DR
oooooooo

UNIT 14C

The Limits of Computing:
Non-computable Functions

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Problem Classifications

Tractable Problems

Problems that have reasonable, polynomial-
time solutions

Intractable Problems

Problems that may have no reasonable,
polynomial-time solutions

Noncomputable Problems

Problems that have no algorithms at all to
solve them

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

12/5/2012

12/5/2012

Today’s Lecture

* We will look the Halting Problem that is a
canonical problem in the study of limits of
computing .

e We will show using proof by contradiction that
it cannot be solved

e Along the way, we will think about
termination and programs that have some
form of self-reference.

The Barber Paradox

e Suppose there is a town with just one barber, who is male. In
this town, every man keeps himself clean-shaven, and he does
so by doing exactly one of two things:

1. Shaving himself, or
2. Going to the barber.

e Another way to state this is: The barber is a man in town who
shaves those and only those men in town who do not shave
themselves.

¢ Who shaves the barber?

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Program Termination

Can we determine if a program will terminate given
a valid input?
Example:
def mysteryl(x)

while (x = 1) do

X =X =2

end
end
— Does this algorithm terminate when x = 15?
— Does this algorithm terminate when x = 1107?

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Another Example

def mystery2(x)
while (x = 1) do

if x% 2 == then
X =x/2
else
X=3*x+1
end

end

— Does this algorithm terminate when x = 15?

— Does this algorithm terminate when x = 1107?

— Does this algorithm terminate for any positive x?

15110 Principles of Computing, Carnegie 6
Mellon University - CORTINA ’

12/5/2012

The Halting Problem

e Does a universal program H exist that can take
any program P and any input / for program P
and determine if P terminates/halts when run
with input /?

e Alan Turing showed that such a universal
program H cannot exist.

— This is known as the Halting Problem.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Proof by Contradiction (example)

Suppose you want to prove the proposition “One cannot get an
A in this course without doing the homeworks”.

1. You first assume the opposite: “One can get an A in this
course without doing the homeworks”.

2. From that assumption and using what you know about the
course you arrive at a conclusion, which is not true (e.g.
Homeworks are worth less than 10%).

3. Since you know that this conclusion is false (contradicts with
what is known), the initial assumption must be wrong.

“One can get an A in this course without doing the
homeworks”. <—{ Must be false false ‘

12/5/2012

Proof by Contradiction (first step)

* Assume a program H exists that requires a program P
and an input /.

— Hdetermines if program P will halt when
P is executed using input /.

@

H outputs YES
if P halts when run
with input |

H outputs NO
if P does not halt
when run with input |

* We will show that H cannot exist by showing that if it
did exist we would get a logical contradiction.

Programs Computing with Their
Own Representation

e A compileris a program that takes as its input
a program that needs to be translated from a
high-level language (e.g. Ruby) to a low-level
language (e.g. machine language).

— In general, a program can process any data, so it
can have a program as its input to process.

e Can a compiler compile itself? |YES!

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

12/5/2012

* Let D be a program that takes input <M> where

Proof (cont’d)

<M> is a program description.

* D asks the halt checker H what happens if M runs

with itself <M> as input?

e If Hanswers that M will halt if it runs with itself as

input, then D goes into an infinite loop (and does not

halt).

e If Hanswers that M will not halt if it runs with itself

as input, then D halts.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

11

How D Works

M

<

D asks H what happens if we run program M on with input <M> .

Loops if it says yes.
Stops and returns OK if it says no.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

OK

12

12/5/2012

D gets evil

* What happens if D tests itself?

— If H answers yes (D halts), then D goes into an
infinite loop and does not halt.

D ()

\Y

©

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Proof By Contradiction (last step)
contradiction

* What happens if D tests itself? /
— If D does not halt on <D>, then D halts on <D>.
— If D halts on <D>, then D does not halt on <D>.

2

Dp &

©

©)

12/5/2012

Contradiction

* No matter what H answers about D, D does the
opposite, so H can never answer the halting
problem for the specific program D.

— Therefore, a universal halting checker H cannot exist.

* We can never write a computer program that
determines if ANY program halts with ANY input.
— It doesn’t matter how powerful the computer is.

— It doesn’t matter how much time we devote to the
computation.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Why s Halting Problem Special?

* One of the first problems to be shown to be
noncomputable (i.e. undecidable,
unsolveable)

e A problem can be shown to be
noncomputable by transforming the halting
problem into that problem
— For example, a virus detection software cannot

detect if a program is a virus for all possible

programs. To be computable, they need to give up
correctness for some cases.

12/5/2012

What Should You Know?

The fact that there are limits to what we can compute at all
and what we can compute efficiently.

— What do we mean when we call a problem
tractible/intractable?

— What do we mean when we call a problem solveable (i.e.
computable) vs. unsolveable (noncomputable)?

What the question N vs. NP is about.

Name some NP-complete problems and reason about the
work needed to solve them using brute-force algorithms.

The fact that Halting Problem is unsolveable and that there
are many others that are unsolveable.

17

12/5/2012

