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Abstract
Flow monitoring is used for a wide range of network man-
agement applications. Many such applications require that
the flow monitoring infrastructure provide high flow cover-
age and be able to support fine-grained network-wide objec-
tives. Coordinated Sampling (cSamp) is a recent proposal
for improving the flow monitoring capabilities of ISPs to ad-
dress these demands. In this paper, we address a key deploy-
ment impediment for cSamp-like solutions–the requirement
that each router must determine the Origin-Destination (OD)
pair of each packet it sees. We present a new framework
called cSamp-T, in which each router works withonly local
information. Using results from the theory of maximizing
submodular set functions, we show that cSamp-T provides
near-ideal performance in maximizing the total flow cover-
age in the network. Further, with a small amount of tar-
geted provisioning or upgrades to a small number of ingress
routers, cSamp-T nearly optimally maximizes the minimum
fractional coverage across all OD-pairs. We demonstrate
these results on a range of real topologies. cSamp-T thus
makes the benefits of coordinated network-wide monitoring
immediately available to ISPs and also provides an incre-
mental deployment path for such solutions.

1. INTRODUCTION
Flow monitoring supports critical network management

tasks such as anomaly detection [23], identifying unwanted
application traffic [9], understanding traffic structure [36],
botnet analysis [26], and forensic analysis [37], in addition
to traditional traffic engineering and accounting [11]. These
applications require that monitoring infrastructures provide
high flow coverage (number of flows logged) and the ability
to achieve network-wide flow measurement goals.

To meet these demands, recent proposals articulate the
case for network-wide rather than router-centric approaches
for flow monitoring [7, 15, 33]. We use one such pro-
posal, Coordinated Sampling (cSamp) [33], as our starting
point in this paper. We choose cSamp because compared to
current solutions, it provides higher flow coverage, achieves
fine-grained network-wide flow coverage goals, efficiently
leverages available monitoring capacity on routers and min-
imizes redundant measurements, and naturally load balances
responsibilities to avoid monitoring hotspots.

The key to these benefits is that cSamp coordinates the

sampling actions of routers in the network. To achieve this
coordination, cSamp assumes that each router can immedi-
ately determine the Origin-Destination (OD) pair (i.e., the
ingress and egress router) for each packet it sees. However,
due to practical issues such as multi-exit peers and prefix-
aggregation, interior routers in ISPs cannot identify the OD-
pair given just the source and destination IP addresses. Thus,
cSamp requires: (i) upgrades to border routers to compute
the OD-pair identifiers and (ii) modifications to packet head-
ers to carry OD-pair identifiers. These present significant
deployment barriers for ISPs today. Thus, while cSamp has
the potential to substantially improve flow monitoring, its
current form lacks a practical deployment path.

In this paper, we address the challenge of providing flow
monitoring capabilities comparable to cSamp, without rely-
ing on OD-pair identifiers. We present an architecture called
cSamp-T1, in which each router makes sampling decisions
using only local information from (unmodified) packet head-
ers and routing tables, but still provides performance compa-
rable to cSamp.

An immediate concern in cSamp-T is that the efficient al-
gorithms used in cSamp to compute sampling strategies for
maximizing the total flow coverage and minimum fractional
coverage across all OD-pairs no longer apply. In fact, we
show that these problems are NP-hard in the cSamp-T case.
Consequently, a central challenge we address in this paper
is to develop efficient algorithms for computing sampling
strategies to (approximately) optimize these measures.

To maximize the total number of unique flows logged, we
use the insight that the objective function issubmodularand
obtain near-optimal performance by extending results from
the theory of optimizing submodular functions subject to
budget constraints [14, 24, 21]. In particular, submodularity
implies that we can implement efficient greedy algorithms
with good approximation guarantees.

The minimum fractional coverage objective (i.e., the min-
imum across all OD-pairs of the fraction of flows logged per
OD-pair) is not submodular, and the greedy algorithm per-
forms poorly in theory [21] and practice. In this case, we
present two practical strategies to improve the performance:
(a) augmenting targeted routers with more resources and (b)
incrementally upgrading border routers with the functional-
ity to compute OD-pair identifiers and add them to packet

1cSamp-T denotes cSamp minus Tags for OD-pairs
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headers. We show that a few such router upgrades signifi-
cantly boosts the minimum fractional coverage.

cSamp-T thus makes the benefits of network-wide mon-
itoring solutions such as cSamp immediately available to
ISPs by relaxing the dependence on OD-pair identifiers. It
also provides an incremental deployment path for ISPs to
transition to cSamp-like solutions while providing perfor-
mance comparable to the ideal case under partial deploy-
ment. We also believe that the algorithms and heuristics we
develop (e.g., applying results from the theory of submodu-
lar set maximization, intelligent resource provisioning,hy-
brid cSamp and cSamp-T deployment) can be more broadly
applied to other network management problems (e.g., [4]).

2. BACKGROUND AND MOTIVATION
In this section, we provide a brief overview of cSamp and

also explain a key challenge that makes it impractical for
ISPs to deploy cSamp-like solutions today.

2.1 Why cSamp?
Flow monitoring is crucial for several network manage-

ment functions including several anomaly detection and se-
curity applications (e.g., [23, 9, 39, 36, 37, 26]), and thisset
of applications continues to grow. Synthesizing arguments
from several previous papers [17, 22, 7, 31, 15, 29, 10], we
identify some key requirements to address these demands:

• Provide high flow coverage, i.e., log as many flows as
possible, to support security applications which need a
fine-grained understanding of “who-talked-to-whom”.

• Work efficiently within (possibly heterogeneous) router
resource constraints and minimize redundant reports.

• Satisfy network-wide flow monitoring objectives; e.g.,
specify some subsets of traffic as more important than
others or ensure fairness across different subsets.

• Support a broad spectrum of monitoring applications.

Extending observations from the above body of work, these
lead to three natural design choices in cSamp [33]: (1) us-
ing flow sampling instead of packet sampling to avoid the
bias of packet sampling against small flows [17]; (2) coordi-
nating routers to avoid redundant sampling and to use router
resources efficiently [29]; and (3) a network-wide optimiza-
tion framework for assigning monitoring responsibilitiesto
routers to meet an ISP’s objectives [15].

2.2 Overview of cSamp
The goal of cSamp is to assign sampling responsibilities

to routers in a coordinated manner to optimize network-wide
flow monitoring objectives. Network operators typically spec-
ify network-wide goals in terms ofOrigin-Destination (OD)
pairs, identified by the ingress and egress routers. Thus,
the network-wide flow monitoring objective is expressed as
a function of the fractional flow coverages (i.e., fraction of
flows logged) of each OD-pair.

cSamp assigns sampling responsibilities ashash-ranges
per OD-pair per router. These configurations are called
sampling manifests; the manifest for each router is a set of
entries of the form〈OD , [start , end ]〉, where[start , end ] ⊆
[0, 1] denotes a hash range. The key idea is that all routers
are bootstrapped with the same hash function but are as-
signednon-overlappinghash ranges per OD-pair. This co-
ordinates the routers to ensure efficient non-redundant mon-
itoring. Since the sets of flows sampled by different routers
do not overlap, the flow coverage for an OD-pair is simply
the sum of the per OD-pair per-router flow coverages across
routers on that OD-pair’s path(s).

Each router’s sampling algorithm is as follows. For each
packet, the router determines the OD-pair from the packet
header. Next, it computes the HASH of the flow 5-tuplesr-
cIP, dstIP, srcport, dstport, proto, which returns a value in
[0, 1], and checks if the hash value lies in the range assigned
to it for the OD-pair. Each router maintains aFlowtable of
the flows it logs. If the packet is selected, the router either
creates a new flow entry or updates counters for the corre-
sponding flow in theFlowtable .

Next, we discuss how the sampling manifests are gener-
ated by the network-wide optimization framework.

Optimization Framework: The inputs to the optimization
module are the flow-level traffic matrix (number of flows per
OD-pair), router-level path(s) for each OD-pair, the resource
constraints of routers, and a ISP objective function expressed
in terms of the fractional flow coverages per OD-pair. Each
OD-PairOD i (i = 1, . . . ,M ) is characterized by its router-
level pathPi and the approximate numberTi of distinct IP-
level flows on that path in a measurement interval (e.g., five
minutes).2 Each routerRj (j = 1, . . . ,N ) is constrained
by the available SRAM for keeping per-flow counters [13];
Lj denotes the number of flowsRj can record in a given
measurement interval.

dij denotes the fraction of flows ofOD i that routerRj

logs. (If Rj does not lie on pathPi, then the variabledij

will not appear in the formulation.) Fori = 1, . . . ,M , let
Ci denote the fraction of flows onOD i that is logged.

The specific goal in [33] has two steps. First, we find the
largest possible minimum fractional coverage per OD-pair
mini{Ci} subject to the resource constraints. Next, we use
this asθ in Eq 3 in the linear program shown below and
maximize the total flow coverage

∑
i(Ti × Ci).

Maximize
∑

i(Ti × Ci), subject to

∀j,
∑

i:Rj∈Pi
(dij × Ti) ≤ Lj (1)

∀i, Ci =
∑

j:Rj∈Pi
dij (2)

∀i, θ ≤ Ci ≤ 1 (3)

∀i, ∀j, dij ≥ 0

The solutiond∗ = {d∗ij} to this two-step procedure yields
2We assume that each OD-pair has a single routing path. It is
easy to extend the framework to accommodate multi-path routing
or route changes [33].
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the optimal sampling strategy. This solution is then trans-
lated into sampling manifests specifying the flow monitoring
responsibility for each router.

2.3 Assumptions in cSamp
There are three main assumptions: (i) a centralized op-

timization module which has routing and traffic matrices,
(ii) routers implement hash-based flow sampling, and (iii)
routers obtain OD-pair information from packet headers.

The first two assumptions are feasible within current op-
erational realities. First, centralization is viable if the con-
figurations are generated reasonably quickly, say 1-2 min-
utes. Recent trends show that ISPs favor centralized net-
work management [6, 2] and that routing and traffic matri-
ces are readily available [1, 38]. Second, the requirements
of hash functions for flow sampling are simple [10] and they
are amenable to fast hardware implementations [27]. Flow
sampling requires lookups for each packet and is feasible if
theFlowtable is in fast SRAM. Prior work shows that main-
taining such counters is feasible [13, 19].

The assumption that routers can obtain OD-pair identifiers
is crucial to cSamp’s design. Specifically, Eq 2 implicitly as-
sumes that the hash-ranges assigned to different routers for
the same OD-pair are non-overlapping. This requires that
the hash ranges be specified per OD-pair per router, which is
not possible if routers cannot determine the OD-pair. In fact,
this non-overlapping property makes the optimization prob-
lem a tractable linear program (since the coverage per OD-
pair is thesumacross the routers), which can be solved effi-
ciently. If OD-pair identifiers were not available, this would
no longer hold. As we argue next, this assumption is not
practical for ISPs today.

2.4 Challenges in OD-pair identification
Given no additional information, a router needs to deter-

mine the ingress and egress routers (i.e., the OD-pair) for
a given packet using only the packet’s source and destina-
tion IP addresses and its local routing table. The feasibil-
ity of doing this depends on whether the ISP uses IP-based
or MPLS-based forwarding. While IP forwarding is purely
destination-based, MPLS can also take into account source
information. However, we are unaware of deployments con-
figured in this way, and we have confirmed that a large tier-
one ISP’s deployment of MPLS, for example, does not [3].
As such, here we restrict our attention to destination-based
MPLS forwarding, which we believe to be the norm. Ta-
ble 1 summarizes the feasibility of resolving the ingress and
egress in these two scenarios.

Information to Routing/Forwarding
resolve IP (dest-based) MPLS (dest-based)

Ingress router Difficult Difficult
Egress router Maybe, with some ambiguity Possible

Table 1: Feasibility of resolving ingress and egress
routers using packet headers and local routing tables.

In both cases, resolving the ingress is nearly impossible.

Figure 1: Example to show the intuition behind cSamp-T

For example, in the case of traffic entering from a multi-
exit peer (i.e., a neighboring AS with which an ISP peers
at multiple peering points), source IP address and routing
table information cannot determine the ingress from which
the packet arrived. Resolving the egress is relatively easier
because forwarding is destination-based. With MPLS, the
egress can be resolved exactly; with IP the egress can be re-
solved within some ambiguity. In IP forwarding, ingress/egress
resolution may also be additionally complicated if interior
routers only see aggregated prefix information.

Due to the above challenges, cSamp assumes that ingress
routers explicitly add OD-pair identifiers to packet headers.
However, this leads to a key deployment hurdle–it imposes
additional effort on border routers (e.g., replicating therout-
ing logic to resolve the egress router) and requires modifica-
tions to packet headers to carry OD-pair identifiers.

2.5 Motivating question
The above challenges in OD-pair identification bring us

to the motivating question for our work:Can we provide the
flow coverage benefits of cSamp without requiring OD-pair
identifiers? In the next sections, we describe our approach,
cSamp-T, to addresses this challenge.

3. PROBLEM STATEMENT
The main idea in cSamp-T is that each router makes sam-

pling decisions using onlylocal informationrather than the
global OD-pair identifiers. Since each router operates only
with local information, the coverage of an OD-pair is ob-
tained by “stitching” together the coverage provided by each
router on the path.

Consider the example in Figure 1 with 2 ingresses and
egresses and 4 OD-pairs P1–P4. The top half shows a cSamp
configuration; each router’s sampling responsibilities arehash-
ranges per OD-pairand for each OD-pair the ranges on the
routers on its path are non-overlapping.

The bottom half shows a scenario where routers cannot
obtain OD-pairs and each router is assigned ahash-range
per router 3-tupleconsisting of the previous hop, current
router, and the next hop. Note that for each packet, a router
can determine the 3-tuple using only local information: the
interface the packet arrived on, the destination IP, and the
forwarding table, and then decide whether or not to sample
the flow/packet. The coverage for each OD-pair is theunion
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of the ranges assigned for each 3-tuple on the path.
The example highlights two differences between cSamp-T

and cSamp. First, the sampling responsibilities are specified
using local information rather than global OD-pair identi-
fiers. Second, the coverage for each OD-pair is no longer
the sum across the routers on the path; it is the union of the
ranges assigned to the routers on the path.

Now, how do we assign sampling responsibilities in cSamp-
T to maximize network-wide flow coverage objectives while
respecting each router’s resource constraints? The following
sections present a formal framework to address this.

3.1 Problem Formulation
We borrow two assumptions from cSamp: (a) a central-

ized module with access to routing and traffic matrices as-
signs sampling responsibilities and (b) routers implement
hash-based flow sampling using SRAM counters and SRAM
size constrains the number of flows a router can log. As dis-
cussed earlier, both are reasonable assumptions. Next, we
discuss how a centralized module can assign sampling re-
sponsibilities without OD-pair identifiers.

We introduce the notion of aSamplingSpecto capture the
granularity at which a router makes sampling decisions. For
the current discussion, the SamplingSpecs are three-tuples
of router identifiers〈Rj1 ,Rj2 ,Rj3〉 that appear contiguously
on some path in the network; i.e.,Rj1 andRj3 are neighbors
of Rj2 . Let ak denote a generic SamplingSpec.

ak ∈ Pi denotes that the SamplingSpecak lies on the
pathPi for OD i.3 For example, if the pathPi uses routers
· · · ,Rj1 ,Rj2 ,Rj3 , · · · in that order, then the SamplingSpec
a = 〈Rj1 ,Rj2 ,Rj3〉 ∈ Pi. This is a natural extension
to the notion that a routerRj lies on a pathPi. We use
tk =

∑
i:ak∈Pi

Ti to denote the total traffic that traverses
ak. SamplingSpecs are mapped to routers in a many-to-one
fashion; we denote the set of SamplingSpecs mapped toRj

by Rj .specs. That is,Rj can be assigned sampling responsi-
bilities corresponding toak ∈ Rj .specs. In the 3-tuple case,
if ak = 〈Rj1 ,Rj2 ,Rj3〉, thenak ∈ Rj2 .specs.

If Rj.specs ∋ ak, thenRj can log some of the traffic
on pathsPi ∋ ak. But what fraction should it log? We
formalize this by creating a set ofSamplingAtoms. Sup-
pose the traffic traversingak is mapped to the unit inter-
val [0, 1] by hashing and that the interval[0, 1] is divided
into 1

δ
equal-sized intervalshl = [(l − 1)δ, lδ], of length

δ. A SamplingAtom is a pair〈ak, hl〉. If a SamplingAtom,
gkl = 〈ak, hl〉, ak ∈ Rj .specs, is assigned, then routerRj

will log the flows that traverseak such that the hash of the
flow falls in hl. We useh(gkl) as a synonym forhl.

EXAMPLE : Figure 2 illustrates the above definitions with
an example, whereδ = 0.25. R3 has three SamplingSpecs
in the forward direction (and three similar SamplingSpecs
in the reverse direction):〈R1 ,R3 ,R4 〉, 〈R1 ,R3 ,R2 〉 and
〈R2 ,R3 ,R4 〉. R3 is assigned three SamplingAtoms, two
3Since this notion of “lies on the path” is quite general, our ap-
proach works even in the case of multi-path routing.

R2

R3

<R2,R3,R1>
{ }

SamplingSpecs SamplingAtoms

<R4,R3,R1><R1,R3,R2>
<R2,R3,R4> <R2,R3,R4> , [0,0.25]

<R1,R3,R4> , [0.75,1]
<R1,R3,R4> , [0,0.25]<R1,R3,R4>

R1
<R4,R3,R2>

R4

Figure 2: Example showing the SamplingSpecs and as-
signed SamplingAtoms at router R3.

for 〈R1 ,R3 ,R4 〉, one for〈R2 ,R3 ,R4 〉, and none for〈R1 ,
R3 , R2 〉. Consider paths of the form{..,R1 ,R3 ,R4 , ..}
(there may be many such paths).R3 will log all flows along
these paths whose hashes fall either in the range[0, 0.25] or
[0.75, 1], and flows on paths of the form{..,R2 ,R3 ,R4 , ..}
such that the hash of the flow falls in the range[0, 0.25].

Measures of Goodness:Given a set of assigned Samplin-
gAtoms,{ĝkl}, we can compute thefractional coveragefor
eachOD i. The coverage due to one particular SamplingSpec
ak ∈ Pi is∪l h(ĝkl) ⊆ [0, 1], and hence

coverageCi =
∣∣⋃

ak∈Pi

⋃
l h(ĝkl)

∣∣ (4)

Here, given an intervalS ⊆ [0, 1], we use|S| to denote
the fraction of the unit interval covered by this subset. Note
that the coverage for a path is theunion of the assigned
hash-ranges across all the constituent SamplingSpecs – if
the samehash-range is assigned to several SamplingSpecs
along a path, then the same set of flows gets sampled and we
do not get any extra coverage.

Themonitoring loadon a router is given by adding, over
all SamplingSpecsak ∈ Rj.specs, the portion of the traffic
throughak thatRj logs:

Load j =
∑

ak∈Rj.specs
tk × |

⋃
l h(ĝkl)| (5)

Given theCis, the specific functions we are interested in
optimizing are thetotal traffic coverageftot =

∑
i TiCi,

and theminimum fractional coveragefmin = mini Ci. For-
mally, the goal of our algorithms is to obtain the set of as-
signed SamplingAtoms{ĝkl} such that we maximizeftot or
fmin , while operating within the router resource constraints
(i.e.,Load j ≤ Lj for all j). We choose these specific objec-
tive functions because of their use in cSamp [33]; our frame-
work can accommodate a wider range of objective functions
expressed as combinations of theCi values.
The maximization problem: We can rewrite the above max-
imization problems as follows. Consider a “ground set”V
which contains as its elements all possible SamplingAtoms:
i.e.,V = {〈ak, hl〉 for all possible SamplingSpecsak and all
1
δ

hash-rangeshl}. Suppose a subsetS ⊆ V of these Sam-
plingAtoms are chosen and assigned to their corresponding
routers. These give us the fractional coverages defined by (4)
and router loads given by (5). Now,ftot or fmin can be
viewed as functions from subsets ofV to the reals. The prob-
lem is to select anoptimalS∗ ⊆ V , i.e., that maximizesftot

or fmin , subject toLoad j ≤ Lj .

3.2 Exact Solutions are Hard
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Finding an optimalS∗ to maximizeftot or fmin subject
to the load constraints on routers is NP-hard. Appendix A
demonstrates the hardness via a reduction from 3-SAT. More-
over, it is infeasible for practical system sizes. For example,
consider the problem as an integer linear programming for-
mulation using{0, 1} indicator variables for eachgkl to de-
note whether it is “assigned” or not. Even on the Internet2
topology with just 11 routers, the commercial solverCPLEX
did not converge after a day. Because of the intractability
of solving the problem exactly, we use approximation al-
gorithms. However, as we will see, the performance of our
algorithms is comparable to the ideal performance of cSamp.

4. SUBMODULARITY AND ALGORITHMS
In the previous section, we saw that obtaining exact so-

lutions for maximizing the total coverage or the minimum
fractional coverage in cSamp-T is hard. In this section, we
show that there are practical approximation algorithms to
obtain the sampling strategies. The key insight is that the
coverage functions have a natural “submodularity” property
which allows us to extend results from the theory of maxi-
mizing submodular set functions.

4.1 Submodularity

Definition: A function F : 2V → ℜ mapping subsets of a
ground setV to the reals issubmodularif for all setsS ⊆
S′ ⊆ V , all elementss ∈ V ,

F (S ∪ {s}) − F (S) ≥ F (S ′ ∪ {s}) − F (S′)

i.e., the marginal benefit obtained from addings to a larger
set is smaller[14]. This captures the intuitive property of
diminishing returns. The functionF is monotone (nonde-
creasing)if ∀S ⊆ S′, F (S) ≤ F (S′).

Submodular set maximization: The goal is to pick a sub-
set S ⊂ V maximizingF (S). What makes this problem
hard is that we also have a budget constraint of the form
c(S) ≤ B; i.e., given costsc(s) for all s ∈ V , the total
costc(S) :=

∑
s∈S c(s) of elements picked in setS cannot

exceed the budgetB. This submodular maximization prob-
lem is NP-hard [14], but good approximation guarantees are
known. In particular, the algorithm specified in Figure 3 ei-
ther greedily picks elements that give the greatest marginal
benefit and do not violate the budget constraints, or greedily
picks the elements that give the maximum marginal benefit
per unit element-cost(depending on whethercbflag is set to
true or false), as long as the budget is not violated. The bet-
ter of these two settings is a constant factor approximation
algorithm [35].

4.2 Application to cSamp-T
It is easy to check the coveragesCi viewed as functions

from 2V → ℜ whereV = SamplingAtoms are mono-
tone submodular, and hence so is their weighted sumftot =∑

i TiCi.

SUBMODULARGREEDY(F,V , cbflag , B)

// F : 2V → ℜ submodular,B is total budget
// if cbflag is true use benefit/cost instead of benefit

1 S ← ∅
2 while (∃s ∈ V \ S : c(S ∪ {s}) ≤ B) do
3 for s ∈ V \ S do
4 norm ← ((cbflag = true) ? c(s) : 1)

5 ψs ← F (S∪{s})−F (S)
norm

6 s∗ ← argmaxs∈V\Sψs

7 S ← S ∪ {s∗}
8 return〈S, F (S)〉

Figure 3: Basic greedy algorithm

GREEDYMAX M IN(F1, . . . , FM , ǫ,V , B, γ)

// Maximizemini{Fi}
// ∀i, Fi : 2V → [0, 1] is submodular

1 τlower ← 0; τupper ← 1
2 while (τupper − τlower > ǫ) do
3 τcurrent ←

τupper+τlower

2
// Define the modified objective function

4 ∀i, F̂i ≡ min(Fi, τcurrent); F̂ ≡
∑

i F̂i

// Run greedy without budget constraints
5 Bused ← SUBMODULARGREEDY(F̂ ,V , true,∞)
6 if MAX USAGE(Bused , B) > γ
7 then τupper ← τcurrent

8 elseτlower ← τcurrent

9 Returnτlower

Figure 4: Maximizing the minimum of a set of submod-
ular functions with resource augmentation

Budget constraints in cSamp-T:The budget constraints in
cSamp-T come from the bounds on router load. To model
router load, we need a knapsack constraintLoad j ≤ Lj for
each routerRj. A naive approach is to consider the cSamp-
T problem as a submodular set maximization problem with
multiple knapsack constraints. This naive approach yields
a O(N ) approximation, whereN is the number of routers.
This is clearly undesirable, especially for large networks.
However, these budget constraints have a special structure.
Specifically, since each SamplingAtom contributes to the
load on exactly one router, this results in a collection of
non-overlappingknapsack constraints. We call the result-
ing problemsubmodular function maximization subject to
partition-knapsack constraints, where each partition corre-
sponds to a different router, and the knapsack constraint is
the load constraint for that router. In Appendix B, we prove
that a modified greedy algorithm—an extension of Figure 3—
gives a constant-factor approximation.

Maximizing ftot : To match the theoretical guarantees [35]
(see Appendix B), we run two separate invocations of the
greedy algorithm—with and without the benefit-cost flag set
to true, and return the solution with better performance. In
practice, both have similar performance (§6.1).

Maximizing fmin : To maximizefmin , we need to go from
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one submodular functionF to many submodular functions
F1, F2, . . . , FM —in our case, these are the fractional cov-
eragesC1, . . . ,CM . The problem is now to pickS ⊆ V
to maximizeFmin(S) = mini Fi(S), the minimumacross
these different functions. This new functionFmin is not
submodular; indeed, obtaining any non-trivial approxima-
tion guarantee for this max-min optimization problem is NP-
hard [21]. However, we can give an algorithm to maxi-
mizeFmin when we are allowed to exceed the budget con-
straint by some factor [21]. Formally, ifS∗ is an optimal
set satisfying the budget constraints, the algorithm in Fig-
ure 4 finds a setS with Fmin(S) ≥ Fmin(S∗) − ǫ but
which exceeds the budget constraints by a factor ofγ, where
γ = O

(
log(1

ǫ

∑
v∈V Fi(v))

)
.

The key idea is this: the modified objective functionF̂τ =∑M

i min(Fi, τ) is submodular. For anyτ , F̂τ has the prop-
erty that its maximum value isM × τ and at this maximum
value∀i, Fi ≥ τ . Running the greedy algorithm assuming
no resource constraints always gives a set such that the actual
resource usage at routerRj is at mostγ×Load j . Notice that
this holds for allτ , and in particular, for the optimal value
τ∗ = Fmin(S∗). Since the optimalτ∗ is not known, the
algorithm in Figure 4 uses binary search overτ .

Router algorithm: Given a solution to the problem of max-
imizing ftot or fmin , each router’s sampling algorithm is as
follows. The router no longer requires the OD-pair informa-
tion for a packet; it gets the SamplingSpec using only the
packet headers and other local information (e.g., what inter-
face the packet arrives and leaves on). The router is assigned
a set of non-contiguous hash ranges for each SamplingSpec
and samples the packet if the hash of the flow 5-tuple falls in
anyof the ranges for this SamplingSpec.

4.3 Practical Issues

Reducing computation time: The computation time of the
algorithm in Figure 3 can be reduced using the insight that
for each elements ∈ V , the marginal benefitψs obtained by
picking s decreases monotonically across iterations of the
greedy algorithm. Thus, we can uselazy evaluation[24].
The main intuition behind lazy evaluation is that not allψs

values need to be recomputed in Figure 3 (Step 5); only a
smaller subset that is likely to affect the choice ofs∗ in Step
6 needs to be computed. We omit details for brevity and re-
fer the reader to [24]. We can replace all instances of the
procedure call SUBMODULARGREEDY with the lazy evalu-
ation version.§6.2 shows that this reduces the computation
time by more than an order of magnitude.

Generalizing SamplingSpecs:We assumed that the Sam-
plingSpecs are defined in terms of router three-tuples. Note,
however, that our algorithms are generic and do not depend
on SamplingSpecs being router three-tuples. Thus, we can
generalize our results to other notions of SamplingSpecs.
For example, the SamplingSpecs can be made coarser (e.g.,
ignore previous/next hop information and operate at a router

granularity), or more fine-grained (e.g., add egress informa-
tion to the 3-tuple if available).

Effects of Discretization: §3 defined a discretization inter-
val δ such thatgkl = 〈ak, [(l − 1)δ, lδ]〉, l ∈ {1, . . . , 1

δ
}.

There are two practical issues here. First, we can make the
width δ arbitrarily small; there is a tradeoff between po-
tentially better coverage vs. the time to compute the solu-
tion. In our evaluations, we fixδ = 0.02 since we find
that it works well in practice. Second, instead of1

δ
dis-

joint intervals, we can also consider the1
δ

2
hash-ranges of

the form[mδ, (m + n)δ] to make assignments as contiguous
as possible. This increases the computation time quadrati-
cally without providing any additional coverage benefits. We
avoid this overhead and instead run a simple merge proce-
dure (§6.3) to compress the sampling manifests.

5. HEURISTIC EXTENSIONS
While the theoretical guarantee forftot is encouraging,

the result forfmin requires fairly high resource augmenta-
tion values (γ) to get non-trivial guarantees.

In this section, we describe three practical extensions to
improve the performance forfmin .

1. Targeted provisioning to use fewer additional resources.
2. Incremental deployment where some ingress routers

are upgraded to add OD-pair identifiers.
3. Using alternative objective functions to approximate

the max-min property.

We present these in the context of thefmin objective. How-
ever, the targeted provisioning and partial deployment tech-
niques can be more generally applied to other network-wide
objectives where the greedy algorithm performs poorly.

5.1 Intelligent Provisioning
The theoretical bound in§4 assumes that each router is

givenγ× more resources. However, it is expensive to add
γ× more SRAM toall routers. Here, we want to add more
SRAM intelligently–selectively augment some routers and
still get good performance. The insight here is that it may
suffice to upgrade a small number of heavily loaded routers.

Prob. provisioning : Maximizemini Ci, subject to

∀j,
∑

k:ak∈Rj.specs
uk × tk ≤ Lj (6)

∑
j Lj ≤ Budget (7)

∀j,LB j ≤ Lj ≤ UB j (8)

∀i,Ci =
∑

k:ak∈Pi
uk (9)

∀k, uk ≥ 0; ∀i,Ci ≤ 1 (10)

To address this, we consider the following provisioning
problem. The operator gives a memory budgetBudget to
be distributed across routers defined by her monetary budget
and SRAM cost. Each routerRj has a lower boundLB j for
the default memory configuration and an upper boundUB j
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on the maximum amount that can be provisioned.4 The out-
put of the provisioning problem is the allocation of resources
to routers to optimizefmin .

However, it is difficult to model the coverageCi per OD-
pair achieved by the greedy algorithm. Thus, we make a
simplifying assumption that the hash ranges (theuk values)
across the different SamplingSpecs on a given path are non-
overlapping. This allows us to modelCi as the sum of the
uks in Eq 9. Under this assumption, the provisioning prob-
lem can be solved as a linear program. While this is less
optimal compared to faithfully modeling theCis, this is a
reasonable assumption since our goal is to obtain general
guidelines for resource provisioning. As we will see in§6.4,
this heuristic works well in practice.

Given the memory allocations given by solving the LP, we
run the greedy algorithm in Figure 4 withγ = 1 to ensure
that we are strictly within the resource constraints.

5.2 Partial OD-pair identification
Next, we consider a scenario in which the network oper-

ator can upgrade some border routers. This can be achieved
using a software update to the router or by adding a simple
two-port middlebox [18] that processes each packet, modi-
fies the header, and forwards them to the router. These few
upgraded nodes (routers or router plus middlebox) have the
ability to determine and add OD-pair identifiers to packet
headers. We assume that all routers run both cSamp and
cSamp-T sampling algorithms–i.e., a router logs a flow if
the flow’s hash falls in a hash-range correspondingeitherto
the OD-pair or the SamplingSpec for the packet.

Prob. enabledODs(θ,Pe): Minimize
∑

j

Lj , subject to

∀j,
∑

i∈Pe :Rj∈Pi

(dij × Ti) ≤ Lj (11)

∀i ∈ Pe ,Ci =
∑

j:Rj∈Pi

dij (12)

∀i ∈ Pe , θ ≤ Ci ≤ 1; ∀i ∈ Pe , ∀j, dij ≥ 0 (13)

Let Pe be the set of “enabled” OD-pairs whose packets
carry OD-pair identifiers and letP be the set of all OD-pairs.
As in Figure 4, we compute the maximum achievable min-
imum fractional coverage using binary search over the pa-
rameterτ . The key difference in the new algorithm is that
each iteration of the binary search has two logical steps. In
the first step, we solve a cSamp-style linear program over the
enabled OD-pairs. In the second step, we define the capped
functionsĈi(τ) = mini(Ci, τ) for the non-enabled OD-
pairs and use the greedy algorithm to maximizeF̂ =

∑
i Ĉi.

In each iteration, for the current valueτcurrent , the first
step involves solving the LPenabledODs . The input to the
LP is the set of enabled OD-pairsPe and the target cover-
ageθ = τcurrent . The objective of the LP is to minimize
4There are natural technological limits on the amount of fast
SRAM that can be added to linecards [34].

the total resource used across the routers to ensure that each
OD i ∈ Pe hasCi ≥ θ = τcurrent . Solving the LP returns
the resources allotted to each router or returns an infeasible
status if there is no feasible solution.

If the LP is infeasible, then we directly proceed to the next
iteration of the binary search. If the LP is feasible, then we
obtain the new budget per router by subtracting the resources
used in the LP stage from the original budget per router.
Next, we run the greedy algorithm with the reduced budget
and modified objective specified over the non-enabled OD-
pairs. By construction, the maximum valuêF can take is
(M − |Pe |) × τcurrent whereM is the number of OD-pairs
and|Pe | is the number of enabled OD-pairs. This maximum
value is achieved if and only if each non-enabled OD-pairs
in the setP \ Pe achieves a fractional coverage equal to
τcurrent . If the greedy algorithm achieves this value, then
τcurrent is feasible and we try a higher value in the next iter-
ation; else we try a lower value in the next iteration.

5.3 Using theα-fair function
fmin is difficult to optimize because the max-min func-

tion is not submodular. A natural heuristic is to design a
function other than max-min that is submodular but (approx-
imately) provides the desired max-min property, and then
use SUBMODULARGREEDY to optimize this new function.

The notion ofα-fairness has been used in congestion con-
trol [25] to generalize and approximate max-min fair alloca-
tion. Given itemsxi, we want to allocate a given resource
to the items “fairly”. Theα-fairness function is defined as∑

i U(xi), whereU(x) = x1−α

1−α
.5 α can take values in

[0,∞), and the valuesα = 0 andα → ∞ correspond to
maximum throughput and max-min fairness respectively.

In our context, eachxi corresponds toCi. It is easy to
verify that the function

∑
i U(Ci) is submodular and we can

use the greedy algorithm (Figure 3) to optimize this function.
We useα = 100 and also add a small constant to eachCi

sinceU(x) is undefined whenx = 0. Note that while the
two previous heuristics can be extended to other objectives,
theα-fair heuristic is specific to maximizingfmin .

6. EVALUATION

Setup: We evaluate the performance of cSamp-T at a PoP-
level granularity with each PoP as a node in the network. We
use PoP-level topologies of educational backbones and tier-
1 ISPs [30] (Table 2). We use shortest-path routing to con-
struct paths between every OD-pair and model the traffic ma-
trix using a gravity model based on city populations [29]. We
assume that each PoP can logL = 400, 000 flow records.6

For cSamp-T, we discretize the hash-range withδ = 0.02.

5At α = 1, the function isU(x) = log(x)
6Assuming 12 bytes per flow record [33], this translates into
400, 000 × 12 = 4.8 MB of SRAM per PoP, which is well within
the 8 MB technology limit per linecard suggested by Varghese[34].
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Topology (AS#) PoPs OD-pairs Flows Packets
×10

6
×10

6

NTT (2914) 70 4900 51 204
Level3 (3356) 63 3969 46 196
Sprint (1239) 52 2704 37 148
Telstra (1221) 44 1936 32 128
Tiscali (3257) 41 1681 32 218
GÉANT 22 484 16 64
Internet2 11 121 8 32

Table 2: Parameters for the experiments
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Figure 5: Total flow coverage

6.1 Coverage and Overlap
Total flow coverage:We consider three granularities of Sam-
plingSpecs: router, router 3-tuple, and router 3-tuple aug-
mented with egress information. Note that the first two Sam-
plingSpecs can always be inferred from just local informa-
tion but there may be some residual ambiguity in resolving
the egress (Table 1). We consider the tuple+egress Sam-
plingSpec as a hypothetical point in the solution space to
see the gap between it and the other purely local solutions.
We also compare these solutions to cSamp and a maximal
uncoordinated flow sampling solution [33].7

Figure 5 shows that using 3-tuple SamplingSpecs provides
significant improvement (25-30%) over the router-level case.
cSamp-T (3-tuple+egress) is closest to cSamp, but the gap
between the 3-tuple and egress-added cases is small. Also,
the performance of the greedy algorithm is close to the the-
oretical upper bound for cSamp-T. (Not shown due to space
constraints; please see our extended technical report [28]for
additional results).

The theoretical guarantee for total flow coverage depends
on running the two greedy algorithms: with and without the
cost-benefit flag. We found that both configurations have
similar performance and that the algorithm with the cost-
benefit flagcbflag = false is slightly better [28].
Minimum fractional coverage: §4 showed that it is im-
possible to maximizefmin without resource augmentation.
Thus, we evaluate the performance as a function of the re-
source augmentation factorγ, where each router’s budget is
γ × 400, 000. We normalize the minimum fractional cover-
age by the optimal value achieved by cSamp atγ = 1; i.e.,
if cSamp-T has value0.2 atγ = 3 and cSamp has value0.4
atγ = 1, the y-value corresponding toγ = 3 is 0.2

0.4 = 0.5.

7In maximal flow sampling, each router maximally utilizes its
memory. A router’s flow sampling rate ismin(1, l

t
), wherel is the

number of flows it can log andt is the number of flows it observes.
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(b) Router

Figure 6: Normalized minimum fractional coverage of
cSamp-T with resource augmentation

Figure 6 shows the result for the router and tuple granular-
ities. The tuple+egress was almost identical to the tuple case;
we do not show this for brevity. First, withγ ≥ 4, cSamp-
T achieves≥ 50% of cSamp for all topologies. Second, the
difference between the router and tuple formulations is more
pronounced in the minimum fractional coverage result. With
router-level SamplingSpecs, even atγ = 5, four out of the
seven topologies only reach 40% of cSamp’s performance.
For the sameγ = 5, using the 3-tuple SamplingSpecs, five
out seven topologies achieve≥ 90% of cSamp’s performance.
Also, theγ at which cSamp-T has good performance is much
better than the theoretical bound in§4. §6.4 shows that tar-
geted provisioning reduces this even further.

Since 3-tuple SamplingSpecs perform much better than
router SamplingSpecs, and are also very close to the tu-
ple+egress case, we focus on 3-tuples in the rest of the paper.
Duplicated flow reports: A secondary objective in cSamp
is avoiding duplicated flow reports to reduce the overhead in
processing duplicated measurements. Uncoordinated sam-
pling can have≥ 30% duplicated reports expressed as a frac-
tion of unique flows logged. Compared to the uncoordinated
case, cSamp-T with 3-tuples has 3× fewer duplicated flow
reports (not shown). Relative to cSamp which has no dupli-
cate reports, this is not ideal; however, this is unavoidable
since cSamp-T operates at a much coarser granularity.

6.2 Algorithm Running Time
In order for cSamp-T to be responsive to network dynam-

ics, we want the time to compute sampling manifests to be
within 1-2 minutes. (Manifests are recomputed across mea-
surement epochs that span several minutes.) Table 3 shows
that lazy evaluation provides more than an order of magni-
tude reduction in computation time compared to the vanilla
greedy algorithm. The reduction is more significant for the
minimum fractional coverage since it involves multiple in-
vocations of the greedy subroutine during the binary search.
With this reduction, cSamp-T scales to larger topologies.

6.3 Size of sampling manifests
Compared to cSamp, cSamp-T increases the size of the

sampling manifests because the hash-ranges assigned for each
SamplingSpec need not be contiguous. As discussed in§4.3,
we use a simple compression procedure to merge hash ranges
after the greedy algorithm. This looks for maximally con-
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Topology Total coverage (sec) Min. Fractional (sec)
Naive Lazy Naive Lazy

NTT 207.12 4.15 39632 154.1
Level3 205.36 3.30 48269 84.3
Sprint 75.30 2.21 14211 71.6
Telstra 50.53 1.65 6997 45.0
Tiscali 35.18 1.16 8518 33.7
GÉANT 3.06 0.28 542 7.6
Internet2 0.22 0.05 38.4 1.9

Table 3: Time to compute sampling strategy comparing
the vanilla greedy algorithm with lazy evaluation

Topology Total (KB) Max. per PoP (KB)
Naive Merged Naive Merged

NTT 178.5 16.3 5.6 1.0
Level3 341.9 25.2 34.1 3.3
Sprint 140.9 13.0 10.3 0.6
Telstra 112.3 7.2 3.3 0.5
Tiscali 110.9 12.6 9.8 0.6
GÉANT 45.5 6.5 5.6 0.6
Internet2 14.5 5.0 4.5 0.7

Table 4: Size of the sampling manifests (in kilobytes of
text configuration files) with cSamp-T

tiguous hash ranges in the original sampling manifest and
merges them into a single hash range.

Table 4 shows the overhead of disseminating manifests.
First, we see that the compression procedure reduces the
manifests roughly 10×. Second, we notice that the total
bandwidth overhead after compression is small–25KB in the
worst case. Finally, the worst case per-node manifest size is
also small≈ 3KB.

6.4 Intelligent Provisioning
As a specific scenario, we setLB j = L = 400, 000 for all

j in the formulation from§5.1. We specify the total budget
asBudget = γ×N×L, whereN is the number of PoPs, and
the technology limit asβ×L. We vary the parametersγ and
β. Figure 7 shows the minimum fractional coverage normal-
ized w.r.t cSamp for two topologies, Level3 and Telstra. We
choose these because the greedy algorithm performs poorly
compared to cSamp in Figure 6. An interesting result is that
the curve levels off as a function ofγ; i.e., increasing the to-
tal budget does not add much benefit. However, increasing
the technology upper boundβ provides significant improve-
ment. In fact, even with a moderate total increaseγ = 1.2,
we see that the performance is within 80% of cSamp.

Sinceβ is more crucial to thanγ, for the remaining topolo-
gies we fixγ = 1.5 and analyze the normalized minimum
fractional coverage as a function ofβ in Figure 8. With
β = 5, all topologies achieve≥ 60% of cSamp’s perfor-
mance. Contrasting this with Figure 6, the main difference
is that we do not require all PoPs to be augmented with5×
more resources – the total resource budget is≤ 1.5×.

6.5 Partial OD-pair identification
We try three strategies for selecting the enabled OD-pairs

Pe : upgrading the top-k PoPs that (a) observe the maximum
amount of traffic, (b) lie on most number of routing paths, or
(c) originate the most traffic. Here, upgrading implies that
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(b) Telstra

Figure 7: Understanding the impact of total resource
augmentation (γ) and technology upper bound (β) in the
resource allocation formulation.
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Figure 8: Intelligent allocation with varying β at γ=1.5

we enable OD-pair identifiers on all OD-pairs having one of
these top-k PoPs as origins. For eachk, we run the two-step
procedure from§5.2 for all values in1, . . . , k and pick the
configuration with the highestfmin .

Figures 9(a) and 9(b) show the normalized minimum frac-
tional coverage for the Level3 and Telstra topologies as a
function ofk (number of top-k PoPs). First, we observe that
upgrading just a small number of PoPs (< 8%) significantly
improves the performance. Second, enabling identifiers on
nodes that observe the most traffic performs much better than
the other two strategies.

6.6 Usingα-fairness
Figure 10 shows the normalized minimum fractional cov-

erage with theα-fairness function with both naive (as in Fig-
ure 6) and intelligent augmentation (as in Figure 8). For each
resource configuration, we run the greedy algorithm to op-
timize theα-fairness function from§5.3, find the minimum
fractional coverage in the output of the greedy algorithm,
and then normalize it w.r.t cSamp at baseline provisioning.
Compared to Figures 6 and 8, the overall performance using
theα-fairness optimization is slightly better.

6.7 Hybrid Coverage Objective
cSamp maximizes a hybrid objective: maximizing the to-

tal flow coverage subject to achieving the highest minimum
fractional coverage across OD pairs. So far, in cSamp-T
we considered these two objectives separately. A natural
question is if we can maximize this hybrid objective also
in cSamp-T. It is relatively simple to extend the algorithm in
Figure 4 to achieve this. First, run the greedy algorithm to
optimize the capped minimum fractional objective (F̂ ) and
then modify the objective function to optimize the total cov-
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(a) Level3
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(b) Telstra
Figure 9: Performance of cSamp-T with partial OD-pair
identification. Alternatively, this can be viewed as incre-
mental deployment of cSamp via cSamp-T.
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(a) Naive augmentation
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(b) Intelligent augmentation

Figure 10: Normalized minimum fractional coverage us-
ing the α-fair function with the tuple formulation

erage ifτcurrent is feasible.
To evaluate this hybrid approach, we consider the resource

configuration using targeted provisioning withα = 1.5 and
β = 5. Table 5 compares the total coverage obtained with
three strategies: maximizing the minimum fractional cover-
age, maximizing the total flow coverage, and the above two-
step procedure. Maximizing the minimum fractional cover-
age alone does not work well for the total coverage. This
is because the greedy algorithm terminates when it achieves
the target coverage for all OD-pairs even if there more re-
sources that can boost the total coverage. The table also
shows that total coverage obtained by the hybrid approach
is very close to that of the greedy algorithm for maximizing
the total coverage alone. While it is hard to provide theoret-
ical guarantees for this case, Table 5 shows that the two-step
optimization works well in practice.

6.8 Evaluation Summary

• The greedy algorithm for maximizing the total flow
coverage is close to cSamp’s performance and also close
to the theoretical upper bound for cSamp-T.

• The two versions of the greedy algorithm for total flow
coverage perform similarly.

• cSamp-T has 3× fewer duplicated reports than an un-
coordinated approach.

• With intelligent resource augmentation, cSamp-T needs
≤ 1.5× as much total SRAM as cSamp to get≥ 80%
of cSamp’s optimum minimum fractional coverage.

• cSamp-T provides an incremental deployment path for
cSamp; upgrading a small number (≤ 8%) of ingresses
to add OD-pair identifiers gets close to 90% of the ideal
cSamp performance.

Topology Greedy-Minfrac Greedy-Total
NoHybrid Hybrid

NTT 0.13 0.58 0.58
Level3 0.10 0.60 0.60
Sprint 0.22 0.61 0.64
Telstra 0.13 0.59 0.62
Tiscali 0.23 0.60 0.63
GÉANT 0.35 0.63 0.68
Internet2 0.60 0.71 0.78

Table 5: Comparing the performance of the hybrid max-
imization to the greedy algorithm for maximizing the to-
tal flow coverage alone

• Theα-fairness heuristic only marginally improves the
minimum fractional coverage.

• Lazy evaluation reduces the computation time by 1-2
orders of magnitude and enables cSamp-T to scale to
large tier-1 ISP topologies.

• The total size of sampling manifests in cSamp-T is
small –≤25KB for the entire network after a simple
compression step to merge hash ranges.

• cSamp-T also achieves near-ideal performance for the
two-step objective in cSamp.

7. DISCUSSION
More fine-grained local information: One possibility is to
provide additional hints to routers, e.g., distributing IP-prefix
to ingress-egress maps to routers [5], to enable more fine-
grained sampling decisions. This can bring the performance
of cSamp-T even closer to cSamp.
Sensitivity of router upgrades: §5 provides two heuristics
for upgrading routers with more resources or the ability to
add OD-pair identifiers. These formulations, as presented,
assume static routing and a static traffic matrix. Real-world
routing and traffic matrices typically have some dominant
structural patterns that are invariant to dynamics. Thus, we
can apply these formulations using these dominant patterns.
Evaluating the sensitivity of the performance improvements
to traffic or routing dynamics and designing upgrade strate-
gies robust to dynamics are topics of future work.

8. OTHER RELATED WORK
The closest related work is cSamp [33], which we dis-

cussed in§2. Here, we discuss other related work.
Sampling solutions: Most of the related work focuses on
the single-router case to work around the limitations of packet
sampling. This includes work on adaptive sampling [12], in-
verting sampled measurements [11, 17], and data streaming
algorithms (e.g., [13, 22]).
Greedy algorithms for monitor placement: Prior work has
applied greedy algorithms for monitor placement to cover all
routing paths using as few monitors as possible [7, 31]. The
authors show that this is NP-hard and propose greedy algo-
rithms. These formulations can be extended to incorporate
packet sampling [31, 15]. However, these do not satisfy flow
coverage objectives, and in fact by relying on packet sam-
pling, they can result in a large amount of redundant flow
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measurements. cSamp-T provides more fine-grained flow
coverage objectives and reduces duplicated flow reports.
Sensor network monitoring: There has been recent work
applying the theory of maximizing submodular functions in
sensor networks [16, 20]. The problem of placing sensors
robust to adversarial objectives [21] is conceptually similar
to maximizing the minimum fractional coverage.

9. CONCLUSIONS
cSamp is a recent proposal to meet the increasing de-

mand for fine-grained flow monitoring capabilities in net-
work management. However, ISPs cannot realize the ben-
efits of cSamp in practice today because of its reliance on
OD-pair identifiers; it requires modifications to packet head-
ers and imposes additional overhead at ingress routers, and
may require ISPs to overhaul their routing infrastructure.

This paper was motivated by the challenge of providing
the benefits of cSamp without relying on OD-pair identi-
fiers. To address this, we presented cSamp-T, in which the
sampling decisions at routers are based only on local infor-
mation, and do not rely on global OD-pair identifiers.

We show that obtaining exact solutions to the maximize
the total flow coverage (ftot ) and minimum fractional cov-
erage (fmin ) is NP-hard. We achieve near-optimal perfor-
mance forftot by leveraging its submodularity. Forfmin ,
getting good performance without resource augmentation is
provably hard. However, targeted provisioning achieves near
ideal performance with low overhead. Alternatively, upgrad-
ing a small number of border routers to provide OD-pair in-
formation also yields good results.

cSamp-T thus makes the benefits of coordinated network-
wide monitoring solutions like cSamp practically and more
immediately available to ISPs and also provides an incre-
mental deployment path for ISPs to transition to cSamp.
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APPENDIX

A. NP-HARDNESS
First, we show that the decision version of theftot cSamp-

T problem withδ = 1 is NP-hard via a reduction from 3-
SAT. Then, we extend the result and show theδ < 1 case is
at least as hard as theδ = 1 case.
Hardness for δ = 1: Let the variables in the 3-SAT prob-
lem be denoted byx1, . . . , xN and the clauses denoted by
C1, . . . , CM . Given an instance of a 3-SAT problem, we
construct a cSamp-T problem as follows.

The set of routers isX∪T∪F∪D, whereX = {X1, . . . , XN },
T = {T1, . . . , TN}, F = {F1, . . . , FN }, andD = {D1, . . . , DN }.
Edges in the graph are{〈Tj , Xj〉}∪{〈Fj , Xj〉}∪{〈Xj , Dj〉}∪
{〈Dj , Tj′}|j′ > j} ∪ {〈Dj, Fj′}|j′ > j}.

A SamplingSpecak can be one of〈Tj , Xj , Dj〉, 〈Fj , Xj, Dj〉,
〈Xj , Dj , Tj′〉, and〈Xj , Dj , Fj′〉. There is exactly one Sam-
plingAtom gk1 for eachak and is equal to〈ak, [0, 1]〉. The

11



F

j j

Tk

Fk

k k

l

l

Flj

TTj

X XDD X

Figure 11: Example showing the path corresponding to
the clauseCi = (xj ∨ xk ∨ xl)

budget constraints forD, F , andT nodes is zero. The only
non-zero budgets are on theX nodes andBudget(Xj) is
equal tomax(#clauses withxj , #clauses withxj).

For each clause, we construct a OD-pair/pathPi as fol-
lows. Without loss of generality, let us assume that the clauses
appear in sorted order of the variable indices. If the literal xj

appears in the clause, there is a sequence of vertices of the
form Tj , Xj , Dj in the path. If the literalxj appears in the
clause, there is a sequence of vertices of the formFj , Xj, Dj

in the path.Pi has edges fromDj to the adjacent (in sorted
order of indices) variable’sTj′ or Fj′ depending on whether
xj′ appears in positive or negative form in the clause. Each
path has unit traffic, i.e.∀i,Ti = 1.
Example: If Ci = (xj ∨ xk ∨ xl), we create a pathPi =
(Tj , Xj , Dj, Fk, Dk, Tl, Xl) as shown in Fig. 11.
Claim: Checking ifftot = M on the above cSamp-T prob-
lem is equivalent to solving the 3-SAT instance.

By construction, the only non-trivial SamplingAtoms are
of the form 〈〈Tj , Xj, Dj〉, [0, 1]〉 or 〈〈Fj , Xj , Dj〉, [0, 1]〉.
Note that they specify all-or-nothing responsibilities. Due
to the way the budgets are defined, for eachXj exactly one
of 〈Tj , Xj , Dj, [0, 1]〉 or 〈Fj , Xj , Dj , [0, 1]〉 is “active”—in
effect this corresponds to setting the variablexj to be true
or false. Hence,Pi has unit coverage in the solution of the
cSamp-T instance if and only if there is at least one satis-
fied literal in clauseCi. Thus, checking if there is a sat-
isfying assignment or not for the 3-SAT formula is equiva-
lent to checking if the coverageftot = M or ftot < M .
(In fact, it is also equivalent to checking iffmin = 1 or
fmin = 0.) This proves the hardness for both cSamp-T prob-
lems of maximizingftot andfmin with δ = 1.
Hardness with finer discretization: Given integerd ≥ 1,
the hardness for theδ = 1/d < 1 case follows from a reduc-
tion from theδ = 1 problem. Indeed, given an instance of
the cSamp-T decision problem of deciding ifftot = M with
δ = 1, we construct the following instance withδ = 1/d: we
created − 1 “dummy” verticesV1, . . . , Vd−1, and prepend
these vertices to all pathsPi. We set the budgets on the
dummy vertices to be(1/d) × M . For every non-dummy
vertex in theδ = 1 problem, we scale the budgets by a fac-
tor 1/d. By construction,ftot = M on theδ = 1/d problem
if and only if ftot = M on theδ = 1 problem; an analogous
result holds forfmin . Thus, theδ = 1/d problems are at
least as hard as theδ = 1 problems.

B. APPROXIMATION GUARANTEES
Suppose we are given a monotone submodular function

F : U → ℜ with a partitionU = U1 ⊎ U2 ⊎ . . . ⊎ Uk. The
goal is to pick a setS ⊆ U such that|S ∩ Ui| ≤ 1 and
the valueF (S) is maximized. (In other words, we have a
partition matroid onU and want to maximizeF subject to
S being independent in this matroid.) If we greedily pick
elementsei ∈ Ui such thatei α-approximately maximizes
(α ≤ 1) the marginal benefitF ({e1, e2, . . . , ei−1, ei}) −
F ({e1, e2, . . . , ei−1}), then the benefitF ({e1, . . . , ek}) is
at least α

2+α
of the optimal benefit possible [8].

A different setting is whenF : U → ℜ is monotone sub-
modular, we have a “budget”B, and eache ∈ U has “size”
ce: the goal is to pickS ⊆ U with c(S) :=

∑
e∈S ce ≤ B.

Consider two greedy algorithms: (a) the “cost/benefit” algo-
rithm greedily keeps picking an elemente which maximizes
increase inF

ce
and does not violate the budget, and (b) the “bene-

fit” algorithm greedily keeps picking elemente which max-
imizes the increase inF and does not violate the budget.
One can show that the better of these two algorithms gets
benefit at least0.35 times the best possible [35]. In fact, an
algorithm based on partial enumeration [32] gets an optimal
(1 − e−1)-approximation.

We can combine these ideas to solve the problem of “sub-
modular maximization with partition-knapsack constraints”.
Formally, we are given a monotone submodular function
F : V → ℜ, where there is a partitionV = V1⊎V2⊎. . .⊎Vk.
Each elemente ∈ V has a sizece, and each partVi has a bud-
getBi: we want to pick a setS ⊆ V such that ifSi = S∩Vi,
then the knapsack constraint

∑
e∈Si

ce ≤ Bi is satisfied. We
can imagine each valid knapsack of the elements inVi to be
a distinct element of the abstract setUi, andU = ⊎Ui. Then
considering the partsVi one-by-one, and running the better
of the benefit or cost-benefit algorithms on each part, gives
the following result:

THEOREM B.1. The simple greedy algorithm described
above is a 0.35

2+0.35 ≥ 0.148-approximation for the problem
of submodular maximization subject to partition-knapsack
constraints. Using a knapsack algorithm based on partial
enumeration, we can get ae−1

3e−1 ≈ 0.406-approximation.

As always, note that the results areworst-case guarantees:
often these greedy algorithms for submodular maximization
perform much better in practice.

The idea can be extended to the max-min problem. The
algorithm for the max-min problem (subject to a cardinal-
ity constraint) from Krause et al. [21] uses an(1 − e−1) ≈
0.632-approximation algorithm for submodular maximiza-
tion only in a black-box fashion. Hence we can replace that
algorithm by the above algorithm for submodular maximiza-
tion subject to partition-knapsack constraints to get a bicrite-
ria algorithm for the max-min problem that achieves optimal
benefit, but exceeds each budget by a factorO

(
log(

∑
e∈V Fi(v))

)
—

the fact that we are using an approximation guarantee of0.148
instead of0.632 only changes the constants in the big-oh.
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