
11/14/2012

1

UNIT 12B
Continuous-Time Simulations

1

Announcement (Again)

• Exam 3 has been moved to Wednesday,
November 28.

2

11/14/2012

2

Why Do Simulations?

• To predict the behavior of a system.

– Will this building survive an earthquake?

• To test a theory against data.

– Do the predictions generated by these equations
match what we observe in the real world?

• To explore consequences of assumptions.

– What could you do with a Portal gun?

3

Continuous-Time Simulations

• Often used to model physical phenomena
involving forces acting on objects.

• Is “time” really continuous?

– Philosophical question. No one knows.

– Just pretend it is.

• Is simulated time continuous?

– No. It’s divided into discrete time steps.

– But they can be as small as we like.

4

11/14/2012

3

Example: A Spring Mass

5

Behavior of a Spring Mass

• Newton: F = ma

 Force = mass × acceleration

• Hooke’s law: F = -kx

F = force the spring applies to the mass

k = “spring constant”: kg/sec2

x = displacement from neutral point

6

11/14/2012

4

Modeling the Spring Mass

• Use a variable x to model position of the mass.

• For convenience, assume x=0 at the neutral
point.

• Since position x varies over time, it’s actually a
function x(t).

– It’s mathematically a function.

– It doesn’t have to be a function in Ruby.

– We’ll just use x and let the (t) be implicit.

7

Initial Conditions

• Let’s define x(0) as the initial displacement of
the spring relative to the neutral point.

– In Ruby we’ll use the variable x0.

• Let’s assume that the mass starts out
motionless, i.e., its initial velocity and
acceleration are 0.

– We’ll relax this assumption later.

8

11/14/2012

5

The Spring Force

• At any time t, the mass feels a force imposed
by the spring: F(t) = -k·x(t)

• The force causes the mass to accelerate. How?

 F(t) = m·a(t) = -k·x(t)

• Solve for the acceleration:

 a(t) = F(t)/m = -k·x(t)/m

9

Integrating Acceleration

• When an object accelerates, its velocity v(t)
changes. How can we model this?

• Divide time into tiny steps Δt.

• Re-calculate the velocity at each time step.

 v(t+Δt) = v(t) + a(t) · Δt

• Smaller Δt brings greater accuracy.
10

11/14/2012

6

Velocity Is Rate of Change of Position

• If an object has non-zero velocity, its position
is changing.

• We can use the same integration trick to
update the mass’s position based on velocity.

 x(t+Δt) = x(t) + v(t) · Δt

• Notice that when x changes, the spring force
-kx will change, so acceleration will change.

11

Setting Up Our Simulation

m = 1 # mass = 1 kg
k = 1 # spring constant = 1 kg/s2
x0 = 75 # initial displacement in mm
v = 0 # velocity
a = 0 # acceleration

dt = 0.0005 # time step for integration

12

11/14/2012

7

The Simulation Loop

t = 0
x = x0
while true do
 a = -k * x / m # accel. proportional to displacement

 v = v + a * dt # velocity is changed by acceleration

 x = x + v * dt # position is changed by velocity

 t = t + dt # time marches on

 puts [t, x]
end

13

Graphics Help Us Understand
Our Simulations

• Make a canvas:
 Canvas.init(400,400,"spring")

• Make a rectangle:
 r = Canvas::Rectangle.new(200,200,250,250)

• Make it move 10 pixels to the right:
 Canvas.move(r, 10, 0)

14

11/14/2012

8

Initialize Our Graphics

def spring
 m = 1; k = 1; x0 = 75; v = 0; a = 0; dt = 0.005

 Canvas.init(400,400,"spring")
 Canvas::Rectangle.new(200,200,210,210,
 :outline => "red")
 r = Canvas::Rectangle.new(200+x0,200,210+x0,210)

 x = x0
 t = 0

15

Loop With Graphics

while t < 40 do
 a = -k * x / m
 v = v + a * dt
 x = x + v * dt
 t = t + dt
 Canvas.move(r, v*dt, 0)
 sleep(0.0001) # force graphics to redraw
end

end
16

11/14/2012

9

Parameterizing The Simulation

def spring(*opts)
opts = (opts[0] or {})
x0 = (opts[:x0] or 75)
m = (opts[:m] or 1)
k = (opts[:k] or 1)
dt = (opts[:dt] or 0.0005)
v = (opts[:v0] or 0)
maxtime = (opts[:maxtime] or 40)

17

Experiments

• What happens if we increase displacement?
 spring(:x0 => 75)
 spring(:x0 => 150)

• What happens if we increase the mass?
 spring(:mass => 1)
 spring(:mass => 2)
 spring(:mass => 5)

18

11/14/2012

10

Simulating Gravitational Attraction

Newton’s law of universal gravitation:

 F = G · m1 · m2 / d2

where G = gravitational constant,
m1 and m2 are the masses, and
d is the distance between them.

Since F = ma we can calculate the acceleration of
each object.

19

N-Body Simulations

• With just two bodies, we can write a simple
formula to calculate their positions at any
future time, given their starting positions.

• But with 3 or more bodies, no formula exists
for this, because the system is highly
nonlinear, and potentially chaotic.

• Our only recourse is simulation.
20

11/14/2012

11

Gravity Simulation In 2 Dimensions

include SphereLab
b = make_system(:fdemo)
view_system(b, :pendown => :track)
f1 = b[0]; f2 = f1.clone; f3 = f1.clone

500.times{update_one(f1, b[1..5], 1.0)}
f2.position.x += 1
500.times{update_one(f2, b[1..5], 1.0)}

21

Simulating The Solar System

include SphereLab
b = make_system(:solarsystem)
view_system(b[0..4], :dash => 1)
365.times {
 update_system(b, 86459); sleep(0.1) }

Notice that the orbits are elliptical (Kepler).

22

11/14/2012

12

Simulation At Extreme Scales

• Cosmologists use simulations to study the
formation of galaxies (clusters of stars), and
even clusters of galaxies.

• At the other extreme, physicists simulate
individual atoms and molecules, e.g., to model
chemical reactions.

23

