
Andrew ID (print clearly!):
Full Name:

15-213/18-213, Fall 2011

Final Exam
Friday, December 16, 2011

Instructions:

• Make sure that your exam is not missing any sheets, then write your Andrew ID and full name on the
front.

• This exam is closed book, closed notes (except for 2 double-sided note sheets). You may not use any
electronic devices.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 92 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Good luck!

1 (10):

2 (08):

3 (06):

4 (10):

5 (06):

6 (12):

7 (06):

8 (10):

9 (09):

10 (06):

11 (09):

TOTAL (92):

Page 1 of 17

Problem 1. (10 points):
General systems topics. Write your answer for each question in the following table:

1 2 3 4 5 6 7 8 9 10

1. Consider a direct-mapped cache memory. Which one of the following statements is true?

(a) The cache has 1 line per set.

(b) The cache has 1 word per block.

(c) The cache has 1 set per cache.

(d) None of the above.

2. Which one of the following statements about cache memories is true:

(a) Larger caches are more susceptible to capacity misses than smaller caches.

(b) Caches with lower associativity are more susceptible to conflict misses than those with higher
associativy.

(c) Caches with higher associativity are more susceptile to cold misses than those with lower asso-
ciativey.

(d) None of the above

3. Which one of the following is NOT contained in an ELF executable file?

(a) Machine code

(b) Global variables

(c) User stack

(d) Symbol table

4. Assuming no errors, which one of the following statements about fork is true?

(a) Called once, returns once.

(b) Called once, returns twice.

(c) Called once, returns never.

(d) Called twice, returns once.

(e) None of the above.

5. Assuming no errors, which one of the following statements about execve is true?

(a) Called once, returns once.

(b) Called once, returns twice.

(c) Called once, returns never.

(d) Called twice, returns once.

(e) None of the above.

Page 2 of 17

6. Which one of the following statements about processes is false?

(a) The operating system kernel runs as its own separate process.

(b) Each process shares the CPU with other processes.

(c) Each process has its own private address space.

(d) The environment for a process is stored on the stack.

7. What happens if the parent of a zombie child terminates?

(a) The zombie child becomes a wraith and is never reaped.

(b) The zombie child is reaped by the init process.

(c) The zombie child is reaped by the process with the nearest PID.

(d) None of the above.

8. Suppose that the kernel delivers two SIGCHLD signals to the parent while the parent is not scheduled.
When the kernel finally schedules the parent, how many times will the SIGCHLD handler be called?

(a) None, because sending multiple signals will always crash the program.

(b) Exactly once, because signals are not queued.

(c) Exactly twice, because signals are queued.

(d) More than twice, depending on how the handler is installed.

9. Which one of the following statements is NOT true of storage allocators?

(a) In the best case, coalescing with boundary tags is linear in the number of free blocks.

(b) Seglists typically approximate best fit search.

(c) Payloads must be aligned to some boundary.

(d) Explicit lists are typically faster than implicit lists.

(e) None of the above.

10. Which one of the following addresses is 8-byte aligned?

(a) 11101101011101112

(b) 11101101011101002

(c) 11101101011100002

(d) 11101101011101102

(e) None of the above

Page 3 of 17

Problem 2. (8 points):
Floating point encoding. Consider the following 5-bit floating point representation based on the IEEE
floating point format. This format does not have a sign bit – it can only represent nonnegative numbers.

• There are k = 3 exponent bits. The exponent bias is 3.

• There are n = 2 fraction bits.

Recall that numeric values are encoded as a value of the form V = M × 2E , where E is the exponent after
biasing, and M is the significand value. The fraction bits encode the significand value M using either a
denormalized (exponent field 0) or a normalized representation (exponent field nonzero). The exponent E
is given by E = 1− Bias for denormalized values and E = e− Bias for normalized values, where e is the
value of the exponent field exp interpreted as an unsigned number.

Below, you are given some decimal values, and your task it to encode them in floating point format. In
addition, you should give the rounded value of the encoded floating point number. To get credit, you must
give these as whole numbers (e.g., 17) or as fractions in reduced form (e.g., 3/4). Any rounding of the
significand is based on round-to-even, which rounds an unrepresentable value that lies halfway between
two representable values to the nearest even representable value.

Value Floating Point Bits Rounded value

9/32 001 00 1/4

2

13

1/8

15/4

Page 4 of 17

Problem 3. (6 points):
Array indexing. Consider the C code below, where H and J are constants declared with #define.

int array1[H][J];
int array2[J][H];

void copy_array(int x, int y) {
array2[y][x] = array1[x][y];

}

Suppose the above C code generates the following x86-64 assembly code:

On entry:
%edi = x
%esi = y
#
copy_array:

movslq %edi,%rdi
movslq %esi,%rsi
movq %rsi, %rdx
salq $4, %rdx
subq %rsi, %rdx
addq %rdi, %rdx
leaq 0(,%rdi,8), %rax
subq %rdi, %rax
addq %rsi, %rax
movl array1(,%rax,4), %eax
movl %eax, array2(,%rdx,4)
ret

What are the values of H and J?

H =

J =

Page 5 of 17

Problem 4. (10 points):
Structure access. Consider the following data structure declarations:

struct data {
long x;
char str[16];

};

struct node {
struct data d;
struct node *next;

};

Below are given four C functions and four x86-64 code blocks. Next to each of the x86-64 code blocks,
write the name of the C function that it implements.

int alpha(struct node *ptr) {
return ptr->d.x;

}

char *beta(struct node *ptr) {
ptr = ptr->next;
return ptr->d.str;

}

char gamma(struct node *ptr) {
return ptr->d.str[7];

}

long *delta(struct node *ptr) {
struct data *dp =

(struct data *) ptr;
return &dp->x;

}

char *epsilon(struct node *ptr) {
return &ptr->d.str[2];

}

_________ movsbl 15(%rdi),%eax
ret

_________ movq (%rdi), %rax
ret

_________ movq 24(%rdi), %rax
addq $8, %rax
ret

_________ movq %rdi, %rax
ret

_________ leaq 10(%rdi), %rax
ret

Page 6 of 17

Problem 5. (6 points):
Loops. Consider the following x86-64 assembly function:

loopy:
a in %rdi, n in %esi
movl $0, %ecx
movl $0, %edx
testl %esi, %esi
jle .L3

.L6:
movslq %edx,%rax
movl (%rdi,%rax,4), %eax
cmpl %eax, %ecx
cmovl %eax, %ecx
addl $1, %edx
cmpl %ecx, %esi
jg .L6

.L3:
movl %ecx, %eax
ret

Fill in the blanks of the corresponding C code.

• You may only use the C variable names n, a, i and x, not register names.

• Use array notation in showing accesses or updates to elements of a.

int loopy(int a[], int n)
{

int i;
int x = _____;

for(i = ____________; ____________; ____________) {

if (____________)

x = ____________;
}
return x;

}

Page 7 of 17

Problem 6. (12 points):
Stack discipline.

A. (2 pts) Consider the following snippet of IA32 code:

8048390: call 8048395
8048395: pop %eax

Suppose that just before the call instruction executes, %esp = 0xffffd834. Then what is the value
of %eax after the pop instruction executes?

%eax = 0x_________________

B. (2 pts) Consider a slightly different snippet of IA32 code:

8048396: call 804839b
804839b: ret

Suppose that just before the call instruction executes, %esp = 0xffffd838. Then what is the value
of %eip after the ret instruction executes?

%eip = 0x_________________

(Please go to the next page for Parts C and D)

Page 8 of 17

Stack discipline (continued)

C. (7 points) Consider the following bit of C code and its dissassembled IA32 machine code (notice the
header comment):

int power(int x, int n)
{

if (n == 0)
return 1;

else
return power(x, n-1) * x;

}

int main()
{

power(2, 4);
}

08048374 <power>:
On entry to power(2,4):
%esp = 0xffffd81c, %ebp = 0xffffd838
8048374: push %ebp
8048375: mov %esp,%ebp
8048377: sub $0x8,%esp
804837a: mov 0xc(%ebp),%edx
804837d: mov $0x1,%eax
8048382: test %edx,%edx
8048384: je 804839c <power+0x28>
8048386: lea 0xffffffff(%edx),%eax
8048389: mov %eax,0x4(%esp)
804838d: mov 0x8(%ebp),%eax
8048390: mov %eax,(%esp)
8048393: call 8048374 <power>
8048398: imul 0x8(%ebp),%eax
804839c: leave
804839d: ret

Suppose that the main routine calls power(2,4) from some unspecified location. Fill in the values on
the stack immediately after the subsequent call to power(2,3). If a value is unknown, please write
UNKNOWN in the blank:

Address Value

0xffffd824 0x___________________

0xffffd820 0x___________________

0xffffd81c 0x___________________

0xffffd818 0x___________________

0xffffd814 0x___________________

0xffffd810 0x___________________

0xffffd80c 0x___________________

D. (1 point) What is the value of %ebp immediately after the call to power(2,3):

%ebp = 0x___________________

Page 9 of 17

Problem 7. (6 points):
Caches. In this problem you will estimate the miss rates for some C functions. Assumptions:

• 16-way set associative L1 cache (E = 16) with a block size of 32 bytes (B = 32).

• N is very large, so that a single row or column cannot fit in the cache.

• sizeof(int) == 4

• Variables i, k, and sum are stored in registers.

• The cache is cold before each function is called.

Part A (3 points)

int sum1(int A[N][N], int B[N][N])
{

int i, k, sum = 0;

for (i = 0; i < N; i++)
for (k = 0; k < N; k++)

sum += A[i][k] + B[k][i];
return sum;

}

Circle the closest miss rate for sum1:

• 1/16

• 1/8

• 1/4

• 1/2

• 9/16

• 1

Part B (3 points)

int sum2(int A[N][N], int B[N][N])
{

int i, k, sum = 0;

for (i = 0; i < N; i++)
for (k = 0; k < N; k++)

sum += A[i][k] + B[i][k];
return sum;

}

Circle the closest miss rate for sum2:

• 1/16

• 1/8

• 1/4

• 1/2

• 9/16

• 1

Page 10 of 17

Problem 8. (10 points):
Exceptional control flow.

A. Consider the following C program. Assume the program executes to completion and that fork, waitpid,
and printf always succeed.

int main() {
pid_t pid;
int sum = 0;

if ((pid = fork()) == 0)
sum += 10;

else {
waitpid(pid, NULL, 0);
sum -= 5;

}
sum += 20;

if (pid > 0)
printf("Parent: sum=%d\n", sum);

else
printf("Child: sum=%d\n", sum);

return 0;
}

Show the output of this program:

Child: sum=________

Parent: sum=________

B. Now consider the same program as in Part A, but with the call to waitpid removed. Assume the
program executes to completion and that printf always succeeds. Make no assumptions about the
results of the other function calls.

List all of the possible outputs of such a program. Each blank box holds the complete output from one
execution of the program. Some blank boxes may be left unused.

+---------------------+---------------------+---------------------+
| | | |
| | | |
+---------------------+---------------------+---------------------+
| | | |
| | | |
+---------------------+---------------------+---------------------+

(Please goto the next page for Part C.)

Page 11 of 17

C. Consider the C program below. Assume the program runs to completion and that all functions return
normally.

int main ()
{

if (fork() == 0) {
if (fork() == 0) {

printf("9");
exit(1);

}
else

printf("5");
}
else {

pid_t pid;
if ((pid = wait(NULL)) > 0) {

printf("3");
}

}
printf("0");
return 0;

}

List four possible outputs for this program:

1. _________________

2. _________________

3. _________________

4. _________________

Page 12 of 17

Problem 9. (9 points):
Imagine a system with the following attributes:

• The system has 1MB of virtual memory

• The system has 256KB of physical memory

• The page size is 4KB

• The TLB is 2-way set associative with 8 total entries.

The contents of the TLB and the first 32 entries of the page table are given below. All numbers are in
hexadecimal.

TLB
Index Tag PPN Valid

0 05 13 1
3F 15 1

1 10 0F 1
0F 1E 0

2 1F 01 1
11 1F 0

3 03 2B 1
1D 23 0

Page Table
VPN PPN Valid VPN PPN Valid
00 17 1 10 26 0
01 28 1 11 17 0
02 14 1 12 0E 1
03 0B 0 13 10 1
04 26 0 14 13 1
05 13 0 15 1B 1
06 0F 1 16 31 1
07 10 1 17 12 0
08 1C 0 18 23 1
09 25 1 19 04 0
0A 31 0 1A 0C 1
0B 16 1 1B 2B 0
0C 01 0 1C 1E 0
0D 15 0 1D 3E 1
0E 0C 0 1E 27 1
0F 2B 1 1F 15 1

Page 13 of 17

A. Warmup Questions

(a) How many bits are needed to represent the virtual address space? _____

(b) How many bits are needed to represent the physical address space? _____

(c) How many bits are needed to represent a page table offset? _____

B. Virtual Address Translation I

Please step through the following address translation. Indicate a page fault by entering ’-’ for Physical
Address.

Virtual address: 0x1F213

Parameter Value Parameter Value

VPN 0x TLB Hit? (Y/N)

TLB Index 0x Page Fault? (Y/N)

TLB Tag 0x Physical Address 0x

Use the layout below as scratch space for the virtual address bits. To allow us to give you partial
credit, clearly mark the bits that correspond to the VPN, TLB index (TLBI), and TLB tag (TLBT).

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(Please go to the next page for part C)

Page 14 of 17

C. Virtual Address Translation II

Please step through the following address translation. Indicate a page fault by entering ’-’ for Physical
Address.

Virtual address: 0x14213

Parameter Value Parameter Value

VPN 0x TLB Hit? (Y/N)

TLB Index 0x Page Fault? (Y/N)

TLB Tag 0x Physical Address 0x

Use the layout below as scratch space for the virtual address bits. To allow us to give you partial
credit, clearly mark the bits that correspond to the VPN, TLB index (TLBI), and TLB tag (TLBT).

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 15 of 17

Problem 10. (6 points):
Unix I/O.

A. Suppose that the disk file foobar.txt consists of the six ASCII characters “foobar”. What is the
output of the following program?

/* any necessary includes */
char buf[20] = {0}; /* init to all zeroes */

int main(int argc, char* argv[]) {
int fd1 = open("foobar.txt", O_RDONLY);
int fd2 = open("foobar.txt", O_RDONLY);

dup2(fd2, fd1);

read(fd1, buf, 3);
close(fd1);
read(fd2, &buf[3], 3);
close(fd2);

printf("buf = %s\n", buf);
return 0;

}

Output: buf = _______________

B. Now consider the identical program, except that dup2 is commented out. What is the output of this
program?

char buf[20] = {0}; /* init to all zeroes */

int main(int argc, char* argv[]) {
int fd1 = open("foobar.txt", O_RDONLY);
int fd2 = open("foobar.txt", O_RDONLY);

//dup2(fd2, fd1);

read(fd1, buf, 3);
close(fd1);
read(fd2, &buf[3], 3);
close(fd2);

printf("buf = %s\n", buf);
return 0;

}

Output: buf = _______________

Page 16 of 17

Problem 11. (9 points):
Synchronization. This problem is about using semaphores to synchronize access to a shared bounded FIFO
queue in a producer/consumer system with an arbitrary number of producers and consumers.

• The queue is initially empty and has a capacity of 10 data items.

• Producer threads call the insert function to insert an item onto the rear of the queue.

• Consumer threads call the remove function to remove an item from the front of the queue.

• The system uses three semaphores: mutex, items, and slots.

Your task is to use P and V semaphore operations to correctly synchronize access to the queue.

A. What is the initial value of each semaphore?

mutex = _______

items = _______

slots = _______

B. Add the appropriate P and V operations to the psuedo-code for the insert and remove functions:

void insert(int item)
{

/* Insert sem ops here */

add_item(item);
/* Insert sem ops here */

}

int remove()
{

/* Insert sem ops here */

item = remove_item();
/* Insert sem ops here */

return item;
}

Page 17 of 17

