D e e
S S S
S9099999
(X XXXk
(ks K XK, X
(L X Ko
99090009
(KX, KK N
She**ate

UNIT 9A

Randomness in Computation:
Random Number Generators

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Course Announcements

e The help hours on Sunday October 21 will be
in rooms GHC 4211 and GHC 4215.

* We want your feedback on the course
assistants. Please fill out the form at
http://go00.gl/WZ8MH.

e Tutoring by our CAs. Visit the calendar at
http://g00.g1/0i87D.

Randomness in Computing

* Determinism -- in all algorithms and programs we
have seen so far, given an input and a sequence of
steps, we get a unique answer. The result is
predictable.

* However, some computations need steps that have
unpredictable outcomes

— Games, cryptography, modeling and simulation, selecting samples
from large data sets

* We use the word “randomness” for unpredictability,
having no pattern

Defining Randomness

* Philosophical question
e Are there any events that are really random?

* Does randomness represent lack of knowledge of the
exact conditions that would lead to a certain outcome?

Obtaining Random Sequences

Definition we adopt: A sequence is random if,
for any value in the sequence, the next value
in the sequence is totally independent of the
current value.

If we need random values in a computation,
how can we obtain them?

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Obtaining Random Sequences

Precomputed random sequences. For example, A Million
Random Digits with 100,00 Normal Deviates (1955): A 400
page reference book by the RAND corporation

— 2500 random digits on each page

— Generated from random electronic pulses

True Random Number Generators (TRNG)

— Extract randomness from physical phenomena such as atmospheric
noise, times for radioactive decay

Pseudo-random Number Generators (PRNG)

— Use a formula to generate numbers in a deterministic way but the
numbers appear to be random

Random numbers in Ruby

* To generate random numbers in Ruby, we can use
the rand function.

* The rand function take a positive integer argument
(n) and returns an integer between 0 and n-1.
>> rand(15110)
=> 1239
>> rand(15110)
=> 7320
>> rand(15110)
=> 84

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Is rand truly random?

e The function rand uses some algorithm to
determine the next integer to return.

* If we knew what the algorithm was, then the
numbers generated would not be truly
random.

e We call rand a pseudo-random number
generator (PRNG) since it generates numbers
that appear random but are not truly random.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Creating a PRNG

* Consider a pseudo-random number generator
prngl that takes an argument specifying the length
of a random number sequence and returns an array
with that many “random” numbers.
>> prngl(9)
= [0, 7, 2, 9, 4, 11, 6, 1, 8]

* Does this sequence look random to you?

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Creating a PRNG

* Let’s run prngl again:
>> prngl(15)
= [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,
10, 5, 0, 7, 2]

* Now does this sequence look random to you?

e What do you think the 16" number in the
seqguence is?

15110 Principles of Computing

Carnegie Mellon University - CORTINA 10

Another PRNG

* Let’s try another PRNG function:
=> prng2(15)
>> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0,
8, 4, 0, 8, 4]
* Does this sequence appear random to you?
* What do you think is the 16t number in this

sequence?

15110 Principles of Computing
Carnegie Mellon University - CORTINA

11

PRNG Period

e Let’s define the PRNG period as the number of
values in a pseudo-random number generator
sequence before the sequence repeats.

[0, 7, 2, 9, 4, 11, 6, 1, 8, 3,
10, 5, 0, 7, 2]

period =12

[0, 8
8’ 41

period = 3

next number = (last number + 7) mod 12

7 4’ O’ 8’ 4’ 0’ 8’ 4’ O’
0, 8

, 4]

next number = (last number + 8) mod 12

15110 Principles of Computing
Carnegie Mellon University - CORTINA

12

Looking at prngl

def prngl(n)
seq = [O] ; seed (starting value)
for 1 In 1..n-1 do
seq << (seg.last + 7) % 12
end
return seq
end

>> prngl(15)
= [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,
10, 5, 0, 7, 2]

15110 Principles of Computing

3
Carnegie Mellon University - CORTINA 13

Looking at prng2

def prng2(n)
seq = [0O] ; seed (starting value)
for 1 in 1..n-1 do
seq << (seq.last + 8) % 12
end
return seq
end

>> prng2(15)
=> [0’ 81 41 o, 8, 4’ 01 8’ 4’ O’
8, 4, 0, 8, 4]

15110 Principles of Computing

Carnegie Mellon University - CORTINA 4

Linear Congruential Generator (LCG)

* A more general version of the PRNG used in these examples is
called a linear congruential generator.

* Given the current value x; of PRNG using the linear
congruential generator method, we can compute the next
value in the sequence, x;,,, using the formula
Xi,1 = (a x; + ¢) modulo m where a, ¢, and m are pre-
determined constants.

—prngl: a=1c¢c=7,m=12
— prng2: a=1,¢c=8 m=12
15110 Principles of Computing

Carnegie Mellon University - CORTINA

Picking the constants a, ¢, m

* |f we choose a large value for m, and appropriate
values for a and c that work with this m, then we can
generate a very long sequence before numbers begin
to repeat.

— ldeally, we could generate a sequence with a
maximum period of m.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 16

Picking the constants a, c, m

* The LCG will have a period of m for all seed values if
and only if:

— cand m are relatively prime (i.e. the only positive integer
that divides both c and mis 1)

— a-1lis divisible by all prime factors of m
— if mis a multiple of 4, then a-1 is also a multiple of 4
e Example:prngl(a=1,c=7, m=12)
— Factorsofc:1,7 Factorsofm:1,2,3,4,6,12
— Ois divisible by all prime factors of 12 = true
— if 12 is a multiple of 4, then O is also a multiple of 4 - true

15110 Principles of Computing

Carnegie Mellon University - CORTINA 7

Example

X1 = (@ X, + ¢) modulo m
Xo=4 a=>5 c=3 m=38

* Compute x;, X5, ..., for this LCG formula.

* What is the period of this formula?

— If the period is maximum, does it satisfy the three
properties for maximal LCM?

15110 Principles of Computing

Carnegie Mellon University - CORTINA 18

LCMs in the Real World

e glibc (used by the c compiler gcc):
a=1103515245, c = 12345, m = 232
* Numerical Recipes (popular book on numerical

methods and analysis):
a = 1664525, c= 1013904223, m = 23?

e Random class in Java:
a=25214903917,c=11, m=2%8

* The PRNG built into Ruby has a period of 219937,

15110 Principles of Computing

Carnegie Mellon University - CORTINA 19

Using RubyLabs for Random Numbers

>> include RandomLab

=> Object

>> p = PRNG.new(1, 7, 12)

=> #<RandomLab::PRNG a: 1 c: 7 m: 12>
>> p.seed(0)

= 0 ﬁ\\\\\\\
>> p.advance

= 7

>> p.advance

= 2

>> p.state

= 2

A seed is a number used to initialize a
pseudorandom number generator. Its choice
is critical in some applications.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 20

10

>>
=>
>>
=>
>>
=>
>>
=>
>>
=>

Visualizing the Output of a PRNG

include RandomLab

Object

p = PRNG.new(5, 3, 8)

#<RandomLab::PRNG a: 5 c: 3 m: 8>
p-seed(Time.now.to_1i)

Returns the integer representation of current time
view_numberline(8)

Creates a window with a number line for values O to 7
8.times {J = p-advance; tick_mark(j)}

For 8 times, advances to the next pseudo random number

in sequence and marks it on the numberline

Every number less than 8 seems to be generated exactly once in a period of 8.

21

Rest of the Week

e Uses of PRNG in games

e Cellular automata and psedorandomness

15110 Principles of Computing

Carnegie Mellon University - CORTINA 22

11

