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UNIT 12B 
Continuous-Time Simulations 
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Announcement (Again) 

• Exam 3 has been moved to Wednesday, 
November 28. 
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Why Do Simulations? 

• To predict the behavior of a system. 

– Will this building survive an earthquake? 
 

• To test a theory against data. 

– Do the predictions generated by these equations 
match what we observe in the real world? 
 

• To explore consequences of assumptions. 

– What could you do with a Portal gun? 
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Continuous-Time Simulations 

• Often used to model physical phenomena 
involving forces acting on objects. 

• Is “time” really continuous? 

– Philosophical question. No one knows. 

– Just pretend it is. 

• Is simulated time continuous? 

– No. It’s divided into discrete time steps. 

– But they can be as small as we like. 
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Example: A Spring Mass 
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Behavior of a Spring Mass 

• Newton:  F = ma 

  Force = mass × acceleration 
 

• Hooke’s law:  F = -kx 

F = force the spring applies to the mass 

k = “spring constant”:  kg/sec2 

x = displacement from neutral point 
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Modeling the Spring Mass 

• Use a variable x to model position of the mass. 

• For convenience, assume x=0 at the neutral 
point. 

• Since position x varies over time, it’s actually a 
function x(t). 

– It’s mathematically a function. 

– It doesn’t have to be a function in Ruby. 

– We’ll just use x and let the (t) be implicit. 
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Initial Conditions 

• Let’s define x(0) as the initial displacement of 
the spring relative to the neutral point. 

– In Ruby we’ll use the variable x0. 
 

• Let’s assume that the mass starts out 
motionless, i.e., its initial velocity and 
acceleration are 0. 

– We’ll relax this assumption later. 
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The Spring Force 

• At any time t, the mass feels a force imposed 
by the spring:   F(t) = -k·x(t) 
 

• The force causes the mass to accelerate. How? 

 F(t) = m·a(t) = -k·x(t) 
 

• Solve for the acceleration: 

 a(t) = F(t)/m = -k·x(t)/m 
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Integrating Acceleration 

• When an object accelerates, its velocity v(t) 
changes. How can we model this? 
 

• Divide time into tiny steps Δt. 
 

• Re-calculate the velocity at each time step. 

 v(t+Δt) = v(t) + a(t) · Δt 
 

• Smaller Δt brings greater accuracy. 
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Velocity Is Rate of Change of Position 

• If an object has non-zero velocity, its position 
is changing. 
 

• We can use the same integration trick to 
update the mass’s position based on velocity. 

 x(t+Δt) = x(t) + v(t) · Δt 
 

• Notice that when x changes, the spring force 
-kx will change, so acceleration will change. 
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Setting Up Our Simulation 

 
m = 1 # mass = 1 kg 
k = 1 # spring constant = 1 kg/s2 
x0 = 75 # initial displacement in mm 
v = 0 # velocity 
a = 0 # acceleration 
 
dt = 0.0005 # time step for integration 
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The Simulation Loop 

 
t = 0 
x = x0 
while true do 
 a = -k * x / m # accel. proportional to displacement 

 v = v + a * dt # velocity is changed by acceleration 

 x = x + v * dt # position is changed by velocity 

 t = t + dt  # time marches on 

 puts [t, x] 
end 
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Graphics Help Us Understand  
Our Simulations 

• Make a canvas: 
 Canvas.init(400,400,"spring") 
 

• Make a rectangle: 
 r = Canvas::Rectangle.new(200,200,250,250) 
 

• Make it move 10 pixels to the right: 
 Canvas.move(r, 10, 0) 
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Initialize Our Graphics 

 
def spring 
  m = 1; k = 1; x0 = 75; v = 0; a = 0; dt = 0.005 
 
  Canvas.init(400,400,"spring") 
  Canvas::Rectangle.new(200,200,210,210, 
   :outline => "red") 
  r = Canvas::Rectangle.new(200+x0,200,210+x0,210) 
 
  x = x0 
  t = 0 
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Loop With Graphics 

 
while t < 40 do 
 a = -k * x / m 
 v = v + a * dt 
 x = x + v * dt 
 t = t + dt 
 Canvas.move(r, v*dt, 0) 
 sleep(0.0001)     # force graphics to redraw 
end 
 

end 
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Parameterizing The Simulation 

def spring(*opts) 
opts = (opts[0] or {}) 
x0 = (opts[:x0] or 75) 
m = (opts[:m] or 1) 
k = (opts[:k] or 1) 
dt = (opts[:dt] or 0.0005) 
v = (opts[:v0] or 0) 
maxtime = (opts[:maxtime] or 40) 

17 

Experiments 

• What happens if we increase displacement? 
 spring(:x0 => 75) 
 spring(:x0 => 150) 
 

• What happens if we increase the mass? 
 spring(:mass => 1) 
 spring(:mass => 2) 
 spring(:mass => 5) 
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Simulating Gravitational Attraction 

Newton’s law of universal gravitation: 
 
 F = G · m1 · m2 / d2 

 

where G = gravitational constant, 
m1 and m2 are the masses, and 
d is the distance between them. 
 

Since F = ma we can calculate the acceleration of 
each object. 
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N-Body Simulations 

• With just two bodies, we can write a simple 
formula to calculate their positions at any 
future time, given their starting positions. 
 

• But with 3 or more bodies, no formula exists 
for this, because the system is highly 
nonlinear, and potentially chaotic. 
 

• Our only recourse is simulation. 
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Gravity Simulation In 2 Dimensions 

 
include SphereLab 
b = make_system(:fdemo) 
view_system(b, :pendown => :track) 
f1 = b[0]; f2 = f1.clone; f3 = f1.clone 
 
500.times{update_one(f1, b[1..5], 1.0)} 
f2.position.x += 1 
500.times{update_one(f2, b[1..5], 1.0)}  
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Simulating The Solar System 

 
include SphereLab 
b = make_system(:solarsystem) 
view_system(b[0..4], :dash => 1) 
365.times { 
  update_system(b, 86459); sleep(0.1) } 
 

Notice that the orbits are elliptical (Kepler). 
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Simulation At Extreme Scales 

• Cosmologists use simulations to study the 
formation of galaxies (clusters of stars), and 
even clusters of galaxies. 
 

• At the other extreme, physicists simulate 
individual atoms and molecules, e.g., to model 
chemical reactions. 
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