15-780 – Graduate Artificial Intelligence: Markov Decision Processes

Aditi Raghunathan Carnegie Mellon University

Search (recap)

- Want to reach goal from start state
- Each action takes us to a **deterministic successor** state
- Various algorithms
 - Uninformed search: DFS, BFS, iterative deepening, uniform cost search
 - Informed search: A*, heuristics, relaxations

Decision making under uncertainty

Real-world is not deterministic, there is **randomness** or **uncertainty**

Markov Decision Processes (MDPs) and their extensions provide a general way to think about how we can act optimally under uncertainty

MDPs introduced in 1950s – 60s

Applications: Robotics, self-driving cars, video games, robot soccer, scheduling and many more..

Example MDP

Example: dice game

For each round $r = 1, 2, \dots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

What policy should you follow?

MDP intuition

States encode all the information of a system needed to determine how it will evolve when taking actions

The system is governed via *transition probabilities*: they only depend on the current state and action; not on the history

Agent starts at a start state, and the goal is to take actions that maximize *expected reward*

MDPs formal definition

States: $s \in S$ assumed to be discrete

Actions: a $\in \mathcal{A}$ (assumed to be discrete)

Transition probabilities: distribution over next states given current state and current action

T(s, a, s') is probability of next state being s' when taking action a at state s

Rewards: mapping states or transitions to reals R(s, a, s')

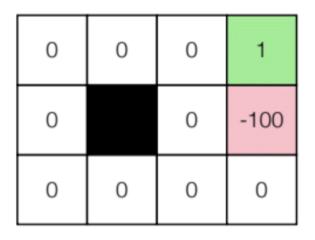
Start state, end state, discount factor γ (default 1)

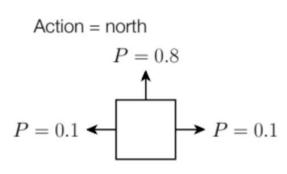
Gridworld domain

Simple grid world with a goal state with reward and a "bad state" with reward -100

Actions move in desired direction with probability 0.8 and one of two perpendicular directions with probability 0.1 each

Taking an action that bumps into a wall leaves agent where it is





Policy and policy evaluation

A **policy** π is a mapping from each state $s \in S$ to an action $a \in A$ (or distribution of actions)

Suppose you followed a path s_0 , a_1 , r_1 , s_1 , a_2 , r_2 , s_2 , a_2 , r_2 , s_3 ...; the expected sum of discounted rewards is $r_1 + \gamma r_2 + \gamma^2 r_3 + ...$

Value function $V_{\pi}: S \to R$ such that $V_{\pi}(s)$ gives the expected sum of discounted rewards when following policy π from state s

Q-value of a policy Q_{π} : $S \times A \to R$ such that $Q_{\pi}(s, a)$ is the expected sum of discounted rewards when taking action a from state s and then following π

Recursive definitions

 $V_{\pi}(s) = Q_{\pi}(s, \pi(s))$ otherwise (= 0 if s is the end-state)

$$Q_{\pi}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{\pi}(s')]$$

Algorithm for policy evaluation: start with arbitrary initialization $V_{\pi}(s) = 0 \ \forall s$ and then apply the recursion

Example MDP

Example: dice game

For each round $r = 1, 2, \dots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Evaluate the "always stay" policy

What is $V_{\pi}(stay)$?

Dice game

For always stay policy π

$$V_{\pi}(\text{end}) = 0$$

$$V_{\pi}(\text{stay}) = \frac{1}{3} (4 + V_{\pi}(\text{end})) + \frac{2}{3} (4 + V_{\pi}(\text{stay}))$$

Solve the recurrence

$$V_{\pi}(\text{stay}) = 12$$