News, 8(6):25-33, Oct. 1980.

A. Ramachandran, S. Seetharaman, and N. Feamster. Fast
Monitoring of Traffic Subpopulations. In Proc. IMC, 2008.

S. Kumar and P. Crowley. Segmented Hash: An Efficient Hash
Table Implementation for High Performance Networking
Subsystems. In Proc. ACM ANCS, 2005.

V. Sekar, N. Duffield, K. van der Merwe, O. Spatscheck, and
H. Zhang. LADS: Large-scale Automated DDoS Detection
System. In Proc. USENIX ATC, 2006.

V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. Kompella,
and D. G. Andersen. cSamp: A System for Network-Wide Flow
Monitoring. In Proc. NSDI, 2008.

V. Sekar, A. Gupta, M. K. Reiter and H. Zhang. Coordinated
Sampling sans Origin-Destination Identifiers: Algorithms,
Analysis, and Evaluation. Technical Report CMU-CS-09-104,
Carnegie Mellon University, 2009.

S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New
Streaming Algorithms for Fast Detection of Superspreaders . In
Proc. NDSS, 2005.

Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang.
‘Worm Origin Identification Using Random Moonwalks. In
Proc. IEEE Symposium on Security and Privacy, 2005.

K. Xu, Z.-L. Zhang, and S. Bhattacharya. Profiling Internet
Backbone Traffic: Behavior Models and Applications. In Proc.
ACM SIGCOMM, 2005.

Y. Gao, Y. Zhao, R. Schweller, S. Venkataraman, Y. Chen, D.
Song and M.-Y. Kao. Detecting Stealthy Attacks Using Online
Histograms. In Proc. IWQoS, 2007.

L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME: Towards
Programmable Network MEasurement. In Proc. SIGCOMM,
2007.

Q. Zhao, J. Xu, and Z. Liu. Design of a novel statistics counter
architecture with optimal space and time efficiency. In Proc.
ACM SIGMETRICS, 2006.

