Andrew login ID (Use block letters):
Full Name (Use block letters):

15-213 (18-243), Fall 2010

Final Exam
Friday, December 10. 2010

Instructions:

e Make sure that your exam is not missing any sheets, then yoite Andrew login ID and full name
on the front. Please write using clear block letters!

e This exam is closed book, closed notes, although you mayws& t1/2 x 11 sheets of paper with
your own notes. You may not use any electronic devices.

e The exam has a maximum score of 98 points.

e The problems are of varying difficulty. The point value of legcoblem is indicated. Good luck!

1 (20):

2 (10):

3 (06):

4 (08):

5 (09):

6 (10):

7 (07):

8 (06):

9 (10):

10 (06):

11 (06):

TOTAL (98):

Page 1 of 22

Problem 1. (20 points):

Short answer and multiple choice questions on a varietyiwiusating and refreshing topics.

1. Label the following networking system calls 1,2,3,4 oingthe order they should be called. [2 pts]
(label with an X if the call is not used; a blank will receive credit)

Client Server
listen
connect
accept
socket
bind

The remaining questions are multiple choice. Write theamiranswer for each question in the fol-
lowing table:

1,2 3|4 |5|6|7]8|9]|10

111121314 |15|16| 17| 18| 19| 20
X

2. Which of the following is NOT a universal property of readiter locks?

(a) Readers can only look at a shared item; writers can alsbfyna

(b) If a writer has access to the item, then no other threautas access.

(c) Any number of readers can read the item at the same time.

(d) A writer waiting for an RW lock will get preference overtsequent read requests.

3. Starvation (in relation to threads) refers to:

(a) Athread waiting for a lock indefinitely.

(b) A semaphore that gets locked but the thread never unibeker use.

(c) Athread is spawned but never joins the main thread whéshia.

(d) A process fails to spawn a new thread because it’s hit gosdmum number of threads allowed.

4. How does x86 assembly store the return value when a funigtifinished?

(a) Theret instruction stores it in a special retval register.

(b) By convention, it is always ifbeax.

(c) Itis stored on the stack just above {8¢ebp) of the callee.

(d) Itis stored on the stack just above all the argumentsedtthction.

Page 2 of 22

5. In IEEE floating point, what would be an effect of allocgtimore bits to the exponent part by taking
them from the fraction part?
(a) You could represent fewer numbers, but they could be rfarger.
(b) You could represent the same numbers, but with more ddgilaces.
(c) You could represent both larger and smaller numbersyhihtless precision.
(d) Some previously representable numbers would now rowivfinity

6. Consider the following two blocks of code, foundseparate files

/* main.c */ /* foo.c */

int i=0; int i=1;

int main() void foo()

{ {
foo(); printf(*%d”, i);
return O; }

}

What will happen when you attempt to compile, link, and rus ttode?

(a) It will fail to compile.

(b) It will fail to link.

(c) It will raise a segmentation fault.

(d) It will print “0”.

(e) It will print “1”.

(f) It will sometimes print “0” and sometimes print “1”.

7. Which of the following is an example of external fragmeéiotat?

(&) A malloc’ed block needs to be padded for alignment pupos

(b) A user writes data to a part of the heap that isn’t the @Eayiaf a malloc’ed block.
(c) There are many disjoint free blocks in the heap.

(d) A user malloc’s some heap space and never frees it.

8. Which of the following is NOT the default action for any s&?

(a) The process terminates all of its children.

(b) The process terminates and dumps core.

(c) The process terminates.

(d) The process stops until restarted by a SIGCONT signal.

Page 3 of 22

9. Which of the following is FALSE concerning x86-64 arcliigre?

(a) Adouble is 64 bits long.

(b) Registers are 64 bits long.

(c) Pointers are 64 bits long.

(d) Pointers point to locations in memory that are multigdé64 bits apart.

10. Consider the following block of code:

int main()

{
int a[213];
int i;
/fint j = 15;
for(i = 0; i < 213; i++)
afi] = i
return O;
af0] = -1;
}

Which of the following instances of 'bad style’ is present?

(a) Dead code.

(b) Magic numbers.
(c) Poor indentation.
(d) All of the above.

Page 4 of 22

11.

12.

13.

Consider the following structure declarations on a 4ibux machine.

struct RECORD {
long valuez;
double value;
char tag[3];

h

struct NODE {
int ref_count;
struct RECORD record,;
union {
double big_number;
char string[12];
} mix;

h
Also, a global variable namedy_node is declared as follows:
struct NODE my_node;

If the address amy_node is 0x6008e0 , what is the value o&my.node.record.tag[1] ?

(a) 0x6008f8
(b) 0x6008fa
(c) 0x6008f9
(d) 0x6008f5
(e) 0x6008f1

With reference to the previous question, what is theaizay_node in bytes ?

(a) 48
(b) 44
(c) 40
(d) 42
(e) 50

Which of the following x86 instructions can be used to dwid registers and store the result without
overwriting either of the original registers?

(a) mov
(b) lea
(c) add
(d) None of the above

Page 5 of 22

14. Which of these uses of caching is not crucial to prograrfopeance?

(a) Caching portions of physical memory

(b) Caching virtual address translations

(c) Caching virtual addresses

(d) Caching virtual memory pages

(e) None of the above (that is, they are all crucial)

15. Assuming all the system calls succeed, which of the iaglig pieces of code will print the word
"Hello” to stdout ?

(a) int fd = open("hoola.txt", O_RDWR);
dup2(fd, STDOUT_FILENO);
printf("Hello");
fflush(stdout);

(b) int fd = open("hoola.txt", O_RDWR);
dup2(fd, STDOUT_FILENO);
write(STDOUT_FILENO, "Hello", 5);

(c) int fd = open("hoola.txt", O_RDWR);
dup2(fd, STDOUT_FILENO);
printf("Hello");

(d) int fd = open("hoola.txt", O_RDWR);
dup2(STDOUT_FILENO, fd);
write(fd, "Hello", 5);

(e) int fd = open("hoola.txt", O_RDWR);
dup2(fd, STDOUT_FILENO);
write(fd, "Hello", 5);

16. Consider the following piece of code. Note that the filmaas the same for both calls tpen, and
assume the filene.txt exists.

int fd = open("one.txt", O_RDWR);
int fd2 = open("one.txt", O_RDONLY);

Which of the following statement is true?

(@) fd andfd2 will share the same file offset

(b) fd2 will be invalid because you cannot have two open file desmrgpteferring to the same file
at the same time.

(c) Bothfd andfd2 will have an initial file offset that is set to the end of the file

(d) Whatever is written to the file throudtl , can be read usinigi2

(e) In total, there will be two copies of the fime.txt in memory, one associated witti and
the other withfd2 . Any changes made in a copy wilbt be reflected in the other copy.

Page 6 of 22

17. In malloclab, we provided code for an implicit list alégor (the naive implementation). Many stu-
dents improved this code by creating an explicit linked disfree blocks. Which of the following
reason(s) explain(s) why an explicit linked list implenan has better performance?

I. Immediate coalescing when freeing a block is signifigafdkter for an explicit list

II. The implicit list had to include every block in the heaph&reas the explicit list could just
include the free blocks, making it faster to find a suitabézfblock.

lll. Inserting a free block into an explicit linked list isggiificantly faster since the free block can
just be inserted at the front of the list, which takes coridiare.

(@) 1only.
(b) Il only.
(c) Hl only.
(d) I'and Il only.
(e) Alll, Il 'and 111

18. Suppose alocal varialile my _int is declared in a function naméanc . Which of the following
is considered safe in C?
(a) func returns&my.int and the caller dereferences the returned pointer.
(b) func returns&myint and the caller prints the returned pointer to the screen

(c) func sets the value of a global variable &my.int and returns. The global variable is un-
changed up to the point another function dereferences dimbVariable.

(d) None of the above
19. If a parent forks a child process, to which resources tritgy need to synchronize their access to
prevent any unexpected behavior?
(a) malloc’ed memory
(b) stack memory
(c) global variables
(d) file descriptors
(e) None of the above

Page 7 of 22

Problem 2. (10 points):
Floating point encoding.In this problem, you will work with floating point numbers lgason the IEEE
floating point format. We consider two different formats:

Format A: 8-bit floating point numbers:
e There is one sign bit. s = 1 indicates negative numbers.
e There aré: = 4 exponent bits. The bias &1 — 1 = 7.
e There aren = 3 fraction bits.

Format B: 9-bit floating point numbers:
e There is one sign bit. s = 1 indicates negative numbers.
e There aré: = 4 exponent bits. The bias &1 — 1 =7.

e There aren = 4 fraction bits.

1. How would you represent positive infinity usifg mat A?

Binary representation for positive infinity:

2. How would you represenf—100 usingformat B?

Give an example binary representation:

3. For formats A and B, please write down the binary repredgiemt and the corresponding values for
the following (use round-to-even):

Description Format A binary| Format A value| Format B binary| Format B value

Zero 0 0000 000 0 0 0000 0000 0

Largest normalized valu

11%

Smallest positive number

Negative one -1 -1

2.625

Page 8 of 22

Problem 3. (6 points):

Accessing arraysConsider the C code below, where H and J are constants dgeléte#define

int array1[H][J];
int array2[J][H];

void copy_array(int x, int y) {
array2[y][x] = arrayl[x][y];
}

Suppose the above C code generates the following x86-6/makseode:

On entry:

%edi = X
%esi = y
#

copy_array:

movslg %esi,%irsi

movslqg %edi,%rdi

leaq (%rsi,%rsi,8), %rdx
addq %rdi, %rdx

mov(q %rdi, %rax

salq $4, %rax

subq %rdi, %rax

addq %rsi, %rax

movl arrayl(,%rax,4), %eax
movl %eax, array2(,%rdx,4)

ret

What are the values ¢fandJ?

Page 9 of 22

Problem 4. (8 points):

Assembly/C translatiorConsider the following C code and assembly code for an istieig function:

int rofl(int *a, int n) 40055¢ <rofl>:
{ 40055c: test %esi,%esi
int i, k; 40055e: |jle 40058e <rofl+0x32>
400560: mov %rdi,%r8
fori = 0; i < n; i++) 400563: mov $0x0,%ecx
{ 400568: mov (%r8),%edx
k = ali; 40056b: cmp %edx,%ecx
40056d: je 400583 <rofl+0x27>
ifi == k) 40056f. movslg %edx,%rax
{ 400572: lea (%ordi,%rax,4),%r9
: 400576: mov (%r9),%eax
} 400579: cmp %edx,%eax
40057b: je 400593 <rofl+0x37>
if() 40057d: mov %eax,(%r8)
{ 400580: mov %edx,(%r9)
return k; 400583: add $0x1,%ecx
} 400586: add $0x4,%r8
40058a: cmp %ecx,%esi
afi] = ; 40058c: jg 400568 <rofl+0xc>
alk] = k; 40058e: mov SOXffffffff,Y%oedx
} 400593: mov %edx,%eax

400595: retq
return ;

A. Using your knowledge of C and assembly, fill in the blankeabwith the appropriate expressions.

B. Extra credit (1 point) Briefly describe what theofl function does. Hint: Think about what happens
when every integek in the arraya satisfied) < k <n — 1.

Page 10 of 22

Problem 5. (9 points):
Representing and accessing structurébe following problems concern the compilation of C codeolav
ing struct ’s.

A. Inthe following C code, the declarations of datatypgmwel t andtype2 t are given bytypedef s,
and the declaration of the const&MTis given by a#define

typedef struct {
typel t y[CNT];
type2_t x;

} a_struct;

void pi1(int i, a_struct *ap) {

ap->y[i] = ap->x;

}

Compiling the code for IA32 gives the following assembly eod

i at 8(%ebp), ap at 12(%ebp)

pl:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax

movsbl 28(%eax),%ecx

movl 8(%ebp), %edx

movl %ecx, (Yoeax,%edx,4)
popl %ebp

ret

Give a combination of values for the two data types &NTthat could yield the above assembly
code:

typel t

type2_t

CNT.

Page 11 of 22

B. In the following C code, the declaration of data tylp@e t is given by atypedef , and the
declaration of the constaftNTis given by a#define

typedef struct {
int left;
type_t m[CNT];
int right;

} b_struct;

int p2(int i, b_struct *bp) {

return bp->left * bp->right;
}

For some combinations ¢fpe_t andCNT, the following x86-64 code is generated:

bp in %irsi

p2:
movl 24(%rsi), %eax
imull (Yorsi), Y%eax

ret

For each of the combinations below, indicate whether it@d@Ml) or could not (N) cause the above
code to be generated:

type t CNT | Generated? (Y/N
int 6
short 9
char 17
char * 5
double 2
struct { int i; double d[2]; } 1

Page 12 of 22

Problem 6. (Oxa points):

The stack disciplineThis problem deals with stack frames in Intel 1A-32 machin@snsider the following

C function and corresponding assembly code.

struct node_t;

typedef struct node_t{
void * elem;
struct node_t *left;
struct node_t *right;

} node;

void oak(node * tree, void (*printFunc)(node *))}{
*POINT A¥/
(*printFunc)(tree);
if (tree->left) {
[*POINT B*/
oak(tree->left,printFunc);

}

if (tree->right) {
oak(tree->right,printFunc);

}

00000000 <oak>:

0: 55 push
1. 89 e5 mov
3: 83 ec 18 sub
6: 89 5d f8 mov
9: 89 75 fc mov
c: 8b 5d 08 mov
f. 8b 75 Oc mov
12: 89 1c 24 mov
[*POINT A*/
15: ff d6 call
17: 8b 43 04 mov
la: 85 cO test
1c: 74 Oc je
le: 89 74 24 04 mov
22: 89 04 24 mov
[*POINT B*/
25: e8 fc ff ff ff call 26
2a: 8b 43 08 mov
2d: 85 c0 test
2f: 74 Oc e
31: 89 74 24 04 mov
35: 89 04 24 mov
38: e8 fc ff ff ff call 39
3d: 8b 5d f8 mov
40: 8b 75 fc mov
43: 89 ec mov
45: 5d pop
46: c3 ret
(over)

Page 13 of 22

%ebp

%esp,%ebp
$0x18,%esp
%ebx,0xfffffff8(%ebp)
%esi,0xfffffffc(Yoebp)
0x8(%ebp),%ebx
0xc(%ebp),%esi
%ebx,(%esp)

*%esi
0x4(%ebx),%eax
%eax,%eax
2a <oak+0x2a>
%esi,0x4(%esp)
%eax,(%esp)

<oak+0x26>
0x8(%ebx),%eax
%eax,%eax
3d <oak+0x3d>
%esi,0x4(%esp)
%eax,(%esp)
<0ak+0x39>
Oxfffffff8(%ebp),%ebx
Oxfffffffc(%oebp),%esi
%ebp,%esp
%ebp

Please draw a picture of the stack frame, starting with agyraents that might be placed on the stack for
theoak function, showing the stack at each of poiAtandB, as specified in the code above. Your diagram
should only include actual values where they are known, if o not know the value that will be placed on

the stack, simply label what it is (i.e., "old ebp”).

Page 14 of 22

Stack A: Stack B:

Page 15 of 22

Problem 7. (7 points):
Cache memories.n this problem, we will consider the performance of the @achvou can make the
following assumptions:

e There’s only one level of cache.
e Block size is 4 bytes.

e The cache has 4 sets.

e Each cache set has two lines.

e Replacement policy is LRU.

Consider the following function which setstax 4 square in the upper left corner of an array to zero. You
should assume that only operations involveigay change the cache, thatray[0][0] is at address
0x1000000 , and that the cache is empty whelear4x4 s called.

#define LENGTH 8

void cleardx4(char array[LENGTH][LENGTH]){
int row, col;
for(col = 0; col < 4; col++){
for(row = 0; row < 4; row++){
array[row][col] = O;

}

A. (3 pts) How many cache misses will there by wlebmardx4 is called?
Number of cache misses:

B. (3 pts) IFLENGTHs changed to 16 how many cache misses @ddbhr4x4 have when called?
Number of cache misses:

C. (1 pt) fLENGTHSs changed to 17, will callinglear4x4 have a larger, smaller, or equal number
of cache misses than wh&ENGTHs 167 Circle the correct answer.

e 16 x 16 will have MORE misses than7 x 17.
e 16 x 16 and17 x 17 will have an EQUAL number of MISSES.
e 17 x 17 will have MORE misses thai6 x 16.

Page 16 of 22

Problem 8. (6 points):

Processes vs. threadsThis problem tests your understanding of the some of the itapbdifferences
between processes and threads. Consider the following g¢gro

#include "csapp.h" int main()
{
/* Global variables */ int i
int cnt; pthread_t tid[2];

sem_t mutex;
sem_init(&mutex, 0, 1); /* mutex=1 */

/* Helper function */ /* Processes */

void *incr(void *vargp) cnt = 0;

{ for (i=0; i<2; i++) {
P(&mutex); incr(NULL);
chnt++; if (fork() == 0) {
V(&mutex); incr(NULL);
return NULL; exit(0);

} }

}
for (i=0; i<2; i++)
wait(NULL);

printf("Procs: cnt = %d\n", cnt);

/* Threads */

cnt = 0;
for (i=0; i<2; i++) {
incr(NULL);

pthread_create(&tid[i], NULL, incr, NULL);
}

for (i=0; i<2; i++)
pthread_join(tid[i], NULL);
printf("Threads: cnt = %d\n", cnt);

exit(0);

A. What is the output of this program?
Procs: cnt =

Threads: cnt =

Page 17 of 22

Problem 9. (10 points):

Virtual memory. You are taking an operating systems class where you must arikernel that supports
virtual memory. Unfortunately, you have been stuck with &swbright partner who is under the illusion
that address translations are performed by the kernel. diditbonsulting you, he went ahead and wrote a
translation function, calletbg _to _phys , which is shown on the following page.

Address translations are actually done by hardware of epbrg you realize that by studying your partner’s
code, you can learn some valuable information about thesystinformation that will earn you 10 points

on your 213 final exam!
As you study your partner’s code, keep in mind the followihggs:

1. Pointers andinsigned int s are both2 byteslong on this particular system
(i.e.,sizeof(unsigned int) = 2 andsizeof(void *) =2).
2. You do not have to worry about any type of pointer arithmitithis problem.

3. Although the code is silly in the sense that translatioesnat done in software, you can assume that
the functionality is correct.

(over)

Page 18 of 22

/* Note to self: Recall that on this machine, sizeof(unsigne
and sizeof(void *) = 2 */

/*

* log_to_phys - logical is a variable which contains a virtua

* address. The physical translation is returned.
*/

void * log_to phys (void * logical, void ** pd_base)

{

/* Casting to unsigned int is done so you don't
have to worry about any pointer arithmetic */

unsigned int logical_addr = (unsigned int) logical,

unsigned int pd_base _u = (unsigned int) pd_base;

unsigned int offset = logical_addr & (Ox1F);
unsigned int temp = logical addr >> 5;
unsigned int indexl = (temp & 0x780) >> 7;
unsigned int index2 = temp & OXx7F;

unsigned int * pde_addr = (unsigned int *) (pd_base u + (inde
unsigned int entryl = *pde_addr;

/* Check valid bit */

if(!(entryl & Ox1)) {
[* This is how you throw a page fault, right? */
return NULL,;

}

/* Discard the valid bit now */
entryl = entryl & (TOx1);

unsigned int * pte_addr = (unsigned int *) (entryl + (index2 <
unsigned int entry2 = *pte_addr;

/* Check valid bit */

if(!(entry2 & 0x1)) {
[* This is how you throw a page fault, right? */
return NULL;

}

/* Discard the valid bit now */
entry2 = entry2 & (TOx1);

/* This is the logical address! */
return ((void *) (entry2 | offset));

Page 19 of 22

dint) = 2

x1 << 1));

< 1))

The following questions refer to the code on the previouspag

1. How many bytes are the pages (virtual and physical pagetharsame size)?| |

2. How many entries are in the page directory for this archite? [|

3. How many bytes long is each entry of the page directory? |

4. How many entries are in each page table for this architeetu| |

5. How many bytes long is each entry of a page tabl¢? |

Page 20 of 22

Problem 10. (6 points):

Signals.Consider the following two different snippets of C code. ds® all functions return without error,
no signals are sent from other processes,@mdf is atomic.

Code Snippet 1.

int main() {
int pid = fork();
if(pid > 0}
kill(pid, SIGKILL);
printf("a");
telse{
[* getppid() returns the pid
of the parent process */
kill(getppid(), SIGKILL);
printf("b");

Code Snippet 2:
int a = 1;

void handler(int sig){
a = 0;
}

void emptyhandler(int sig){
}

int main() {
signal(SIGINT, handler);
signal(SIGCONT, emptyhandler);

int pid = fork();

if(pid == 0){
while(a == 1)

pause();

printf("a");

Jelse{
kill(pid, SIGCONT);
printf("b");
kill(pid, SIGINT);
printf("c");

}

For each code snippet write a Y next to an outcome if it coultligmtherwise write N.

Snippet 1 Outcome Possible? (Y/N)

Snippet 2 Outcome Possible? (Y/N)

Nothing is printed.

Nothing is printed.

“a” is printed. “ba” is printed.
“b” is printed. “abc” is printed.
“ab” is printed. “bac” is printed.
“ba” is printed. “bca” is printed.

A process does not terminatg.

A process does not terminatg.

Page 21 of 22

Problem 11. (6 points):

Synchronization. This problem is about synchronizing a producer/consumstesy that shares a queue
between two threads:

e The code for the producer/consumer system is shown on tloevioh page.

e Theproducer threachdds data items to the back of the queue, ana¢tmsumer threademoves and
processes data items from the front of the queue.

e The queue is initially empty, and has a capacity of 10 dataste

e The producer thread can only create 2 items at a time. Sigithe consumer must consume 3 items
at a time. In particular, thproduce2 function, which is called by the producer thread, produces
and adds two data items to the queue each time it is calledlaBiynthe consume3 function, which
is called by the consumer thread, removes 3 data items fremqubue each time it is called. (These
function declarations are not shown here.)

Your task is to modify the code on the following page:

e Add the necessary semaphore operations to guarantgedtiece-2-itemsnd consume-3-itemee-
quirements.

e Add the appropriate callsem_init to initialize the two semaphores to the correct values.

Recall that semaphore functions have the following prqtesy

e P(sem_t *sem);
e V(sem_t *sem);

e sem.init(sem _t *sem, NULL, unsigned int val);

(over)

Page 22 of 22

Here is the code that you will update:

#include <pthread.h>
#include <semaphore.h>

/* Semaphores */
sem_t cons_sem, prod_sem;

/* Producer thread */
void* producer(void* vargp)

while(1){
[* Insert semaphore operation(s) here */

produce2(); /* Produce 2 items */
[* Insert semaphore operation(s) here */

}
return NULL;

}

/* Consumer thread */
void * consumer(void* vargp)

while(1){
[* Insert semaphore operation(s) here */

consume3(); /* Consume 3 items */
[* Insert semaphore operation(s) here */

}
return NULL;

}

Page 23 of 22

/* Main routine */
int main()

{
pthread_t tid;

[* Initialize semaphores */

pthread_create(&tid, NULL,
producer, NULL);

pthread_create(&tid, NULL,
consumer, NULL);

return;

