
10/26/2012

1

UNIT 9C
Randomness in Computation:

More Fractals and Cellular Automata

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

1

Fractals

• Recall: A fractal is an image that is self-similar.

• Fractals are typically generated using recursion.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

2

10/26/2012

2

Simple Fractal

Connect midpoints of the quadrilateral

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

3

Simple Fractal

• Connect midpoints of each quadrilateral
recursively

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

4

It makes a disco floor!

10/26/2012

3

Fractal with Randomness

• Randomly move midpoints slightly and then
connect.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

5

Fractal with Randomness

• Randomly move midpoints slightly and then
connect.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

6

10/26/2012

4

Fractal with Randomness

• Randomly move midpoints slightly and then
connect.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

7

Fractal with Randomness

• Randomly move midpoints slightly and then
connect.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

8

10/26/2012

5

Fractal with Randomness

• Randomly move midpoints slightly and then
connect.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

9

Fractal with Randomness

• Randomly move midpoints slightly and then
connect.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

10

10/26/2012

6

Fractal with Randomness

• This technique can be used to create some
realistic mountain ranges.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

11

Fractals in Nature

• Approximate fractals are easily found in
nature. These objects display self-similar
structure over an extended, but finite, scale
range. Examples include clouds, snow flakes,
crystals, mountain ranges, lightning, river
networks, cauliflower or broccoli, systems of
blood vessels and pulmonary vessels,
coastlines, tree branches, galaxies, etc.
(borrowed from Wikipedia)

 15110 Principles of Computing, Carnegie
Mellon University - CORTINA

12

10/26/2012

7

“Elevated”

• Was produced from somebody's 4 kilobyte
computer program.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

13

Determinism

• A computer is deterministic. It follows
rules, step by step.

• Does that mean a program does the
same thing every time, given the same
input?

• Can a computer behave randomly?

 15110 Principles of Computing, Carnegie
Mellon University - CORTINA

14

10/26/2012

8

Cellular Automata

• A cellular automaton is a collection of cells on a grid
that evolves through a number of discrete time steps
(generations) according to a set of rules based on the
states of neighboring cells.

• The rules are then applied iteratively for as many
time steps as desired.

– John von Neumann was one of the first people to consider
such a model.

 (from Wolfram MathWorld)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

15

Example

• For each cell in the next generation, look at
the 3 cells on the row immediately above it
(immediately above, above-and-to-the-left,
and above-and-to-the-right) in the previous
generation.

• If the middle is white and either the left or the
right is black (but not both), then this cell will
become black in the next generation.
Otherwise, it will be white.

 15110 Principles of Computing, Carnegie
Mellon University - CORTINA

16

10/26/2012

9

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

17

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 0

generation 1

left middle right

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

18

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 0

generation 1

left middle right

10/26/2012

10

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

19

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 0

generation 1

left middle right

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

20

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 0

generation 1

left middle right

10/26/2012

11

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

21

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 0

generation 1

left middle right

and so on...

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

22

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 1

generation 2

Once the next generation is created, use that to create a new generation.

10/26/2012

12

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

23

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 2

generation 3

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

24

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 3

generation 4

10/26/2012

13

How it works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

25

If the middle is white and either the left or the

right is black (but not both) in the previous

generation, then this cell will become black in

the next generation. Otherwise, it will be white.

generation 4

generation 5

What we have so far

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

26

Keep going... what do we get?

(assume each row is infinite in length)

10/26/2012

14

Results

Look familiar?

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

27

Rule 18

• This is known as “Rule 18” for 1-dimensional
cellular automata.

– Rule: If the middle is white and either the left or
the right is black (but not both), then this cell will
become black. Otherwise, it will be white.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

28

1 1 1

0

1 1 0

0

1 0 1

0

1 0 0

1

0 1 1

0

0 1 0

0

0 0 1

1

0 0 0

0

00010010 in binary = 18

10/26/2012

15

Rule 30

• How would you describe this rule?

• Try this rule using a random initial phase.

• Try this rule with a single black cell in the
center.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

29

1 1 1

0

1 1 0

0

1 0 1

0

1 0 0

1

0 1 1

1

0 1 0

1

0 0 1

1

0 0 0

0

00011110 in binary = 30

Rule 30

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

30

//upload.wikimedia.org/wikipedia/en/9/97/Rule_30.svg

10/26/2012

16

Rule 30

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

31

Rule 30

• Both look very random.

• Where does the randomness come from?

• Read off the sequence down the middle
column. Can you find a pattern?

 11011100110001011001001110101110011101010110000110

• Rule 30 exhibits pseudo-randomness.

• Generated by an algorithm, but the output
appears random to us.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

32

//upload.wikimedia.org/wikipedia/commons/9/9d/CA_rule30s.png

10/26/2012

17

Rule 30

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

33

Rule 90

• Results starting with a random initial phase

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

34

//upload.wikimedia.org/wikipedia/commons/9/9d/CA_rule30s.png
//upload.wikimedia.org/wikipedia/commons/5/5b/R090_rand_0.png

10/26/2012

18

Rule 90

• How would you describe this rule?

• Try this rule using a random initial phase.

• Try this rule with a single black cell in the
center.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

35

1 1 1

0

1 1 0

1

1 0 1

0

1 0 0

1

0 1 1

1

0 1 0

0

0 0 1

1

0 0 0

0

01011010 in binary = 90

Rule 90

• Results starting with a single cell in the center
of the first phase

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

36

//upload.wikimedia.org/wikipedia/commons/c/ce/R090_pulse_wide.png

10/26/2012

19

Cellular Automata

• For more information:

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

37

Game of Life

• An infinite two-dimensional cellular automaton
devised by the mathematician John Horton Conway.

• The automaton consists of an infinite two-
dimensional orthogonal grid of square cells, each of
which is in one of two possible states, alive (■) or
dead (□).

• Every cell interacts with its eight neighbors, which
are the cells that are horizontally, vertically, or
diagonally adjacent.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
38

10/26/2012

20

Game of Life: Rules

• At each step in time, the following transitions occur:

– Any live cell with fewer than two live neighbors
dies, as if caused by under-population.

– Any live cell with two or three live neighbors lives
on to the next generation.

– Any live cell with more than three live neighbors
dies, as if by overcrowding.

– Any dead cell with exactly three live neighbors
becomes a live cell, as if by reproduction.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

39

Generations

• The initial pattern constitutes the seed of the
system.

• The first generation is created by applying the
above rules simultaneously to every cell in the
seed—births and deaths occur simultaneously,
and the discrete moment at which this happens
is sometimes called a tick.

• The rules continue to be applied repeatedly to
create further generations.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
40

10/26/2012

21

Example: Generation 1

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

41

Example: Generation 2

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

42

10/26/2012

22

Example: Generation 3

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

43

Example: Generation 4

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

44

Look familiar?

10/26/2012

23

Game of Life and Randomness

• It was observed early on in the study of the
Game of Life that random starting states all
seem to stabilize eventually.

• Conway offered a prize for any example of
patterns that grow forever. Conway's prize was
collected soon after its announcement, when
two different ways were discovered for
designing a pattern that grows forever.
(from www.math.com)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

45

