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Abstract sampling actions of routers in the network. To achieve this
coordination, cSamp assumes that each router can immedi-

Flow monitoring is used for a wide range of network man- ] > ek s s
tately determine the Origin-Destination (OD) pair (i.e.¢th

agement applications. Many such applications require that i
the flow monitoring infrastructure provide high flow cover- ngress and egress router) for each packet it sees. However,
age and be able to support fine-grained network-wide objec-due to pr_actlgal issues such. as multi-exit p.eers.and prefix-
tives. Coordinated Sampling (cSamp) is a recent proposal299regation, interior routers in ISPs cannot identify tfiz O

for improving the flow monitoring capabilities of ISPs to ad- Pair given just the source and destination IP addresses, Thu
dress these demands. In this paper, we address a key deployzS@MP requires: (i) upgrades to border routers to compute
ment impediment for cSamp-like solutions—the requirement the OD-pair identifiers and (ii) modifications to packet head
that each router must determine the Origin-DestinationOD ©rs o carry OD-pair identifiers. These present significant
pair of each packet it sees. We present a new frameworkdeployment barriers for ISPs today. Thus, while cSamp has
called cSamp-T, in which each router works wathly local the potential to substantially improve flow monitoring, its
information Using results from the theory of maximizing Ccurrentform lacks a practical deployment path.
submodular set functions, we show that cSamp-T provides !N this paper, we address the challenge of providing flow
near-ideal performance in maximizing the total flow cover- Monitoring capabilities comparable to cSamp, without+ely
age in the network. Further, with a small amount of tar- N9 0N OD-pair identifiers. We present an architecture dalle
geted provisioning or upgrades to a small number of ingress €S@mp-T, in which each router makes sampling decisions
routers, cSamp-T nearly optimally maximizes the minimum USing only Io_caI information f_rom (u_nmodlﬁed) packet head-
fractional coverage across all OD-pairs. We demonstrate €S @nd routing tables, but still provides performance @mp
these results on a range of real topologies. cSamp-T thug'@ble to cSamp. , _ »

makes the benefits of coordinated network-wide monitoring A" immediate concern in cSamp-T is that the efficient al-

immediately available to ISPs and also provides an incre- 9°ithms used in cSamp to compute sampling strategies for
mental deployment path for such solutions. maximizing the total flow coverage and minimum fractional

coverage across all OD-pairs no longer apply. In fact, we
show that these problems are NP-hard in the cSamp-T case.
1. INTRODUCTION Consequently, a central challenge we address in this paper
Flow monitoring supports critical network management is to develop efficient algorithms for computing sampling
tasks such as anomaly detection [23], identifying unwanted strategies to (approximately) optimize these measures.
application traffic [9], understanding traffic structures[3 To maximize the total number of unique flows logged, we
botnet analysis [26], and forensic analysis [37], in additi  use the insight that the objective functiorsisomodulaand
to traditional traffic engineering and accounting [11]. $&e  obtain near-optimal performance by extending results from

applications require that monitoring infrastructuresvie the theory of optimizing submodular functions subject to
high flow coverage (number of flows logged) and the ability budget constraints [14, 24, 21]. In particular, submodtylar
to achieve network-wide flow measurement goals. implies that we can implement efficient greedy algorithms

To meet these demands, recent proposals articulate thewith good approximation guarantees.
case for network-wide rather than router-centric appreach The minimum fractional coverage objective (i.e., the min-
for flow monitoring [7, 15, 33]. We use one such pro- imum across all OD-pairs of the fraction of flows logged per
posal, Coordinated Sampling (cSamp) [33], as our starting OD-pair) is not submodular, and the greedy algorithm per-
point in this paper. We choose cSamp because compared tdorms poorly in theory [21] and practice. In this case, we
current solutions, it provides higher flow coverage, ackgev ~ present two practical strategies to improve the perforrmanc
fine-grained network-wide flow coverage goals, efficiently (a) augmenting targeted routers with more resources and (b)
leverages available monitoring capacity on routers and min incrementally upgrading border routers with the functiena
imizes redundant measurements, and naturally load balanceity to compute OD-pair identifiers and add them to packet
responsibilities to avoid monitoring hotspots.

The key to these benefits is that cSamp coordinates the'cSamp-T denotes cSamp minus Tags for OD-pairs




headers. We show that a few such router upgrades signifi- cSamp assigns sampling responsibilitieshash-ranges
cantly boosts the minimum fractional coverage. per OD-pair per router These configurations are called
cSamp-T thus makes the benefits of network-wide mon- sampling manifesigshe manifest for each router is a set of
itoring solutions such as cSamp immediately available to entries of the forr{OD, [start, end]), where[start, end] C
ISPs by relaxing the dependence on OD-pair identifiers. It [0,1] denotes a hash range. The key idea is that all routers
also provides an incremental deployment path for ISPs to are bootstrapped with the same hash function but are as-
transition to cSamp-like solutions while providing perfor signednon-overlappindhash ranges per OD-pair. This co-
mance comparable to the ideal case under partial deploy-ordinates the routers to ensure efficient non-redundant mon
ment. We also believe that the algorithms and heuristics weitoring. Since the sets of flows sampled by different routers
develop (e.g., applying results from the theory of submodu- do not overlap, the flow coverage for an OD-pair is simply
lar set maximization, intelligent resource provisionihg; the sum of the per OD-pair per-router flow coverages across
brid cSamp and cSamp-T deployment) can be more broadlyrouters on that OD-pair’s path(s).
applied to other network management problems (e.g., [4]). Each router's sampling algorithm is as follows. For each
packet, the router determines the OD-pair from the packet
2. BACKGROUND AND MOTIVATION header. Next, it computes theadH of the flow 5-tuplesr-
clP, dstIP, srcport, dstport, protowvhich returns a value in
[0, 1], and checks if the hash value lies in the range assigned
to it for the OD-pair. Each router maintainsFdowtable of
the flows it logs. If the packet is selected, the router either
2.1 Why cSamp? creates a new flow entry or updates counters for the corre-
o _ sponding flow in theFlowtable.
Flow mo_nltor!ng is _crumal for several network_ manage- Next, we discuss how the sampling manifests are gener-
me_nt funct.|0n.s including several anomaly detection and S€- ated by the network-wide optimization framework.
curity applications (e.g., [23, 9, 39, 36, 37, 26]), and 8@t
of applications continues to grow. Synthesizing arguments Optimization Framework: The inputs to the optimization
from several previous papers [17, 22, 7, 31, 15, 29, 10], we module are the flow-level traffic matrix (number of flows per

identify some key requirements to address these demands: OD-pair), router-level path(s) for each OD-pair, the reseu
constraints of routers, and a ISP objective function exqaes

e Provide high flow coverage, i.e., log as many flows as i terms of the fractional flow coverages per OD-pair. Each
possible, to support security applications which need a op-pair oD, (i = 1, ..., M) is characterized by its router-
fine-grained understanding of “who-talked-to-whom”.  |evel| pathP; and the approximate numb&t of distinct IP-

 Work efficiently within (possibly heterogeneous) router |evel flows on that path in a measurement interval (e.g., five
resource constraints and minimize redundant reports. minutesy? Each routerR; (j = 1,...,N) is constrained

e Satisfy network-wide flow monitoring objectives; e.g., by the available SRAM for keeping per-flow counters [13];
specify some subsets of traffic as more important than L; denotes the number of flon®; can record in a given
others or ensure fairness across different subsets. measurement interval.

e Support a broad spectrum of monitoring applications. d;; denotes the fraction of flows aPD; that routerR;

logs. (If R; does not lie on pattP;, then the variablel;;

Extending observations from the above body of work, thesewill not appear in the formulation.) Far= 1,..., M, let

lead to three natural design choices in cSamp [33]: (1) us- C; denote the fraction of flows 0@D; that is logged.

ing flow sampling instead of packet sampling to avoid the  The specific goal in [33] has two steps. First, we find the
bias of packet sampling against small flows [17]; (2) coordi- largest possible minimum fractional coverage per OD-pair
nating routers to avoid redundant sampling and to use routermin;{ C;} subject to the resource constraints. Next, we use
resources efficiently [29]; and (3) a network-wide optimiza this asf in Eq 3 in the linear program shown below and
tion framework for assigning monitoring responsibilities maximize the total flow coverage,(T; x Cj).

In this section, we provide a brief overview of cSamp and
also explain a key challenge that makes it impractical for
ISPs to deploy cSamp-like solutions today.

routers to meet an ISP’s objectives [15]. MaximizeX",(T; x C;), subject to
2.2 Overview of cSamp Vi, Yirsep, (dij x Ti) < I 1)
The goal of cSamp is to assign sampling responsibilities Vi, Ci= Zj;RjGPi dij 2)
to routers in a coordinated manner to optimize network-wide Vi, 0<C <1 (3)
flow monitoring objectives. Network operators typicallyesp Vi, Vi, di; >0
) 9 1]

ify network-wide goals in terms dDrigin-Destination (OD)

pairs, identified by the ingress and egress routers. Thus, The solutiond* = {d;} to this two-step procedure yields
the netyvork-W|de flowl monitoring objective is expresged aS 2 assume that each OD-pair has a single routing path. It is
a function of the fractional flow coverages (i.e., fractidn 0  easy to extend the framework to accommodate multi-pattingut
flows logged) of each OD-pair. or route changes [33].




Four OD-pairs: P1:I11-El , P2: [1-E2, P3: 12-El, P4: 12-E2
With OD-pair identifiers

the optimal sampling strategy. This solution is then trans-
lated into sampling manifests specifying the flow monitgrin
responsibility for each router.

Coverage
P1:02+03=0.5
P2:03+03=06

P3:0.1+04=05

B1.1002] P1,[0.2,0.5] P3,[0.1,0.3 ba 0.5

P2, [0,0.3] P2,[0.3.0.6] P4,[0,0.5]
P3,[0.0.1]

2.3 Assumptions in cSamp

There are three main assumptions: (i) a centralized op-
timization module which has routing and traffic matrices,
(ii) routers implement hash-based flow sampling, and (iii)
routers obtain OD-pair information from packet headers.

The first two assumptions are feasible within current op-
erational realities. First, centralization is viable iethon- ~ Figure 1: Example to show the intuition behind cSamp-T
figurations are generated reasonably quickly, say 1-2 min-gqr example, in the case of traffic entering from a multi-
utes. Recent trends show that ISPs favor centralized net-gyt peer (i.e., a neighboring AS with which an ISP peers
work management [6, 2] and that routing and traffic matri- o mytiple peering points), source IP address and routing
ces are readily available [1, 38]. Second, the requirementsi,pe information cannot determine the ingress from which
of hash functions for flow sampling are simple [10] and they 6 nacket arrived. Resolving the egress is relativelyeeasi
are amenable to fast hardware implementations [27]. Flow ecqse forwarding is destination-based. With MPLS, the
sampling requires lookups for each packet and is feasible if egress can be resolved exactly; with IP the egress can be re-

the Flowtable is in fast SRAM. Prior work shows that main-  gqyed within some ambiguity. In IP forwarding, ingressées
taining such counters is feasible [13, 19]. ~ resolution may also be additionally complicated if interio
The assumption that routers can obtain OD-pair identifiers . ters only see aggregated prefix information.

is crucial to cSamp’s design. Specifically, Eq 2 implicitsa Due to the above challenges, cSamp assumes that ingress
sumes that the hash-ranges assigned to different routers fo,q ters explicitly add OD-pair identifiers to packet header

the same OD-pair are non-overlapping. This requires that o vever, this leads to a key deployment hurdle—it imposes
the hash ranges be specified per OD-pair per router, which is, qitional effort on border routers (e.g., replicating thet-
not possible if routers cannot determine the OD-pair. I fac g |ogic to resolve the egress router) and requires modifica

this non-overlapping property makes the optimization prob s 1o packet headers to carry OD-pair identifiers.
lem a tractable linear program (since the coverage per OD-

pair is thesumacross the routers), which can be solved effi- 2.5 Motivating question
ciently. If OD-pair identifiers were not available, this wdu The above challenges in OD-pair identification bring us

no longer hold. As we argue next, this assumption is not 1, the motivating question for our worican we provide the
practical for ISPs today. flow coverage benefits of cSamp without requiring OD-pair
2.4 Challenges in OD-pair identification identifiers?In the next sections, we describe our approach,

_ = _ _ cSamp-T, to addresses this challenge.
Given no additional information, a router needs to deter-

mine the ingress and egress routers (i.e., the OD-pair) for3. PROBLEM STATEMENT
a given packet using only the packet's source and destina-
tion IP addresses and its local routing table. The feasibil-

ity of doing this depends on whether the ISP uses IP-based . - .

or MPLS-based forwarding. While IP forwarding is purely glpbal OD-_pa|r |der_1t|f|ers. Since each router operat(_as only
destination-based, MPLS can also take into account sourceW'.th Iocal“lnformat!,o n, the coverage of an OD.' pair is ob-
information. However, we are unaware of deployments con- tained by "stitching” together the coverage provided byneac
figured in this way, and we have confirmed that a large tier- router on the path.

one ISP’s deployment of MPLS, for example, does not [3]. Consider ;[jhf: géample Fl’nl Fl:l)%ur_?hl tW'thh 2|f|nrg];resses gnd
As such, here we restrict our attention to destination-tbase egressesan -pars FL=F4. Thetop hall Shows a csamp

MPLS forwarding, which we believe to be the norm. Ta- configuration; each router's sampling re:sponsibilitiﬁmsh-
ble 1 summarizes the feasibility of resolving the ingress an ranges per OD-paiand for each OD-pair the ranges on the

egress in these two scenarios. routers on its path are non-overlapp_mg.
The bottom half shows a scenario where routers cannot

‘Without OD-pair identifiers; Use only local information

<RI.R2.R3>.10.1.02] [0.0.2]U[0.1,0.2]U[0.1,0.3] = 0.3

P2: [0,0.2]U[0.1.0.2]U[0.1,0.2] = 0.2
P3: [0,0.1]U[0.1.0.2]U[0.1,0.3] = 0.3
P4: [0,0.1]U[0.1,0.2]U[0.1,0.2] = 0.2

Pl

<11.R1.R2>, [0,0.2] <R2.R3.E1>,[0.1.03
<I2,R1,R2>, [0,0.1] <R2,R3.E2>, [0.1.0.2]

The main idea in cSamp-T is that each router makes sam-
pling decisions using onlipcal informationrather than the

Information to Routing/Forwarding obtain OD-pairs and each router is assigneaaah-range
resolve IP (dest-based) | MPLS (dest-based) per router 3-tupleconsisting of the previous hop, current

Ingress router Difficult Difficult

Egress router| Maybe, with some ambiguit Possible router, and the next hop. Note that for each packet, a router

can determine the 3-tuple using only local information: the
interface the packet arrived on, the destination IP, and the
forwarding table, and then decide whether or not to sample
In both cases, resolving the ingress is nearly impossible. the flow/packet. The coverage for each OD-pair isth®sn

Table 1: Feasibility of resolving ingress and egress
routers using packet headers and local routing tables.



of the ranges assigned for each 3-tuple on the path.

The example highlights two differences between cSamp-T
and cSamp. First, the sampling responsibilities are spécifi
using local information rather than global OD-pair identi-

fiers. Second, the coverage for each OD-pair is no longer

""""" SamplingSpecs ~ SamplingAtoms "7
R1,R3,R4> — <RLR3,R4>,[0,0.25]
SRLRSRAY — R1R3R4>. [0.75.1]
<R2,R3,R4> —= <R2,R3,R4>, [0,0.25]
1 <R1,R3,R2><R4,R3,R1>__ O |
| <R4,R3,R2><R2,R3,R1>

the sum across the routers on the path; it is the union of theFigure 2: Example showing the SamplingSpecs and as-

ranges assigned to the routers on the path.

signed SamplingAtoms at router R3.

Now, how do we assign sampling responsibilities in cSamp-

T to maximize network-wide flow coverage objectives while
respecting each router’s resource constraints? The fwitpw
sections present a formal framework to address this.

3.1 Problem Formulation

We borrow two assumptions from cSamp: (a) a central-
ized module with access to routing and traffic matrices as-
signs sampling responsibilities and (b) routers implement
hash-based flow sampling using SRAM counters and SRAM
size constrains the number of flows a router can log. As dis-

cussed earlier, both are reasonable assumptions. Next, wé"
discuss how a centralized module can assign sampling re-

sponsibilities without OD-pair identifiers.

We introduce the notion of 8amplingSpeto capture the
granularity at which a router makes sampling decisions. For
the current discussion, the SamplingSpecs are threestuple
of router identifier§ R;,, R;,, R;,) that appear contiguously
on some path in the network; i.e€?;, andR;, are neighbors
of R;,. Let a;, denote a generic SamplingSpec.

ar € P; denotes that the SamplingSpeg lies on the
path P; for OD;.2 For example, if the patt®; uses routers
-, R, Rj,, Rj,,--- inthat order, then the SamplingSpec
a = (R;,,R;,,Rj;) € P;. This is a natural extension
to the notion that a routeR; lies on a pathP;. We use
th = Y iacp, 1i to denote the total traffic that traverses

ai. SamplingSpecs are mapped to routers in a many-to-one

fashion; we denote the set of SamplingSpecs mappéd to
by R;.specs. That is,R; can be assigned sampling responsi-
bilities corresponding ta;, € R;.specs. In the 3-tuple case,

if ar, = (Rj,, Rj,, Rj,), thena, € R;, .specs.

If R;j.specs > ai, thenR; can log some of the traffic
on pathsP;, > ;. But what fraction should it log? We
formalize this by creating a set &amplingAtors. Sup-
pose the traffic traversing; is mapped to the unit inter-
val [0, 1] by hashing and that the interviil, 1] is divided
into £+ equal-sized intervals, [(I — 1)0,10], of length
d. A SamplingAtom is a paifay, Iy). If a SamplingAtom,
gkt = (ak, ), a € Rj.specs, is assignedthen routerR;
will log the flows that traverse;, such that the hash of the
flow falls in ;. We useh(gx;) as a synonym foh;.

ExXAMPLE: Figure 2 illustrates the above definitions with
an example, wheré = 0.25. R3 has three SamplingSpecs
in the forward direction (and three similar SamplingSpecs
in the reverse direction):R1, R3, R4), (R1,R3, R2) and
(R2,R3,R4). R3is assigned three SamplingAtoms, two

3Since this notion of “lies on the path” is quite general, opf a
proach works even in the case of multi-path routing.

for(R1,R3, R4), onefor(R2, R3, R4), and nonefofR1,
R3, R2). Consider paths of the forfh., R1,R3, R4, ..}
(there may be many such path&3 will log all flows along
these paths whose hashes fall either in the rdtde25] or
[0.75,1], and flows on paths of the forfn., R2, R3, R4, ..}
such that the hash of the flow falls in the rarjgg.25].

Measures of GoodnessGiven a set of assigned Samplin-
gAtoms,{gx; }, we can compute thigactional coveragdor
eachOD;. The coverage due to one particular SamplingSpec
x € P;isU; h(gr) C [0, 1], and hence

coverageC; = |U,, cp, U, h(Gr)| (4)

Here, given an intervab C [0, 1], we use|S| to denote
the fraction of the unit interval covered by this subset.éNot
that the coverage for a path is thmion of the assigned
hash-ranges across all the constituent SamplingSpecs — if
the samehash-range is assigned to several SamplingSpecs
along a path, then the same set of flows gets sampled and we
do not get any extra coverage.

Themonitoring loadon a router is given by adding, over
all SamplingSpecs;, € R;.specs, the portion of the traffic
througha,, that R; logs:

LOCLdj = ZakeRj.specs tk X |Ul h(g.k\l” (5)

Given the(;s, the specific functions we are interested in
optimizing are thetotal traffic coveragef,: = >, T: G,

and theminimum fractional coveragg,.;, = min; C;. For-
mally, the goal of our algorithms is to obtain the set of as-
signed SamplingAtom&gy; + such that we maximizg;,; or
fmin, While operating within the router resource constraints
(i.e., Load; < L; for all j). We choose these specific objec-
tive functions because of their use in cSamp [33]; our frame-
work can accommodate a wider range of objective functions
expressed as combinations of tgvalues.

The maximization problem: We can rewrite the above max-
imization problems as follows. Consider a “ground sgt”
which contains as its elements all possible SamplingAtoms:
i.e.,V = {{a, i) for all possible SamplingSpeas and all

% hash-ranged,}. Suppose a subsstC V of these Sam-
plingAtoms are chosen and assigned to their corresponding
routers. These give us the fractional coverages defined)by (4
and router loads given by (5). Now,; or f.., can be
viewed as functions from subsetsifo the reals. The prob-
lem is to select aonptimal S* C V, i.e., that maximizeg,,

Of frin, Subject toLoad; < Lj;.

3.2 Exact Solutions are Hard



Finding an optimalS* to maximizef;; Or fin Subject ~ SUBMODULARGREEDY(F,V, cbflag, B)
to the load constraints on routers is NP-hard. Appendix A // F:2Y — % submodularp is total budget
demonstrates the hardness via a reduction from 3-SAT. More- //if cbflag ist r ue use benefit/cost instead of benefit
over, itis infeasible for practical system sizes. For examp 4 S 0
consider the problem as an integer linear programming for- 2 while @s € V\ S:¢(SU{s}) < B)do
mulation using{0, 1} indicator variables for each; to de- 3 for s € V\ S do -
note whether it is “assigned” or not. Even on the Internet2 , norm «— ((cbflag = true) ? ¢(s) : 1)
topology with just 11 routers, the commercial sol@RLEX F(SU{s})—F(S)
did not converge after a day. Because of the intractability Vs
of solving the problem exactly, we use approximation al-
gorithms. However, as we will see, the performance of our
algorithms is comparable to the ideal performance of cSamp.

8% — argma;lco.:g,\ qUs
7 S — SuU{s*}
8 return(S, F(S))

Figure 3: Basic greedy algorithm
4. SUBMODULARITYANDALGORITHMS GREEDYMAXM|N(F1,...,FM,G,V7B7’7)

In the previous section, we saw that obtaining exact so-  // Maximizemin,;{ F;}
lutions for maximizing the total coverage or the minimum // Vi, F; :2YV — [0,1] is submodular
fractional coverage in cSamp-T is hard. In this section, we 1 7;,,., « 0; Typper «— 1
show that there are practical approximation algorithms to 2 while (Tupper — Tiower > €) dO

obtain the sampling strategies. The key insight is that the 3 Tourrent Tupper;rfzmr
coverage functions have a natural “submodularity” propert // Define the modified objective function

which allows us to extend results from the theory of maxi- 4 Vi, B = min(F}, 7 2; = > P
o . . ) 1 — 1y fcurren ’ — 7 K2
mizing submodular set functions. .

4.1 Submodularity

// Run greedy without budget constraints

5 Buysed — SUBMODULARGREEDY(F, V, true, o)

6 if MAXUSAGE(Bysed, B) > v

Definition: A function F : 2¥ — % mapping subsets ofa 7 then Tupper < Teurrent

ground se® to the reals isubmodulaif for all sets S C 8 elseTiower < Teurrent

S’ C VY, all elements €V, 9 Returnmiower

F(SU{s}) = F(S) > F(S' U {s}) — F(5") Figure 4: _Maximizing the minimum of a set of submod-
ular functions with resource augmentation

i.e.,the marginal benefit obtained from addisdo a larger L ) o
set is smalle14]. This captures the intuitive property of Budget constraints in cSamp-T:The budget constraints in
diminishing returns. The functiof is monotone (nonde- ~ ¢Samp-T come from the bounds on router load. To model

creasing)if VS C S, F(S) < F(S'). router load, we neeq a knapsack_constraﬁmdj < L;j for

each route?;. A naive approach is to consider the cSamp-
Submodular set maximization: The goal is to pick a sub- T problem as a submodular set maximization problem with
setS C V maximizing F(S). What makes this problem  multiple knapsack constraints. This naive approach yields
hard is that we also have a budget constraint of the form a O(N) approximation, whereV is the number of routers.
¢(S) < B; i.e., given costsy(s) for all s € V, the total  This is clearly undesirable, especially for large networks
coste(S) := 3, g c(s) of elements picked in set cannot  However, these budget constraints have a special structure
exceed the budget. This submodular maximization prob-  Specifically, since each SamplingAtom contributes to the
lem is NP-hard [14], but good approximation guarantees are joad on exactly one router, this results in a collection of
known. In particular, the algorithm specified in Figure 3 ei- non-overlappingknapsack constraints. We call the result-
ther greedily picks elements that give the greatest malrgina ing problemsubmodular function maximization subject to
benefit and do not violate the budget constraints, or grgedil partition-knapsack constraintsvhere each partition corre-
picks the elements that give the maximum marginal benefit sponds to a different router, and the knapsack constraint is
per unit element-cogtlepending on whethetflag is setto the load constraint for that router. In Appendix B, we prove
true or false), as long as the budget is not violated. The bet-that a modified greedy algorithm—an extension of Figure 3—
ter of these two settings is a constant factor approximation gives a constant-factor approximation.

Igorithm [35]. o .
algorithm [35] Maximizing f;,;: To match the theoretical guarantees [35]

4.2 Application to cSamp-T (see Appendix B), we run two separate invocations of the
greedy algorithm—with and without the benefit-cost flag set
to true, and return the solution with better performance. In
practice, both have similar performangé.(l).

It is easy to check the coveragé€s viewed as functions
from 2¥ — R whereV = SamplingAtoms are mono-
tone submodular, and hence so is their weighted gym=
> TiCi. Maximizing f»: To maximizef,,;,, we need to go from



one submodular functiof’ to many submodular functions  granularity), or more fine-grained (e.g., add egress inform
Iy, Fs, ..., Fyy—in our case, these are the fractional cov- tion to the 3-tuple if available).

eragesCt, ..., Cy. The problem is now to picks C V

to maximize F™*(S) = min; F;(S), the minimumacross
these different functions. This new functidi™® is not
submodular; indeed, obtaining any non-trivial approxima-
tion guarantee for this max-min optimization problem is NP-
hard [21]. However, we can give an algorithm to maxi- ; : : .
mize ™" when we are allowed to exceed the budget con- tlon._ In our evaluf'mons, we fix = 0.02.smce we f_|nd
straint by some factor [21]. Formally, §* is an optimal that it works well in practice. Secondé instead iofdls-

set satisfying the budget constraints, the algorithm in Fig joint intervals, we can also consider thé hash-ranges of
ure 4 finds a seS with F™in(S) > Fmin(S§*) — ¢ put the form[md, (m + n)d] to make assignments as contiguous
which exceeds the budget constraints by a factor, efhere as possible. This increases the computation time quadrati-
v = O(log(% Soev Fi(v))). cally without providing any additional coverage benefite W
avoid this overhead and instead run a simple merge proce-
dure §6.3) to compress the sampling manifests.

Effects of Discretization: §3 defined a discretization inter-
val § such thatgy, = (ax,[(l — 1)6,18]), 1 € {1,...,3}.
There are two practical issues here. First, we can make the
width § arbitrarily small; there is a tradeoff between po-
tentially better coverage vs. the time to compute the solu-

The key idea is this: the modified objective functibp =
Zf” min(F}, 7) is submodular. For any, £ has the prop-
erty that its maximum value i3/ x 7 and at this maximum
valueVi, F; > 7. Running the greedy algorithm assuming 5. HEURISTIC EXTENSIONS
no resource constraints always gives a set such thatth@actu  While the theoretical guarantee fg,; is encouraging,

resource usage at routgy is at mosty x Load;. Notice that  the result forf,,,, requires fairly high resource augmenta-
this holds for all7, and in particular, for the optimal value tion values §) to get non-trivial guarantees.

T = F™in(S*). Since the optimat* is not known, the In this section, we describe three practical extensions to
algorithm in Figure 4 uses binary search over improve the performance fgf,,;,.

Router algorithm: Given a solution to the problem of max- 1. Targeted provisioning to use fewer additional resources
imizing f:o¢ OF fmin, €ach router’s sampling algorithm is as 2. Incremental deployment where some ingress routers
follows. The router no longer requires the OD-pair informa- are upgraded to add OD-pair identifiers.

tion for a packet; it gets the SamplingSpec using only the 3. Using alternative objective functions to approximate
packet headers and other local information (e.g., what-inte the max-min property.

face the packet arrives and leaves on). The router is askigne _ o
a set of non-contiguous hash ranges for each SamplingSpedVe present these in the context of tfig;, objective. How-

and samples the packet if the hash of the flow 5-tuple falls in €Ver, the targeted provisioning and partial deploymerit-tec
anyof the ranges for this SamplingSpec. niques can be more generally applied to other network-wide

. objectives where the greedy algorithm performs poorly.
4.3 Practical Issues

5.1 Intelligent Provisioning

The theoretical bound i§4 assumes that each router is
givenyx more resources. However, it is expensive to add
~x more SRAM toall routers. Here, we want to add more
SRAM intelligently—selectively augment some routers and
still get good performance. The insight here is that it may
suffice to upgrade a small number of heavily loaded routers.

Reducing computation time: The computation time of the
algorithm in Figure 3 can be reduced using the insight that
for each element € V, the marginal benefit, obtained by
picking s decreases monotonically across iterations of the
greedy algorithm. Thus, we can ukey evaluation24].

The main intuition behind lazy evaluation is that notll
values need to be recomputed in Figure 3 (Step 5); only a

smaller subset that is likely to affect the choicesbiin Step Prob. provisioning : Maximizemin; C;, subjectto
6 needs to be computed. We omit details for brevity and re- Vi Yt < L 6
fer the reader to [24]. We can replace all instances of the ]’Zk:“’“GRTSPe“ e % e = By ©
procedure call 88BMODULARGREEDY with the lazy evalu- >_; Lj < Budget (7)
ation version.§6.2 shows that this reduces the computation Vj,LB; < L; < UB, (8)
time by more than an order of magnitude. . —

y L . g VZ, Ci = Zk:akGPi Uk (9)
Generalizing SamplingSpecs:We assumed that the Sam- Yk, up > 0:Vi, C; < 1 (10)

plingSpecs are defined in terms of router three-tuples. Note

however, that our algorithms are generic and do not depend To address this, we consider the following provisioning
on SamplingSpecs being router three-tuples. Thus, we canproblem. The operator gives a memory bud@etiget to
generalize our results to other notions of SamplingSpecs.be distributed across routers defined by her monetary budget
For example, the SamplingSpecs can be made coarser (e.gand SRAM cost. Each routét; has a lower bound B ; for
ignore previous/next hop information and operate at a route the default memory configuration and an upper bouis);



on the maximum amount that can be provisiofidthe out-
put of the provisioning problem is the allocation of res@src
to routers to optimizé ;..

However, it is difficult to model the coverage per OD-

pair achieved by the greedy algorithm. Thus, we make a

simplifying assumption that the hash ranges (theralues)

the total resource used across the routers to ensure that eac
OD; € P, hasC; > 0 = Teyrrent- Solving the LP returns
the resources allotted to each router or returns an infieasib
status if there is no feasible solution.

If the LP is infeasible, then we directly proceed to the next
iteration of the binary search. If the LP is feasible, then we

across the different SamplingSpecs on a given path are non-obtain the new budget per router by subtracting the resesurce

overlapping. This allows us to modél; as the sum of the

used in the LP stage from the original budget per router.

uxS in Eq 9. Under this assumption, the provisioning prob- Next, we run the greedy algorithm with the reduced budget
lem can be solved as a linear program. While this is less and modified objective specified over the non-enabled OD-
optimal compared to faithfully modeling th€;s, this is a pairs. By construction, the maximum valéecan take is
reasonable assumption since our goal is to obtain genera M — |P.|) X Teurrent WhereM is the number of OD-pairs
guidelines for resource provisioning. As we will seg4, and|P.| is the number of enabled OD-pairs. This maximum
this heuristic works well in practice. value is achieved if and only if each non-enabled OD-pairs
Given the memory allocations given by solving the LP, we in the setP \ P. achieves a fractional coverage equal to
run the greedy algorithm in Figure 4 with = 1 to ensure Teurrent- |f the greedy algorithm achieves this value, then
that we are strictly within the resource constraints. Teurrent 1S fE@@sible and we try a higher value in the next iter-
5.2 Partial OD-pair identification ation; else we try a lower value in the next iteration.
Next, we consider a scenario in which the network oper- 5.3 Using thea-fair function
ator can upgrade some border routers. This can be achieved r s gifficult to optimize because the max-min func-

using a software update to the router or by adding a simple ion, js not submodular. A natural heuristic is to design a
two-port middlebox [18] that processes each packet, modi- fynction other than max-min that is submodular but (approx-
fies the header, and forwards them to the router. These feWimater) provides the desired max-min property, and then
upgraded nodes (routers or router plus middlebox) have the;se §EMODULARGREEDY to optimize this new function.
ability to determine and add OD-pair identifiers to packet  The notion ofa-fairness has been used in congestion con-
headers. We assume that all routers run both cSamp angyo| [25] to generalize and approximate max-min fair alloca
cSamp-T sampling algorithms—i.e., a router logs a flow if tjon. Given itemsr;, we want to allocate a given resource
the flow's hash falls in a hash-range correspongéitigerto to the items “fairly”. Thea-fairness function is defined as
the OD-pair or the SamplingSpec for the packet. S, U(as), whereU(z) = 2" 5 . can take values in

Y
Prob. enabledODs(0, P.): Minimize ZLj, subject to

[0,00), and the valuesx = 0 anda — oo correspond to
; maximum throughput and max-min fairness respectively.
In our context, each:; corresponds ta’;. It is easy to

Vi, ‘ Z (dij x Ti) < L (11) verify that the functiory _, U(C;) is submodular and we can
1€ Ry P use the greedy algorithm (Figure 3) to optimize this functio
Vi € P, C; = Z dij (12) We usea = 100 and also add a small constant to eagh
JiR;EP; sinceU (z) is undefined when: = 0. Note that while the
Vi€ Pe,0< C<1;Vi€Pe, Vj, dij >0 (13) two previous heuristics can be extended to other objectives

the a-fair heuristic is specific to maximizing,,,,, .

Let P. be the set of “enabled” OD-pairs whose packets
carry OD-pair identifiers and 162 be the set of all OD-pairs.
As in Figure 4, we compute the maximum achievable min- 6. EVALUATION
imum fractional coverage using binary search over the pa-
rameterr. The key difference in the new algorithm is that Setup: We evaluate the performance of cSamp-T at a PoP-
each iteration of the binary search has two logical steps. Inlevel granularity with each PoP as a node in the network. We
the first Step, we solve a CSamp-sty|e linear program over theuse PoP-level tOpOlOgies of educational backbones and tier
enabled OD-pairs. In the second step, we define the capped ISPs [30] (Table 2). We use shortest-path routing to con-
functions C; (1) min;(C;, 7) for the non-enabled OD-  struct paths between every OD-pair and model the traffic ma-

pairs and use the greedy algorithm to maximize- 3", C;. trix using a gravity model based on city populations [29]. We
In each iteration, for the current valu, .., the first ~ assume that each PoP can lbg= 400, 000 flow records’

step involves solving the LPnabledODs. The inputto the ~ FOr cSamp-T, we discretize the hash-range With 0.02.

LP is the set of enabled OD-paif& and the target cover-

ageld = Teurent- The objective of the LP is to minimize

SAt o = 1, the function iU (z) = log(z)

5Assuming 12 bytes per flow record [33], this translates into
400,000 x 12 = 4.8 MB of SRAM per PoP, which is well within
the 8 MB technology limit per linecard suggested by Vargljgdg

“There are natural technological limits on the amount of fast
SRAM that can be added to linecards [34].



Topology (AS#) | PoPs | OD-pairs | Flows | Packets
%106 %106

NTT (2914) 70 4900 51 204

Level3 (3356) 63 3969 46 196

Sprint (1239) 52 2704 37 148

Telstra (1221) 44 1936 32 128 £

Tiscali (3257) 41 1681 32 218

GEANT 22 484 16 64

Internet2 11 121 8 32 or g

Table 2: Parameters for the experiments T eote st T e anenaintoor

(a) Tuple (b) Router
Figure 6: Normalized minimum fractional coverage of
o cSamp-T with resource augmentation

0.7

06

o
o

| Figure 6 shows the result for the router and tuple granular-
I “ ] ities. The tuple+egress was almostidentical to the tugge;ca

IR
S

o
W

we do not show this for brevity. First, with > 4, cSamp-
T achieves> 50% of cSamp for all topologies. Second, the
] difference between the router and tuple formulations issmor
i I pronounced in the minimum fractional coverage result. With
Topoiogy router-level SamplingSpecs, evermat= 5, four out of the
Figure 5: Total flow coverage seven topologies only reach 40% of cSamp’s performance.
6.1 Coverage and Overlap For the same; = 5 using the 3-tuple Sam?lingSpecs, five
out seven topologies achiexe90% of cSamp’s performance.
Total flow coverage:We consider three granularities of Sam- pjgg, they at which cSamp-T has good performance is much
plingSpecs: router, router 3-tuple, and router 3-tuple-aug petter than the theoretical boundg#. §6.4 shows that tar-
mented with egress information. Note that the first two Sam- geted provisioning reduces this even further.
plingSpecs can always be inferred from just local informa- — since 3-tuple SamplingSpecs perform much better than
tion but there may be some residual ambiguity in resolving router SamplingSpecs, and are also very close to the tu-
the egress (Table 1). We consider the tuple+egress Sampje+egress case, we focus on 3-tuples in the rest of the.paper
plingSpec as a hypothetical point in the solution space to pypjicated flow reports: A secondary objective in cSamp
see the gap between it and the other purely local solutions.s avoiding duplicated flow reports to reduce the overhead in
We also compare these solutions to cSamp and a maximakyrocessing duplicated measurements. Uncoordinated sam-
uncoordinated flow sampling solution [33]. ~ pling can have> 30% duplicated reports expressed as a frac-
Figure 5 shows that using 3-tuple SamplingSpecs providestion of unique flows logged. Compared to the uncoordinated
significantimprovement (25-30%) over the router-levebcas  ¢ase, cSamp-T with 3-tuples has 3ewer duplicated flow
cSamp-T (3-tuple+egress) is closest to cSamp, but the gapyeports (not shown). Relative to cSamp which has no dupli-
between the 3-tuple and egress-added cases is small. Alsogate reports, this is not ideal; however, this is unavoieabl

oretical upper bound for cSamp-T. (Not shown due to space

constraints; please see our extended technical reportqe8] 6.2 Algorithm Running Time

additional results). In order for cSamp-T to be responsive to network dynam-
The theoretical guarantee for total flow coverage dependsijcs, we want the time to compute sampling manifests to be
on running the two greedy algorithms: with and without the \yjthin 1-2 minutes. (Manifests are recomputed across mea-
cost-benefit flag. We found that both configurations have syrement epochs that span several minutes.) Table 3 shows
similar performance and that the algorithm with the cost- nat Jazy evaluation provides more than an order of magni-
benefit flagebfiag = false is slightly better [28]. tude reduction in computation time compared to the vanilla
Minimum fractional coverage: §4 showed that it is im-  greedy algorithm. The reduction is more significant for the
possible to maximizef.,.;, without resource augmentation. minimum fractional coverage since it involves multiple in-
Thus, we evaluate the performance as a function of the re-ygcations of the greedy subroutine during the binary search

source augmentation factgr where each router's budgetis  with this reduction, cSamp-T scales to larger topologies.
~ x 400, 000. We normalize the minimum fractional cover-

Fraction of flows covered
°
9

°
[

o

age by the optimal value achieved by cSamp at 1; i.e., 6.3 Size of sampling manifests
if cSamp-T has value.2 aty = 3 and cSar’qu]zas valued Compared to cSamp, cSamp-T increases the size of the
aty = 1, the y-value corresponding to= 3 is g5 = 0.5. sampling manifests because the hash-ranges assignedtfor ea

"In maximal flow sampling, each router maximally utilizes its SamplingSpec need not be contiguous. As discussgt &

memory. A router’s flow sampling rate isin(1, £), wherel is the we use a simple compression procedure to merge hash ranges
number of flows it can log antlis the number of flows it observes.  after the greedy algorithm. This looks for maximally con-



Topology | Total coverage (sec)| Min. Fractional (sec)
Naive Lazy Naive Lazy
NTT 207.12 415 39632 154.1 g g _ _ _ ]
Level3 205.36 3.30 48269 84.3 5.0 s s i
Sprint 75.30 2.21 14211 71.6 i |lze——= = = 11 O .
Telstra 50.53 1.65 6997 45.0 :
Tiscali 35.18 1.16 8518 33.7
GEANT | 3.06 0.28 542 7.6 2 lee—o 2 2 Jee—o T
Internet2 | 0.22 0.05 38.4 1.9 %Eg;ggg T
Table 3: Time to compute sampling strategy comparing T o mgmenion” 7 ronl oo mgmenaton
the vanilla greedy algorithm with lazy evaluation (a) Level3 (b) Telstra
Topology Total (KB) Max. per PoP (KB) Figure 7: Understanding the impact of total resource
Naive | Merged | Naive | Merged augmentation ¢y) and technology upper bound (3) in the

NTT 1785 | 16.3 5.6 1.0 ; ;

Level3 3419 oo 1 33 resource allocation formulation.

Sprint 1409 | 13.0 10.3 0.6

Telstra 112.3 7.2 3.3 0.5

Tiscali 1109 | 126 9.8 0.6

GEANT | 455 6.5 5.6 0.6

Internet2 14.5 5.0 4.5 0.7

Table 4: Size of the sampling manifests (in kilobytes of
text configuration files) with cSamp-T

Normalized minimum coverage
s o o o o o o

tiguous hash ranges in the original sampling manifest and
merges them into a single hash range.

Table 4 shows the overhead of disseminating manifests.
First, we see that the compression procedure reduces theve enable OD-pair identifiers on all OD-pairs having one of
manifests roughly 18. Second, we notice that the total these top-k PoPs as origins. For e&chve run the two-step

B 25 E] ES &
Technology constraint factor

Figure 8: Intelligent allocation with varying  at y=1.5

bandwidth overhead after compression is small-25KB in the procedure fron$5.2 for all values inl, . . ., k and pick the
worst case. Finally, the worst case per-node manifestsize i configuration with the highegt,,;,.
also smalk 3K B. Figures 9(a) and 9(b) show the normalized minimum frac-

. L tional coverage for the Level3 and Telstra topologies as a

6.4 Intelligent Provisioning function ofk (number of top-k PoPs). First, we observe that
As a specific scenario, we seB; = L = 400, 000 for all upgrading just a small number of PoRs %) significantly

4 in the formulation fromg5.1. We specify the total budget improves the performance. Second, enabling identifiers on

asBudget = vx N x L, whereN is the number of PoPs, and nodes that observe the most traffic performs much better than

the technology limit ag x L. We vary the parametefisand the other two strategies.

(. Figure 7 shows the minimum fractional coverage normal- . .

ized w.r.t cSamp for two topologies, Level3 and Telstra. We 6-6 Usinga-fairness

choose these because the greedy algorithm performs poorly Figure 10 shows the normalized minimum fractional cov-

compared to cSamp in Figure 6. An interesting result is that erage with thex-fairness function with both naive (as in Fig-

the curve levels off as a function of i.e., increasing the to-  ure 6) and intelligent augmentation (as in Figure 8). Foheac

tal budget does not add much benefit. However, increasingresource configuration, we run the greedy algorithm to op-

the technology upper bouritiprovides significant improve-  timize thea-fairness function fron§5.3, find the minimum

ment. In fact, even with a moderate total increase 1.2, fractional coverage in the output of the greedy algorithm,

we see that the performance is within 80% of cSamp. and then normalize it w.r.t cSamp at baseline provisioning.
Sinceg is more crucial to than, for the remaining topolo- ~ Compared to Figures 6 and 8, the overall performance using

gies we fixy = 1.5 and analyze the normalized minimum the«-fairness optimization is slightly better.

fractional coverage as a function ¢fin Figure 8. With . o

3 = 5, all topologies achieve- 60% of cSamp’s perfor- 6.7 Hybrid Coverage Objective

mance. Contrasting this with Figure 6, the main difference  cSamp maximizes a hybrid objective: maximizing the to-

is that we do not require all PoPs to be augmented with  tal flow coverage subject to achieving the highest minimum

more resources — the total resource budget is5 x. fractional coverage across OD pairs. So far, in cSamp-T

. - e - we considered these two objectives separately. A natural

6.5 Partial OD-pair identification guestion is if we can maximize this hybrid objective also
We try three strategies for selecting the enabled OD-pairsin cSamp-T. It is relatively simple to extend the algorithm i

P.: upgrading the top-k PoPs that (a) observe the maximum Figure 4 to achieve this. First, run the greedy algorithm to

amount of traffic, (b) lie on most number of routing paths, or optimize the capped minimum fractional objecti€)(and

(c) originate the most traffic. Here, upgrading implies that then modify the objective function to optimize the total eov



e ] Topology Greedy-Minfrac Greedy-Total
| e . NoHybrid | Hybrid

NTT 0.13 0.58 0.58
Level3 0.10 0.60 0.60
Sprint 0.22 0.61 0.64
3 3 : : : Telstra 0.13 0.59 0.62
/ Tiscali 0.23 0.60 0.63
- By GEANT 0.35 0.63 0.68

Internet2 0.60 0.71 0.78

Number of ingress routers upgraded Number of ingress routers upgraded

(a) Level3 (b) Telstra
Figure 9: Performance of cSamp-T with partial OD-pair

identification. Alternatively, this can be viewed as incre-
mental deployment of cSamp via cSamp-T. e Thea-fairness heuristic only marginally improves the
B minimum fractional coverage.

e Lazy evaluation reduces the computation time by 1-2
orders of magnitude and enables cSamp-T to scale to
large tier-1 ISP topologies.

e The total size of sampling manifests in cSamp-T is
small —<25KB for the entire network after a simple
compression step to merge hash ranges.

e cSamp-T also achieves near-ideal performance for the
two-step objective in cSamp.

Table 5: Comparing the performance of the hybrid max-
imization to the greedy algorithm for maximizing the to-
tal flow coverage alone

Normalized minimum c

G- ineme
<
oy
% NTT
25 3 35 g as g T T5 B 25 8 35 0 s
Resource augmentation factor Technology constraint factor

(a) Naive augmentation  (b) Intelligent augmentation

Figure 10: Normalized minimum fractional coverage us-
ing the «-fair function with the tuple formulation 7. DISCUSSION

erage ifreurren is feasible. _ More fine-grained local information: One possibility is to
To evaluate this hybrid approach, we consider the resourcey, .,y ige additional hints to routers, e.g., distributingdfefix
configuration using targeted provisioning with=1.5and  { jngress-egress maps to routers [5], to enable more fine-

g = 5. Table 5 compares the total coverage obtained with §5ineq sampling decisions. This can bring the performance
three strategies: maximizing the minimum fractional cever of cSamp-T even closer to cSamp.

age, maximizing the total flow coverage, and the above two- ggngitivity of router upgrades: §5 provides two heuristics
step procedure. Maximizing the minimum fractional Cover- ¢, yngrading routers with more resources or the ability to
age alone does not work well for the total coverage. This 544 Op.-pair identifiers. These formulations, as presented,
is because the greedy algorithm terminates when it achieves,qq;me static routing and a static traffic matrix. Real-tvorl
the target coverage for all OD-pairs even if there more re- o, ing and traffic matrices typically have some dominant
sources that can boost the total coverage. The table alsQ,cqyral patterns that are invariant to dynamics. Thus, w
shows that total coverage obtained by the hybrid approachop, anp1y these formulations using these dominant patterns
is very close to that of the greedy algorithm for maximizing - g\ajuating the sensitivity of the performance improversent
the total coverage alone. While it is hard to provide theoret . ~ic or routing dynamics and designing upgrade strate-

|cal_gl_1ara}ntees for this case, Tqble 5 shows that the twm-ste gies robust to dynamics are topics of future work.
optimization works well in practice.

6.8 Evaluation Summary 8. OTHER RELATED WORK

. o The closest related work is cSamp [33], which we dis-
e The greedy algorithm for maximizing the total flow . sqeq ir;2. Here, we discuss other related work.

coverage is close to cSamp’s performance and also closg ; mpjing solutions: Most of the related work focuses on

to the theoretical upper bound for cSamp-T. the single-router case to work around the limitations okgéc
* The two versions of the greedy algorithm for total flow  sampling. This includes work on adaptive sampling [12], in-
coverage perform similarly. verting sampled measurements [11, 17], and data streaming
e cSamp-T has 8 fewer duplicated reports than an un-  algorithms (e.g., [13, 22]).
coordinated approach. Greedy algorithms for monitor placement: Prior work has

¢ With intelligent resource augmentation, cSamp-T needsapplied greedy algorithms for monitor placement to cover al
< 1.5x as much total SRAM as cSamp to get80% routing paths using as few monitors as possible [7, 31]. The
of cSamp’s optimum minimum fractional coverage. authors show that this is NP-hard and propose greedy algo-

e cSamp-T provides an incremental deployment path for rithms. These formulations can be extended to incorporate
cSamp; upgrading a small numbet 8%) of ingresses packet sampling [31, 15]. However, these do not satisfy flow
to add OD-pair identifiers gets close to 90% of the ideal coverage objectives, and in fact by relying on packet sam-
cSamp performance. pling, they can result in a large amount of redundant flow

10



measurements. cSamp-T provides more fine-grained flow[is]
coverage objectives and reduces duplicated flow reports.
Sensor network monitoring: There has been recent work
applying the theory of maximizing submodular functions in ﬁg
sensor networks [16, 20]. The problem of placing sensors
robust to adversarial objectives [21] is conceptually Emi

to maximizing the minimum fractional coverage.

[16]

[19]

[20]

9. CONCLUSIONS

cSamp is a recent proposal to meet the increasing de-[22]
mand for fine-grained flow monitoring capabilities in net-
work management. However, ISPs cannot realize the ben-[23]
efits of cSamp in practice today because of its reliance on 2]
OD-pair identifiers; it requires modifications to packetdiea
ers and imposes additional overhead at ingress routers, ané®
may require ISPs to overhaul their routing infrastructure.  [26]

This paper was motiva@ed by the.challenge of prqviding 271
the benefits of cSamp without relying on OD-pair identi-
fiers. To address this, we presented cSamp-T, in which the
sampling decisions at routers are based only on local infor-
mation, and do not rely on global OD-pair identifiers.

We show that obtaining exact solutions to the maximize
the total flow coveragef{,;) and minimum fractional cov-
erage (..») is NP-hard. We achieve near-optimal perfor- (31
mance forf,,; by leveraging its submodularity. Fdf,.;.,, 32
getting good performance without resource augmentation is
provably hard. However, targeted provisioning achieves ne  [3°]
ideal performance with low overhead. Alternatively, uplyra 34
ing a small number of border routers to provide OD-pair in- [33]
formation also yields good results.

cSamp-T thus makes the benefits of coordinated network-[36]
wide monitoring solutions like cSamp practically and more (37
immediately available to ISPs and also provides an incre-
mental deployment path for ISPs to transition to cSamp.

[21]

[28]

[29]

[30]

38]

[39]
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(X;,D;,T;),and(X;, D;, F}). There is exactly one Sam-
plingAtom g, for eacha, and is equal tqay, [0, 1]). The
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Figure 11: Example showing the path corresponding to
the clauseC; = (z; V@ V 21)

budget constraints fab, F', andT nodes is zero. The only
non-zero budgets are on tBé nodes andBudget(X;) is
equal tomax(#clauses withe;, #clauses witlzy;).

For each clause, we construct a OD-pair/pBthas fol-
lows. Without loss of generality, let us assume that thesgau
appear in sorted order of the variable indices. If the litera
appears in the clause, there is a sequence of vertices of th
form T}, X;, D; in the path. If the literalt; appears in the
clause, there is a sequence of vertices of the tBynX;, D;
in the path.P; has edges frond; to the adjacent (in sorted
order of indices) variable'$}, or F;; depending on whether
x; appears in positive or negative form in the clause. Each
path has unit traffic, i.evi, T; = 1.

Example: If C; = (z; V T V 2;), we create a patl; =
(T;,X;,D;, Fy, Dy, Ty, X;) as shown in Fig. 11.

Claim: Checking iff;,; = M on the above cSamp-T prob-
lem is equivalent to solving the 3-SAT instance.

By construction, the only non-trivial SamplingAtoms are
of the form <<T7" Xja Dj>7 [07 1]> or <<F7'7Xj’ Dj>7 [07 1]>
Note that they specify all-or-nothing responsibilitiesued
to the way the budgets are defined, for eathexactly one
of (T;,X;, D;,[0,1]) or (F;, X, Dj;, [0,1]) is “active™—in
effect this corresponds to setting the variableto be true
or false. HencepP; has unit coverage in the solution of the
cSamp-T instance if and only if there is at least one satis-
fied literal in clauseC;. Thus, checking if there is a sat-
isfying assignment or not for the 3-SAT formula is equiva-
lent to checking if the coveragf.; = M or fior < M.

(In fact, it is also equivalent to checking ff,;, = 1 or
fmin = 0.) This proves the hardness for both cSamp-T prob-
lems of maximizingf;,; and f,,;, with § = 1.

Hardness with finer discretization: Given integerd > 1,
the hardness for the= 1/d < 1 case follows from a reduc-
tion from theé = 1 problem. Indeed, given an instance of
the cSamp-T decision problem of decidingif; = M with

0 = 1, we construct the following instance with= 1/d: we
created — 1 “dummy” verticesVy, ..., V;_1, and prepend
these vertices to all pathB;. We set the budgets on the
dummy vertices to bél/d) x M. For every non-dummy
vertex in thed = 1 problem, we scale the budgets by a fac-
tor 1/d. By constructionyf,,; = M onthes = 1/d problem

if and only if f;,; = M onthed = 1 problem; an analogous
result holds forf,,;,. Thus, the = 1/d problems are at
least as hard as the= 1 problems.

B. APPROXIMATION GUARANTEES

Suppose we are given a monotone submodular function
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F : U — R with a partitionU = Uy W Us W ... s Ug. The
goal is to pick a seS C U such that|S N U;| < 1 and
the valueF'(S) is maximized. (In other words, we have a
partition matroid onJ and want to maximizé” subject to

S being independent in this matroid.) If we greedily pick
elements; € U; such thate; a-approximately maximizes
(o < 1) the marginal benefif'({e1,e2,...,€;-1,€;}) —
F({e1,e2,...,e,—1}), then the benefit'({ey,...,ex}) is

at least; ¢ of the optimal benefit possible [8].

A different setting is wherF” : U — R is monotone sub-
modular, we have a “budgef3, and eacle € U has “size”
ce: the goal is to pickS C U with ¢(S) := > cgce < B.
Consider two greedy algorithms: (a) the “cost/benefit” algo
rithm greedily keeps picking an elementvhich maximizes
increase i’ and does not violate the budget, and (b) the “bene-
fit” alegorithm greedily keeps picking elemeatvhich max-
imizes the increase i’ and does not violate the budget.
One can show that the better of these two algorithms gets
benefit at leash.35 times the best possible [35]. In fact, an
algorithm based on partial enumeration [32] gets an optimal
(1 — e~ 1)-approximation.

We can combine these ideas to solve the problem of “sub-
modular maximization with partition-knapsack constrsint
Formally, we are given a monotone submodular function
F :V — R, where there is a partitio = VW)W . .0V,
Each element € V has a size., and each pai¥; has a bud-
getB;: we want to pick asef C V suchthatifS; = SNV,
then the knapsack constrainy, . s, Ce < Bi is satisfied. We
can imagine each valid knapsack of the elemenis ito be
a distinct element of the abstract &t andU = WU;. Then
considering the partg; one-by-one, and running the better
of the benefit or cost-benefit algorithms on each part, gives
the following result:

THEOREM B.1. The simple greedy algorithm described
above is a5 %= > 0.148-approximation for the problem
of submodular maximization subject to partition-knapsack
constraints. Using a knapsack algorithm based on partial

enumeration, we can getgé\e:—l1 ~ (0.406-approximation.

As always, note that the results amerst-case guarantees
often these greedy algorithms for submodular maximization
perform much better in practice.

The idea can be extended to the max-min problem. The
algorithm for the max-min problem (subject to a cardinal-
ity constraint) from Krause et al. [21] uses @in— e~ ') ~
0.632-approximation algorithm for submodular maximiza-
tion only in a black-box fashion. Hence we can replace that
algorithm by the above algorithm for submodular maximiza-
tion subject to partition-knapsack constraints to get ateic
ria algorithm for the max-min problem that achieves optimal
benefit, but exceeds each budget by a faltplog(}". ., F;(v)))—
the fact that we are using an approximation guarantéeldf
instead 0).632 only changes the constants in the big-oh.



