Lecture 1: Introduction and Median Finding

David Woodruff

Staff

Instructors:

Daniel Anderson

David Woodruff

TAs:

Aditya	Bill	Davis	Efe	Joel	Jonathan	Yoseph
Sundaram	Qin	Wojnovich	Cekirge	Manning	Liu	
Kunal	Emma	Magdalen	Nicholas	Suhas	Andrew	Mak
Joshi	Hu	Dobson	Grill	Kotha	Caosun	

Grading and Course Policies

• All available here: https://www.cs.cmu.edu/~15451-f22

6 Written Homeworks 30% (5% each)

3 Oral Homeworks 12% (4% each)

Recitation Attendance 3% (see below)

Midterm exams (two in-class times) 30% (15% each)

Final exam 25%

- Solve written homeworks individually. Come to office hours or ask questions on Piazza! LaTeX solutions and submit on Gradescope
- Oral homeworks can be solved in groups of up to 3
- Recitation attendance contributes up to 3%. You may miss a small number of recitations and still get full points, but try to come to as many as possible

Homework

- Each HW has 3 problems
- About half the homeworks have a programming problem submit via Autolab (languages accepted are Java, C, C++, Ocaml, Python, SML)
- For oral HWs you can collaborate, but write the programming problem yourself.
 Each team has 45 minutes to present the 3 problems. Feel free to use notes!
- Cite any reference material or webpage if you use it
- Late homeworks and "grace/mercy" days please see the website for details!
- HW1 posted today. Due Sep 7

Goals of the Course

- Design and analyze algorithms!
- Algorithms: dynamic programming, divide-and-conquer, hashing and data structures, randomization, network flows, linear programming, approximation algorithms
- Analysis: recurrences, probabilistic analysis, amortized analysis, potential functions
- New Models: online algorithms, data streams

Guarantees on Algorithms

Want provable guarantees on the running time of algorithms

Why?

 Composability: if we know an algorithm runs in time at most T on any input, don't have to worry what kinds of inputs we run it on

Scaling: how does the time grow as the input size grows?

Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

• In the median-finding problem, we have an array of distinct numbers

$$a_1, a_2, ..., a_n$$

and want the index i for which there are exactly $\lfloor n/2 \rfloor$ numbers larger than a_i

- How can we find the median?
 - Check each item to see if it is the median: $\Theta(n^2)$ time
 - Sort items with MergeSort (deterministic) or QuickSort (randomized): $\Theta(n \log n)$ time
 - Can we find it faster? What about finding the k-th smallest number?

QuickSelect Algorithm to Find the k-th Smallest Number

- Assume $a_1, a_2, ..., a_n$ are all distinct for simplicity
- Choose a random element a_i in the list call this the "pivot"
- Compare each a_i to a_i
 - Let LESS = $\{a_i \text{ such that } a_i < a_i\}$
 - Let GREATER = $\{a_j \text{ such that } a_j > a_i\}$
- If $k \le |LESS|$, find the k-th smallest element in LESS
- If k = |LESS| + 1, output the pivot a_i
- Else find the (k-|LESS|-1)-th smallest item in GREATER
- Similar to Randomized QuickSort, but only recurse on one side!

Bounding the Running Time

- Theorem: the expected number of comparisons for QuickSelect is at most 4n
- T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
 - T(n,k) is the same for any array! Can show by induction (algorithm does not depend on order)
 - Let $T(n) = \max_{k} T(n, k)$
- T(n) is a non-decreasing function of n
 - Can show by induction (for any k and any pivot, size of recursive subarray does not decrease)
- Let's show T(n) < 4n by induction
- Base case: T(1) = 0 < 4
- Inductive hypothesis: T(i) < 4i for all $1 \le i \le n-1$

Bounding the Running Time

- Suppose we have an array of length n. Assume n is even for the moment
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - |LESS| is uniform in the set {0, 1, 2, 3, ..., n-1}
 - Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

•
$$T(n) \le n-1+\frac{2}{n}\sum_{i=\frac{n}{2},\dots,n-1}T(i)$$

$$\le n-1+\frac{2}{n}\sum_{i=\frac{n}{2},\dots,n-1}4i \qquad \text{by inductive hypothesis}$$

$$< n-1+4\left(\frac{3n}{4}\right) \qquad \text{since the average } \frac{2}{n}\sum_{i=\frac{n}{2},\dots,n-1}i \text{ is at most } \frac{\frac{n}{2}+(n-1)}{2}<\frac{3n}{4}$$

$$< 4n \qquad \text{completing the induction}$$

Similar Analysis Holds for Odd n

- Suppose we have an array of length n. Assume n is odd now
- Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1
 - The probability the larger of |LESS| and |GREATER| is (n-1)/2 is 1/n
 - The probability the larger of |LESS| and |GREATER| is in {(n+1)/2, ..., n-1} is 2/n

•
$$T(n) \le n - 1 + \frac{1}{n}T(\frac{n-1}{2}) + \frac{2}{n}\sum_{i=\frac{n+1}{2},\dots,n-1}T(i)$$

$$\leq n - 1 + \frac{1}{n} \cdot \frac{4(n-1)}{2} + \frac{2}{n} \sum_{i=\frac{n+1}{2},\dots,n-1} 4i$$

$$\leq n - 1 + \frac{1}{n} \cdot \frac{4(n-1)}{2} + \frac{2}{n-1} \sum_{i=\frac{n+1}{2},\dots,n-1} 4i$$

$$\leq n - 1 + 2 - \frac{2}{n} + 4((n-1) + \frac{n+1}{2})/2$$

< 4n

by inductive hypothesis

there are (n-1)/2 terms to average so we can still upper bound by the average

completing the induction

What About Deterministic Algorithms?

 Can we get an algorithm which does not use randomness and always performs O(n) comparisons?

• Idea: suppose we could deterministically find a pivot which partitions the input into two pieces LESS and GREATER each of size $\lfloor \frac{n}{2} \rfloor$

How to do that?

- Find the median and then partition around that
 - Um... finding the median is the original problem we want to solve....

Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition the input into two pieces LESS and GREATER each of size at least 3n/10-1

DeterministicSelect:

- 1. Group the array into n/5 groups of size 5 and find the median of each group
- 2. Recursively, find the median of medians. Call this p
- 3. Use p as a pivot to split into subarrays LESS and GREATER
- 4. Recurse on the appropriate piece
- Theorem: DeterministicSelect makes O(n) comparisons to find the k-th smallest item in an array of size n

DeterministicSelect:

- 1. Group the array into n/5 groups of size 5 and find the median of each group
- 2. Recursively, find the median of medians. Call this p
- 3. Use p as a pivot to split into subarrays LESS and GREATER
- 4. Recurse on the appropriate piece
- Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements
- Step 2 takes T(n/5) time
- Step 3 takes O(n) time

- Claim: $|LESS| \ge 3n/10-1$ and $|GREATER| \ge 3n/10-1$
- **Example 1:** If n = 15, we have three groups of 5:

$$\{1, 2, 3, 10, 11\}, \{4, 5, 6, 12, 13\}, \{7,8,9,14,15\}$$

medians:

3

6

9

median of medians p:

6

• There are g = n/5 groups, and at least $\lceil \frac{g}{2} \rceil$ of them have at least 3 elements at most p. The number of elements less than or equal to p is at least

$$3\left[\frac{g}{2}\right] \ge \frac{3n}{10}$$

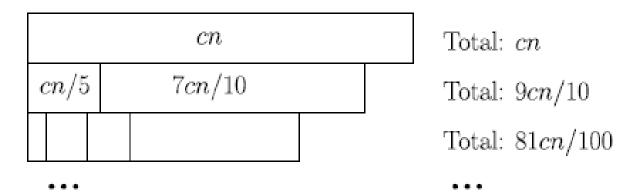
• Also at least 3n/10 elements greater than or equal to p

DeterministicSelect:

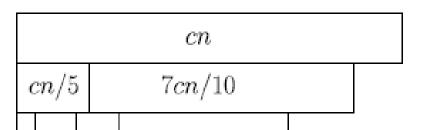
- 1. Group the array into n/5 groups of size 5 and find the median of each group
- 2. Recursively, find the median of medians. Call this p
- 3. Use p as a pivot to split into subarrays LESS and GREATER
- 4. Recurse on the appropriate piece
- Steps 1-3 take O(n) + T(n/5) time
- Since $|LESS| \ge 3n/10-1$ and $|GREATER| \ge 3n/10-1$, Step 4 takes at most T(7n/10) time

• So
$$T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$$
, for a constant $c > 0$

•
$$T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$$



•
$$T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$$



Total: cn

Total: 9cn/10

Total: 81cn/100

. .

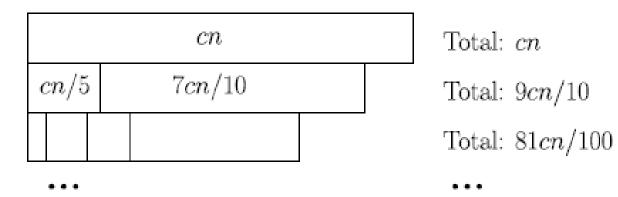
$$T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$$

$$\le cn + \frac{cn}{5} + \frac{c7n}{10} + T\left(\frac{n}{25}\right) + T\left(\frac{7n}{50}\right) + T\left(\frac{7n}{50}\right) + T\left(\frac{49n}{100}\right)$$

$$\le cn + \frac{cn}{5} + \frac{c7n}{10} + \frac{cn}{25} + \frac{c7n}{50} + \frac{c7n}{50} + \frac{c49n}{100} + \cdots$$

$$= cn + \frac{9cn}{10} + \frac{81cn}{100} + \cdots$$

•
$$T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$$



- Time is $\operatorname{cn}\left(1 + \left(\frac{9}{10}\right) + \left(\frac{9}{10}\right)^2 + \dots\right) \le 10\operatorname{cn}$
- Recurrence works because n/5 + 7n/10 < n
- For constants c and $a_1, a_2, \dots a_r$ with $a_1 + a_2 + \dots a_r < 1$, the recurrence $T(n) \le T(a_1n) + T(a_2n) + \dots + T(a_rn) + cn$ solves to T(n) = O(n)
 - If instead $a_1 + a_2 + ... + a_r = 1$, the recurrence solves to T(n) = O(n log n)
 - If we use median of 3 in DeterministicSelect instead of median of 5, what happens?