UNIT 10A
Multiprocessing & Deadlock

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

Why Multiprocessing ?
* Everything happens at once in the world. Inevitably,
computers must deal with that world.
— Traffic control, process control, banking, fly by wire, etc.

* |tis essential to future speed-up of any computing
process.

— Google, Yahoo, etc. use thousands of small computers, even
when a job could be done with one big computer.

— Chips can’t run any faster because they would generate too
much heat.

— Moore’s law will allow many processors per chip.
* Even if your computer has one processor, a convenient

way to cope with different external processes is to
*devote different internal, computer processes to each.

11/13/2012

Moore’s Law vs. Clock Speed

Microgeocossor Transistor Gounts 16712011 & Moare's Law

=i

T, Source: Wikimedia Commons http://tinyurl.com/3d7qf3m

" Source: Bob Warfield http://tinyurl.com/3pt6we9

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

A Multiprocessor Model

The processors run
independently..

ProgramO

The shared memory is
used for
communication.

Shared Memory

Private
memory0

®
Only one processor at a o

(&)
time may execute an _/ Y

line of Ruby touching
the shared memory. Program1
The memory hardware
makes the other ones Private

; memoryl
wait.

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

11/13/2012

11/13/2012

Streams: One process
sends, another receives.

Shared
@full = false
@box = nil

=

Consumer 1

Producer O _
while true do Wh"? true do -
N - while 1@full do #nothing
mailO = whatever end
while @full do #nothing maill = @box
end _
_ - @full = false
@box = mailo rocess(maill)
@full = true P
end
end

15110 Principles of Computing, Carnegie 5
Mellon University - MORRIS

Shared
@full = false
@box = nil
— L amer
Producer 0 while true do
while true do while 1@full do #nothing
mail0 = whatever end
while @full do #nothing maill = @box
il @full = false
@box = mailo process(maill)
@full = true end
end
I N
box 1 2 E 4 5 N 6 |
~ — |-
15110 Principles of Computing, Carnegie 6
Mellon University - MORRIS

Streams with a Race Condition

Producer 0O # Consumer 1
while true do while true do
mail0 = whatever while 1@full do #nothing
while @full do #nothing end
end @full = false #bug!
@box = mailO maill = @box #out of order
@full = true process(maill)
end end
The order of accesses to @box and @full is very important. Suppose the
order of execution is @full = false while !@full
while @full grull = false
@box = 5 ma!ll =5
maill = 5 while @full
@full = true @box = 6
N\ @full = true

12 1o]0e]

Critical Sections

e Often, a process really needs exclusive
access to some data for more than one line.

e Acritical section is a sequence of two or
more lines that need exclusive access to the
shared memory.

e Real Life Examples
— Crossing a traffic intersection
— A bank with many ATMs
— Making a ticket reservation

15110 Principles of Computing, Carnegie 8
Mellon University - MORRIS

11/13/2012

Critical Section Example

e Consider a bank with multiple ATM’s.
* At one, Mr. J requests a withdrawal of $10.

» At another, Ms. J requests a withdrawal of $10 from the
same account.

* The bank’s computer executes:

For Mr. J, verify that the balance is big enough.
For Ms. J, verify that the balance is big enough.
Subtract 10 from the balance for Mr. J.
Subtract 10 from the balance for Ms. J.

A wnN e

e J

The balance went negative if it was less than $20!

Critical Sections in Ruby

Locate the the J's account data
containing the balance

if balance < 10
Critical error
Section —> else
balance = balance — 10
end

!

‘ Dispense $10 from ATM ‘

What can we do to prevent one processor from entering
the critical section while another is in it?

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

10

11/13/2012

Types of Race Condition Bugs

In decreasing order of seriousness:

1. Interference: multiple process in critical
section.

2. Deadlock: two processes idle forever,
neither entering their critical or non-
critical sections.

3. Starvation: one process needlessly idles
forever while the other stays in its non-
critical section.

4. Unfairness: a process has lower priority for
no reason. (Not a bad bug.)

Careful Driver Method

Don’t enter the intersection
unless it’s empty.

In shared memory: free = true #initially unlocked

#Process 1 #Process 2

while true do while true do
NonCriticalSection NonCriticalSection
whille !'free do #nothing whille !'free do #nothing
end end
free = false free = false
CriticalSection CriticalSection
free = true free = true

end end

Interference is possible!

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

11/13/2012

The Probability of a Collision

while true do
NonCriticalSection
while !free do #nothing
end
free = false
CriticalSection
free = true

end

Average time to perform Noncritical Section: 1,000 nanoseconds
Average time to perform CriticalSection: 10 nanoseconds
Average time to execute tests: 2 nanoseconds

Probability of one collision 1/1,000 = .001
Iterations of outer loop in one second: 10,000,000/1,012 = 9891
Probability of no collisions in 1 second: (1-0.001)%8°1 = 0.00005

15110 Principles of Computing, Carnegie

. . 13
Mellon University - MORRIS

The Stop and Look Method

BS000 Faw Soall Works

1. Signal your intention (by stopping).

2. Wait until cross road has no one waiting or crossing.
3. Cross intersection.

4. Renounce intention (by leaving intersection).

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 1

11/13/2012

The Stop and Look Method

Shared Memory
free[0] = true
free[1] true

Process 0

whille true do

A nonCriticalSection

B free[0] = false

C while Ifree[l] do
end

D criticalSection

E free[0] = true

end

#P0O is not stopped at sign
#P1 is not stopped at sign

Process 1

whille true do

A nonCriticalSection

B free[l] = false

C while Ifree[0] do
end

D criticalSection

E free[l] = true

end

Deadlock is possible!

15110 Principles of Computing, Carnegie

Mellon University - MORRIS

15

Deadlock

Deadlock is the condition when two or more

processes are all waiting for some shared
resource, but no process actually has it to
release, so all processes to wait forever
without proceeding.

It’s like gridlock in real traffic.

15110 Principles of Computing, Carnegie 16

Mellon University - MORRIS

11/13/2012

w >

owner = 1

A Stop Light Solution

é////’//////// \\\\\\\\\\\\\s

Process 1
whille true

nonCriticalSectionl
whille owner == 2 do
end
criticalSectionl
owner = 2

end

15110 Principles of Computing, Carnegie
Mellon Universit

#

A
B

Process 2

while true
nonCriticalSection2
while owner == 1 do
end
criticalSection2
owner = 1

end

17
NMORRIS

A
B

c
D

while

true

nonCriticalSectionl
while owner == 2 do

end

criticalSectionl
owner = 2

end

Check a Multiprocess by Filling State Table

Process 1

Process 2

A
B

c
D

while true

nonCriticalSection2
while owner == 1 do
end
criticalSection2
owner = 1

end

A state is described by the values of control variables (in this case just owner)
and the line that is about to be executed. The three characters. “dXY” means
“owner contains d, P1 is about to execute X, P2 is about to execute Y”.

Initial state: both processes are in their non-critical section and owner = 1.

State:

owner Plat P2at P1 steps

P2 steps

1AA

15110 Principles of Comp

ti

ng, Carnegie

18

Mellon University -

ORRTS

11/13/2012

A process exits non-critical section

Process 2

Process 1
while true

A nonCriticalSectionl
B while owner == 2 do
end
C criticalSectionl
D owner = 2
end

If it was P1, next state is

\

A
B

c

while true

nonCriticalSection2
while owner == 1 do
end
criticalSection2
owner = 1
end

If it was P2, next state is

State: owner Plat P2at

\1 steps

P2 stggs/

1AA

N
1BA

=
1AB

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

19

Enter the two new states and explore one.

Process 1
while true

Process 2

while true

A nonCriticalSectionl A nonCriticalSection2
B while owner == 2 do B while owner == 1 do
end end
C criticalSectionl C criticalSection2
D owner = 2 D owner = 1
end end
P1 enters critical section.
State: owner Plat P2at [\P1 steps P2 steps
1AA 18A 1AB
1BA 1CA 1BB
1AB

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

20

11/13/2012

10

Enter the two new states and explore one.

Process 2

Process 1
while true
nonCriticalSectionl

@ >

while owner == 2 do
end
criticalSectionl
owner = 2

end

while true

A nonCriticalSection2
B while owner == 1 do
end
c criticalSection2
D owner = 1
end
P2 stalls.

State: owner Plat P2at | P1 steps P2 sg(eps
1AA 1BA 148/
1BA 1CA 18§
1AB 188 1AB
1CA

1BB

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

21

The Complete Stop Light State Table

owner =1

/\

owner-P1-
P2 P1steps |P2steps
Process 1 # Process 2
1AA 1BA 1AB while true while true
1BA 1CA 1BB A nonCriticalSectionl A nonCriticalSection2
B while owner == 2 do B while owner == 1 do
1AB 1BB 1AB end end
C criticalSectionl C criticalSection2
1CA 1DA 1CB D owner = 2 D owner =1
1BB 1CB 1BB end end
1DA 2AA 1DB
1CB 1DB 1BB Here is the complete state table. You can tell
2AA 2BA 2AB there is no interference because there is no
1DB 2AB 1DB state with CC in it. To check deadlock, we
2BA 2BA 2BB better draw the picture.
2AB 2BB 2AC
2BB 2BB 2BC
2AC 2BC 2AD
2BC 2BC 2BD
2AD 2BD 1AA
2BD 2BD 1BA 15110 Principles of Computing, Carnegie 22
Mellon University - MORRI

11/13/2012

11

The Complete Stop Light State Graph

owner-P1-

P2 P1steps |P2 steps

1AA 1BA 1AB

1BA 1CA 1BB

1AB 1BB 1AB

1CA 1DA 1CB

1BB 1CB 1BB

1DA 2AA 1DB

1CB 1DB 1BB |
2AA 2BA 2AB ’
1DB 2AB 1DB

2BA 2BA 2BB

2AB 2BB 2AC

2BB 2BB 2BC

2AC 2BC 2AD

2BC 2BC 2BD

2AD 2BD 1AA

2BD 2BD 1BA

Zomputing, Carnegie

ity - MORRIS

ao.

Mellon University - MORRIS

Color the states
that include the
critical section, C,
and mark them with

24

11/13/2012

12

Looking for Deadlock

Mellon University - MORRIS

15110 Principles of Cumy egie

for n=0,1,2,3,...
Mark with n+1 all
the nodes that have
a transition to one
marked with n.

25

Looking for Deadlock

15110 Principles of Compu?
Mellon University - MORRIS

for n=0,2,3,...

Mark with n+1 all
the nodes that have
a transition to one
marked with n.

There is no
deadlock, but....

11/13/2012

13

There can be Starvation.

owner = 1

Starvation when one

/ \ process can stay in

Process 1 # Process 2

its non-critical

while true while true 1
A nonCriticalSectionl A nonCriticalSection2 SeCt|0n forever’
B while owner == 2 do B while owner == 1 do preventing the Other
end end
c criticalSectionl c criticalSection2 one from get“ng into
D owner = 2 D owner = 1 L. A
end end the critical section.

If Process 1 stays at A forever, Process 2 can'’t get
into its critical section, even if it wants to.

15110 Principles of Computing, Carnegie 27

Mellon University - MORRI

#

o >

An Asymmetric Solution

free[1] = true
free[2] = true
Process 1 # Polite-Process 2
while true whille true do
nonCriticalSectionl nonCriticalSection2
free[1] = false A free[2] = false
while 1free[2] do B while !free[1] do
end C free[2] = true
criticalSectionl D while !free[l] do
free[1] = true end
end E free[2] = false
end
criticalSection2
F free[2] = true
end

Process 2 backs off when it detects a conflict. This one
has no major flaws, but it takes a huge state table to show
it!

28

11/13/2012

14

State Table for Asymmetric Solution

P1-P2- free[1l] = true
free[1]- free[2] = true
free[2] P1 P2
AALt BAft ABtf # Process 1 # hf’?lite-Prgcess 2
hile t while true do

BATt CAft BBIT ! Ingnc?:iicaISectionl nonCriticalSection2
ABtf BBff Attf A free[1] = false A free[2] = fTalse

< B while !free[1] do

B hile 'f 2] d
CAft AAtt [CBff unite ree[2] do C free[2] - true
BBff BBff BCff criticalSectionl D while !free[l1l] do
c free[1] = t end
AFtf BFff AALt ond ree[1] rue E free[2] = false
CBff ABtf CCff end
criticalSection2
BCff BCff BDft F free[2] - true
Btff Btff BAft end
CCff ACtf CDft
BDft CDft BDft . .
There is no interference because a state
ACtf BCff ADtt . . A
starting with CF doesn’t occur.

CDft ADtt CDft
ADtt BDft AEtt
AEtt BEft ABtf
BEft CEft BBff 15110 Principles of Computing, Carnegie 29
CEft AEtHE CRff Mellon University - MORRIS
P1-P2-
freaz) | P1 | P2
AALt BAft ABtf
BAft |CAft BBff
ABtf BBff |Attf
CAft |AAtt |CBff
BBff BBff BCff
AFtf BFff |AAtt
CBff ABtf |CCff
BCff |BCff BDft
Btff Btff BAft
CCff |ACtf |CDft
BDft |CDft BDft
ACtf | BCff ADtt
CDft |ADtt |CDft
ADtt | BDft AEtt
AEtt | BEft ABtf NO DeadIOCk
BEft |CEft BBff
CEft |AEtt |CBff

15110 Principles of Computing, Carnegie

Mellon University - MORRIS

30

11/13/2012

15

11/13/2012

Checking for Starvation of P2

Erase blue exits from Axxx states and mark
Process 2’s critical sections.

15110 Principles of Computing, Carnegie 31
Mellon University - MORRIS

Checking for Starvation of P2

Number all the other states by distance
from critical section. Process 2 can’t be
starved.

15110 Principles of Computing, Carnegie 32
Mellon University - MORRIS

16

How to select states to consider

 |f you think you see a potential problem,
choose states that lead to it.

e Otherwise, just do them all and look for
problems.

* You don’t have to label lines that don’t touch
shared memory.

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

Peterson’s algorithm is symmetric and works!

free[0] = true
free[1] = false
priority = 0
Process 0O # Process 1
while true do while true do
nonCritcalSectionO nonCritcalSectionl
free[0] = false free[1l] = false
priority = 1 priority = 0O
while !free[l1l] and while !free[0] and
priority==1 do priority==0 do
end end
criticalSection0 criticalSectionl
free[0] = true free[l1l] = true
end end

15110 Principles of Computing, Carnegie

4
Mellon University - MORRIS :

11/13/2012

17

A Probabilistic Approach

Process 1 # Process 2
whille true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
free[l] = false free[2] = false
whille !free[2] do whille !free[1l] do
free[1l] = true free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nl =2*nl n2 =2 * n2
free[1l] = false free[2] = false
end end
Critical_Sectionl Critical_Section2
free[l] = true free[2] = true
end end

Probability collision will occur on Nth iteration = 1/2N

15110 Principles of Computing, Carnegie
Mellon University - MORRI

35

Multiprocessing is very hard.

Conventional debugging doesn’t work.

— You can’t step the program to investigate where something goes
wrong.

— Testing is futile. If there are N labeled lines, there are 2N different
execution sequences to test.

It requires more art and mathematics.
— It’s like digital hardware design.
— It needs proofs.

The state table method becomes unwieldy.
— The potential number of states is the product of the numbers of

values of all the control variable and the numbers of labeled lines in

all the processes.
— Computer Scientists invent programs to test large tables.

3

Only a tiny percentage of practicing programmers can do it.

11/13/2012

18

When is a 1% chance of errorin a
day better than a 0.1% chance?

 If thereis a 1% chance of error, the bug will
show up during 100 days of testing.

e If thereis a 0. 1% chance, the bug will show
up when the system is in operation and the
programmer has moved on.

 If thereis a 0.01% chance of error, the bug will
show up after a human generation has seen
no error and depends upon the code to run a
vital service.

15110 Principles of Computing, Carnegie

. . 37
Mellon University - MORRIS

This man removed all the traffic
lights and signs!

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 8

11/13/2012

19

Homework

15110 Principles of Computing, Carnegie

39

Mellon University - MORRIS

1. An Asymmetric Solution

free[1l] = true
free[2] = true
Process 1 # Process 2
while true while true
A nonCriticalSectionl A nonCriticalSection2
B free[1] = false B while !free[1] do
C while !free[2] do end
end C free[2] = false
D criticalSectionl D criticalSection2
E free[1] = true E free[2] = true
end end

It is OK to have the two processes run different programs. Here we switch
statements B and C in Process 2 to bias things in favor of Process 1 and break
the ties that seem to cause problems. Use the table below to analyze the
possible sequences and discover a problem: interference, deadlock, or
starvation. You only need to show enough states to demonstrate a problem.

40

11/13/2012

20

State Table

free[1]-free[2]-P1-P2 |P1 moves P2 moves
TTAA TTBA TTAB
TTAB

TTBA

41

2. A national economy could be looked at a system with 100,000 independent processes representing buyers
and sellers of goods. Consider the following economic maladies:

A. Depression
B. Bubbles
C. Income Inequality

D. Wasted productive resources

How do these problems correspond to the four multiprocessing problems?

1. Interference
2. Deadlock

3. Starvation
4. Unfairness

Hint: Think of entering a critical section as buying a good.

15110 Principles of Computing, Carnegie

Mellon University - MORRIS

42

11/13/2012

21

