
15-213 Introduction to Computer Systems

Final Exam
May 10, 2007

Name: Model Solution

Andrew User ID: fp

Recitation Section:

• This is an open-book exam.

• Notes and calculators are permitted, but not computers.

• Write your answer legibly in the space provided.

• You have 180 minutes for this exam.

Floating Point

Assembly Language

Optimization

Cache Memory

Signals

Garbage Collection

Threads

Synchronization

Problem Max Score

1 20 20

2 20 20

3 20 20

4 20 20

5 20 20

6 20 20

7 20 20

8 20 20

Total 150+10 160

1

1. Floating Point (20 points)

In this problem we consider properties of floating point operations. For each property
state whether it is true or false. If false, give a counterexample as a (possibly negative)
power of 2 within the range of precision for the variables. We assume that the variables
on an x86 64 architecture are declared as follows

float x,y,z;
double d,e;

and initialized to some unknown value different from NaN, +∞, and−∞. We have given
the first answer as an example.

(x + y) + z == x + (y + z) false x = 1, y = 2127, z = −2127

If x > 0 then x / 2 > 0 false x = 2−149

(x + y) * z == x * z + y * z false x = 2127, y = −2127, z = 2127

If x >= y and z <= 0 then x * z <= y * z true

If x > y then (double)x > (double)y true

If d > e then (float)d > (float)e false d = 2129, e = 2128

x + 1 > x false x = 2127

2

2. Assembly Language (20 points)

In this problem we consider an illustrative program for multiplication of two unsigned
int’s, returning an unsigned long int holding the product.

unsigned long mult (unsigned i, unsigned k) {
unsigned long p = 0;
unsigned long q = k;
while (i != 0) {

if (i & 1)
p = p + q;

q = q << 1;
i = i >> 1;

}
return p;

}

The following is the resulting machine code when compiled on an x86 64 machine with
gcc -O2, omitting two instructions.

mult:
xorl %ecx, %ecx
mov %esi, %edx
testl %edi, %edi
jmp .L8

.L10:
leaq (%rcx,%rdx), %rax
testb $1, %dil

_______________________ # missing conditional move
addq %rdx, %rdx
shrl %edi

.L8:
jne .L10

_______________________ # missing move
ret

3

1. (5 pts) For each register, give the value it holds during the iteration, expressed in
terms of the C program.

Register C expression

%rcx p

%rdx q

%rax p+q

%edi i

%dil (char)i

2. (5 pts) Fill in the missing two instructions in the code.

cmovne %rax, %rcx and movq %rcx, %rax

3. (4 pts) Rewrite the loop to use a conditional jump instead of a conditional move.

See one solution below; there are many others.

testb $1, %dil
jne .L9
movq %rax, %rcx
.L9
addq %rdx, %rdx

4. (3 pts) Explain briefly why the compiler preferred to use a conditional move instruc-
tion.

Because the branch misprediction penalty would make the loop slower, espe-
cially since the outcome of test will be difficult to accurately predict.

4

5. (3 pts) Assume we declared and initialized

int i,k;
long m;

and called

m = (long)mult((unsigned)i, (unsigned)k);

using the above definition of mult. Will m hold the correct value of the signed
product of i and k? Circle the correct answer.

yes no no

Briefly explain your answer.

For example, when multiplying 1 times −1, the negative 1 will actually be in-
terpreted as 232 − 1 and the result will also be 232 − 1 instead of −1. However,
the answer will be correct modulo 232 because on two’s-complement represen-
tations, signed and unsigned addition and multiplication are identical: they
operate in the ring of integers modulo 2w for the word size w (= 32, in this
case).

5

3. Optimization (20 points)

Consider the following code for calculating the dot product of two vectors of double
precision floating point numbers.

double dot_prod(double A[], double B[], int n) {
int i;
double r = 0;
for (i = 0; i < n; i++)

r = r + A[i] * B[i];
return r;

}

Assume that multiplication has a latency of 12 cycles and addition a latency of 7 cycles
and load 4 cycles. Also assume that there are an unlimited number of functional units.
[Hint: Under this assumption, theoretically optimal performance is dominated by the
critical data dependency path.]

1. (5 points) What is the theoretically optimal CPE for this loop?

7 CPE, since the addition constitutes the critical path.

2. (10 points) Show the code for the loop unrolled by 2. You may apply associativity
and commutativity of multiplication and addition, assuming that rounding errors
are insignificant.

double dot_prod2(double A[], double B[], int n) {
int i;
double r = 0;
for (i = 0; i < n-1; i+=2)
r = r + (A[i] * B[i] + A[i+1] * B[i+1]);

for (; i < n; i++)
r = r + A[i] * B[i];

return r;
}

3. (5 points) What is the theoretically optimal CPE for this loop?

7/2 = 3.5 CPE, since the critical path is still addition, but now two elements will
be added in each iteration.

6

4. Cache Memory (20 points)

In this problem we explore the operation of a basic TLB as a cache. Assume the following

• Virtual addresses are 32 bits.

• The virtual page number (VPN) is 24 bits.

• The physical page number (PPN) is 32 bits.

• The TLB is 2-way set associative containing a total of 512 lines.

1. (6 points) Please fill in the following blanks by giving a bit range, such as “0–15”.

(a) The VPO of a virtual address consists of bits 0–7 of the VA.

(b) The VPN of a virtual address consists of bits 8–31 of the VA.

(c) The PPO of a physical address consists of bits 0–7 of the PA.

(d) The PPN of a physical address consists of bits 8–39 of the PA.

(e) The TLB index (TLBI) consists of bits 0–7 of the VPN.

(f) The TLB tag (TLBT) consists of bits 8–23 of the VPN.

We show a part of the TLB relevant to the next two questions.

Index Valid? Tag Entry
3D 1 0x083F 0x0913ABDE

1 0x083E 0xAB18ED24

3E 0 0xF3E9 0x0913ABDE
1 0x083F 0xAB18ED24

3F 1 0x409A 0x0913ABDE
1 0x083F 0xAB18ED24

40 0 0x083E 0x0913ABDE
1 0x3E40 0xAB18ED24

7

2. (7 points) Assume the virtual address is 0x083F3E9A. Fill in the following table in
hexadecimal notation. Write U for any value that is unknown, that is, not deter-
mined from the parameters and the table above.

Parameter Value

VPN 0x083F3E

VPO 0x9A

TLBI 0x3E

TLBT 0x083F

Cache Hit? (Y/N/U) Y

PPN 0xAB18ED24

PA 0xAB18ED249A

3. (7 points) Assume the virtual address is 0x083E409B. Fill in the following table in
hexadecimal notation. Write U for any value that is unknown, that is, not deter-
mined from the parameters and the table above.

Parameter Value

VPN 0x083E40

VPO 0x9B

TLBI 0x40

TLBT 0x083E

Cache Hit? (Y/N/U) N

PPN U

PA U

8

5. Signals (20 points)

Consider the following program.

int counter = 0;

void handler (int sig) {
counter++;

}

int main() {
signal(SIGUSR1, handler);
signal(SIGUSR2, handler);
int parent = getpid();
int child = fork();

if (child == 0) {

/* insert code here */

exit(0);
}

sleep(1);
waitpid(child, NULL, 0);
printf("Received %d USR{1,2} signals\n", counter);
return 0;

}

For each of the following four versions of the above code, list the possible outputs of
this program, assuming that all function and system calls succeed and exit without error.
You may also assume no externally issued signals are sent to either process.

1. (5 pts)

kill(parent, SIGUSR1);
kill(parent, SIGUSR1);

1,2: If the second SIGUSR1 is sent before the first one is received it will be
dropped.

9

2. (5 pts)

kill(parent, SIGUSR1);
kill(parent, SIGUSR1);
kill(parent, SIGUSR1);

1,2,3: The second and third SIGUSR1 may be sent before the first one is re-
ceived.

3. (5 pts)

kill(parent, SIGUSR1);
kill(parent, SIGUSR2);

1,2: Because of a race condition when SIGUSR2 is received while SIGUSR1 is
handled, one increment may be dropped.

4. (5 pts)

kill(parent, SIGUSR1);
kill(parent, SIGUSR2);
kill(parent, SIGUSR1);
kill(parent, SIGUSR2);

1,2,3,4: Two consecutive occurrences as in the answer to the previous question
can lead to answers 1+1, 1+2, 2+1 or 2+2. And the race condition from the
previous question can lead to the answer 1 if the first three signals are sent
before any are received.

10

6. Garbage Collection (20 points)

In this problem we consider a tiny list processing machine in which each memory word
consists of two bytes: the first byte is a pointer to the tail of the list and the second byte is
a data element. The end of a list is marked by a pointer of 0x00. We assume that the data
element is never a pointer.

We start with the memory state on the left, where the range 0x10–0x1F is the from-
space and the range 0x20–0x2F is the to-space. All addresses and values in the diagram
are in hexadecimal.

Write in the state of memory after a copying collector is called with root pointers 0x10
and 0x12, in this order. You may leave cells that remain unchanged blank.

Please be sure to use the proper breadth-first traversal algorithm covered in lecture.

Before GC

Addr Ptr Data

10 14 A2

12 1A 1F

14 1E 02

16 1E 20

18 00 33

1A 18 BC

1C 12 DF

1E 10 8F

After GC

Addr Ptr Data Addr Ptr Data

10 20 20 24 A2

12 22 22 26 1F

14 24 24 28 02

16 26 2A BC

18 2A 28 20 8F

1A 26 2A 00 33

1C 2C

1E 28 2E

After garbage collection, free space starts at address 2C

11

7. Threads (20 points)

Consider three concurrently executing threads in the same process using two semaphores
s1 and s2. Assume s1 has been initialized to 1, while s2 has been initialized to 0.

What are the possible values of the global variable x, initialized to 0, after all three
threads have terminated?

/* thread A */
P(&s2);
P(&s1);
x = x*2;
V(&s1);

/* thread B */
P(&s1);
x = x*x;
V(&s1);

/* thread C */
P(&s1);
x = x+3;
V(&s2);
V(&s1);

The possible sequences are B,C,A (x = 6) or C,A,B (x = 36) or C,B,A (x = 18).

12

8. Synchronization (20 points)

We explore the so-called barbershop problem. A barbershop consists of a n waiting chairs
and the barber chair. If there are no customers, the barber waits. If a customer enters,
and all the waiting chairs are occupied, then the customer leaves the shop. If the barber
is busy, but waiting chairs are available, then the customer sits in one of the free chairs.

Here is the skeleton of the code, without synchronization.

extern int N; /* initialized elsewhere to value > 0 */
int customers = 0;

void* customer() {

if (customers > N) {

return NULL;
}

customers += 1;

getHairCut();

customers -= 1;

return NULL;
}

void* barber() {
while(1) {

cutHair();

}
}

13

For the solution, we use three binary semaphores:

• mutex to control access to the global variable customers.

• customer to signal a customer is in the shop.

• barber to signal the barber is busy.

1. (5 points) Indicate the initial values for the three semaphores.

• mutex

• customer

• barber

2. (15 points) Complete the code above filling in as many copies of the following com-
mands as you need, but no other code.

P(&mutex);
V(&mutex);
P(&customer);
V(&customer);
P(&barber);
V(&barber);

14

Solution: There are a number of solutions; below is one. Be careful to release the mutex
before leaving. For this solution, initial values are mutex = 1 (variable customers may
be accessed), customer = 0 (no customers) and barber = 0 (barber is not busy).

void* customer() {

P(&mutex);
if (customers > N) {
V(&mutex);
return NULL;

}
customers += 1;
V(&mutex);

V(&customer);
P(&barber);
getHairCut();

P(&mutex);
customers -= 1;
V(&mutex);

return NULL;
}

void* barber() {
while(1) {
P(&customer);
V(&barber);
cutHair();
}

}

15

