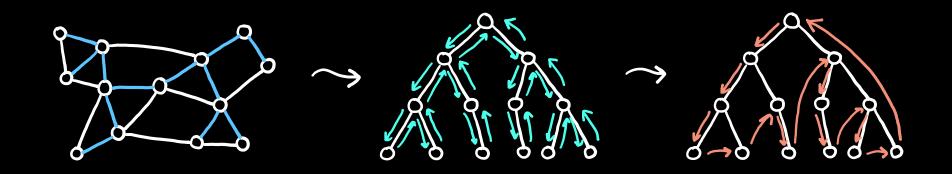
Lecture 19: Approximation Algorithms



Goals for today

- Understand the motivation and definition of approximation algorithms
- Demonstrate three common techniques for approximation algorithms:
 - Greedy (Job Scheduling)
 - LP rounding (Vertex Cover)
 - Reduce to similar problems (Traveling Salesperson)

Approximation algorithms: what & why

```
Some problems are NP-hard
- Give up?
- "Pretty good" Solution?

Pretty good means provably close to optimal
```

Formal definition

Definition (c-approximation algorithm):

Algorithms give solution within factor of coophinal solution

ALG = value of our algorithm's solution OPT = value of optimal solution

Minimize $ALG \leq C \cdot OPT$ (C > 1)

Maximize

ALG>, COPT

(C<1)

Technique #1

Greedy algorithms

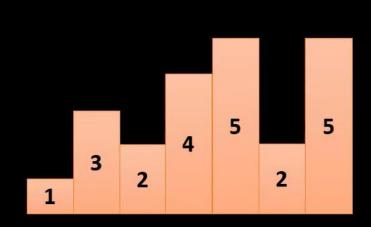
Job Scheduling

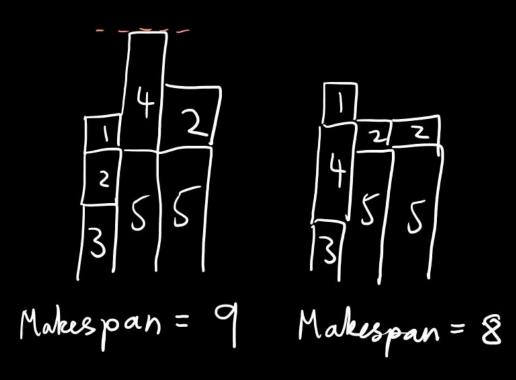
Problem: Given m identical "machines" and n "jobs", where job i takes p_i processing time to run, assign jobs to machines to minimize the **makespan**, the time at which the last job finishes

Alternative interpretation: Given n blocks where block i has height p_i , we want to make m stacks of blocks, with the goal of minimizing the height of the tallest stack

Job Scheduling

Example: $p = \{1, 3, 2, 4, 5, 2, 5\}, m = 3$



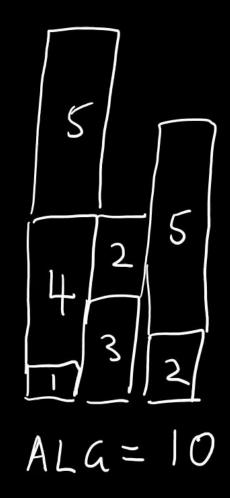


Approximation algorithm for job scheduling

```
Algorithm (areedy)
Start with m empty stacks
for each block i

put it in shortest current stack
```

1,7,2,4,8,2,\$



Analysis of greedy job scheduling

Claim: Greedy job scheduling is a 2-approximation algorithm

Can we do better than 2?

Question: What is a worst-case input for greedy scheduling?

Better algorithm for job scheduling

```
Algorithm (Sorted greedy)
Sorting by to small
Careedy
```

Analysis of sorted greedy job scheduling

Claim: Sorted greedy job scheduling is a 1.5-approximation algorithm

Proof: OPT >,
$$p_i^*$$
 OPT > L

Blocks under i^* are >, p_i^*

=> $m+1$ blocks are >> p_i^*

=> p_i^*

=> p_i^*

ALA = $p_i^*+L \leq \frac{1}{2}$

OPT = 1.5 OPT

Analysis of sorted greedy job scheduling

Claim: Sorted greedy job scheduling is a **1.5**-approximation algorithm

Proof:

Summary of Greedy

Take-home messages:

- Greedy algorithms are often good approximations
- Hardest part is the proof
 - Need to find a way to connect OPT to ALG
 - ullet Often achieved by lower bounding OPT and relating this to ALG

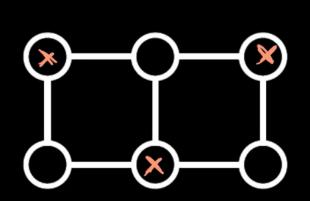
Technique #2

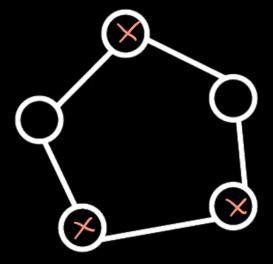
LP Rounding

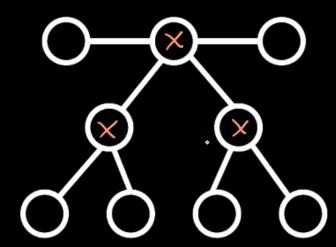
Problem: Vertex Cover

Given an undirected graph G = (V, E), a *vertex cover* is a subset of the vertices $C \subseteq V$ such that every edge is adjacent to at least one $v \in C$.

A *minimum vertex cover* is a smallest possible vertex cover





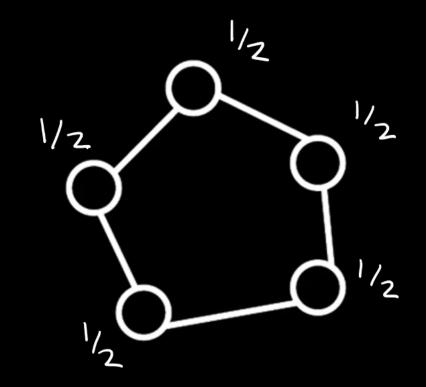


Linear program for vertex cover?

Vertex variables
$$\times_{v}$$

minimize \times_{v}
 $5.t \times_{u} + \times_{v} > 1$
 $\times_{v} > 0$

Can get fractional!



Approximation algorithm for vertex cover

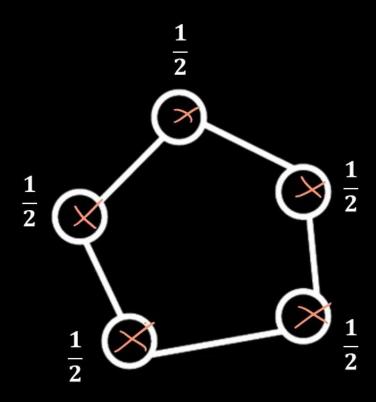
Algorithm (Round-and-relax)

Solve LP relaxation for DCr

for each vertex V

If DCr > 1/2

take V



Analysis of LP rounding for vertex cover

Claim 1: The LP rounding algorithm outputs a valid vertex cover

Analysis of LP rounding for vertex cover

Claim 2: The LP rounding algorithm is a 2-approximation algorithm

```
Proof: Vanables at most double
Objectue \Sigma \times \text{doubles}

ALA \leq 2 \cdot \text{LP} \leq 2 \cdot \text{OPT}
```

Check your understanding

Question: Can we apply this algorithm to any LP relaxation and get a good approximation? Why or why not

Summary of LP Rounding

Take-home messages:

- Linear program relaxations are powerful tools for approximation
- Need to prove feasibility and bound the change in objective
- Rounding $\geq 1/2$ up and < 1/2 down doesn't always work
 - Might need more sophisticated rounding rules (see homework)

Technique #3

Reduce to similar problems

Problem: Metric Traveling Salesperson

Given a complete undirected graph G = (V, E) and a distance metric: d(u, v) between every vertex u, v, find the length of the shortest tour that visits every vertex exactly once and returns to the start

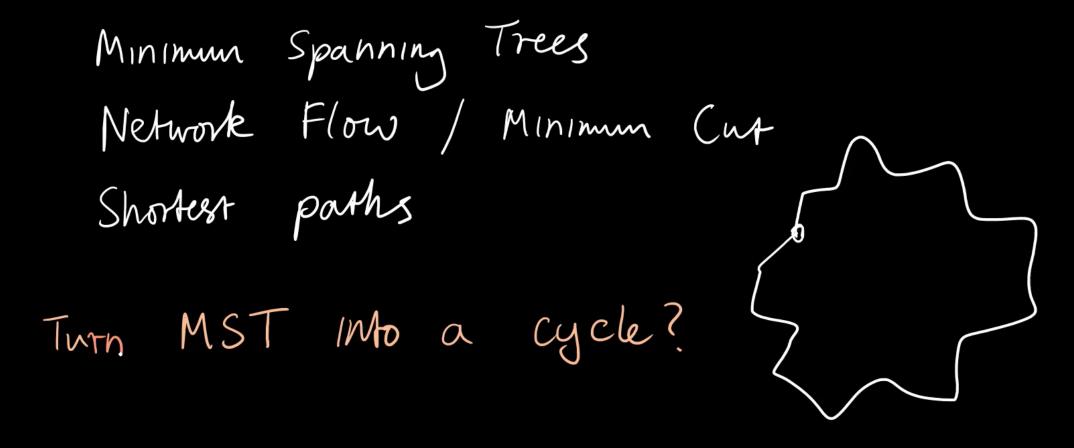
Definition (Metric):

$$\int_{0}^{\infty} d(u,u) = 0$$

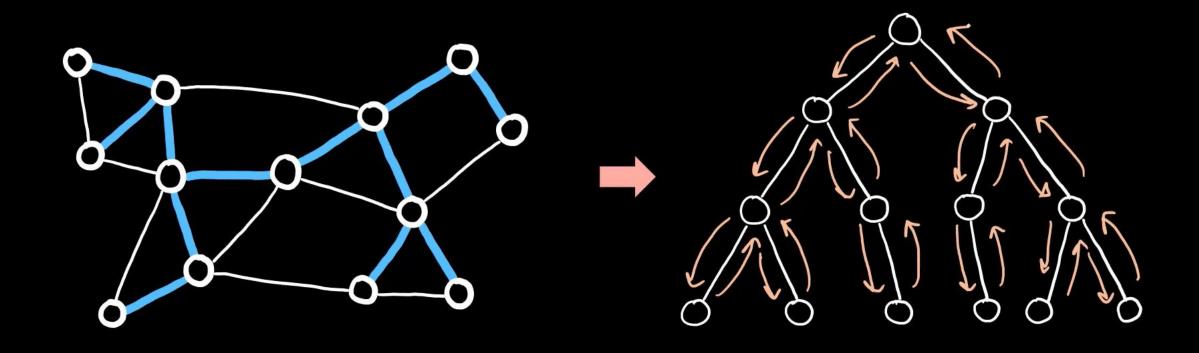
2.
$$d(u_1v) = d(v_1u)$$

3.
$$d(u,v) \leq d(u,k) + d(k,v) \quad \forall u,v,k$$

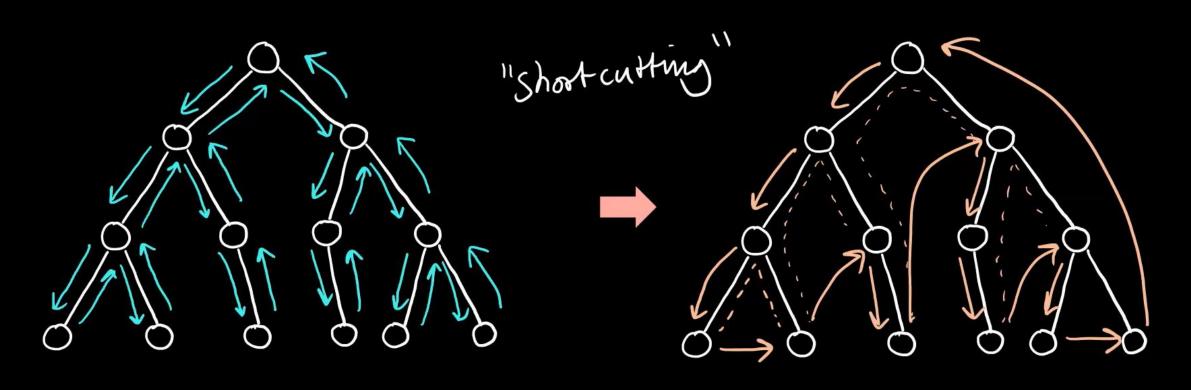
What other graph problems do we know?



Approximating Metric TSP using an MST



Approximating Metric TSP using an MST

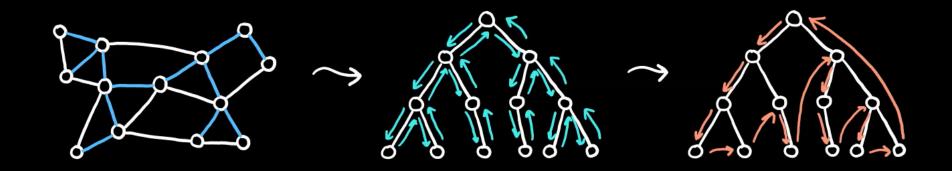


Pre-order traversal!

Approximation algorithm for Metric TSP

Algorithm

Output a pre-order of the MST

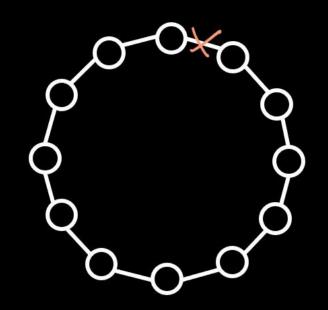


Analysis of MST-TSP approximation

Claim: The MST-TSP algorithm is a 2-approximation algorithm

Lemma 1: weight(MST) \leq weight(TSP)

Proof:



Analysis of MST-TSP approximation

Claim: The MST-TSP algorithm is a **2**-approximation algorithm

Lemma 1: weight(MST) \leq weight(TSP)

Lemma 2: $ALG \leq 2$ weight(MST)

Proof: The original traversal uses every edge twice, cost = 2 MST Adding shootcuts can not increase distance (triangle inequality)

Therefore ALG < 2 weight (MST)

Analysis of MST-TSP approximation

Claim: The MST-TSP algorithm is a **2**-approximation algorithm

Lemma 1: weight(MST) \leq weight(TSP)

Lemma 2: $ALG \leq 2$ weight(MST)

Proof of claim:

Summary

- We defined the concept of approximation algorithms
- We practiced three techniques for building approximation algorithms:
 - Greedy (Job Scheduling)
 - LP rounding (Vertex Cover)
 - Reduce to similar problems (TSP → MST)