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UNIT 7B

Data Representation: Compression
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Hash Tables in Ruby

* Last week we looked at hash tables as a
means of determining whether a key is in a list
in O(1) time.

* We can generalize this idea to associate a key
with a value.

* Examples:
— Employee name => Employee number
— Product code => Price
— Name in contacts list => Email address
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Hash Tables in Ruby

>> h = Hash.new
=1{}

>> h["Mercedes"] = 50000
50000

>> h["Bentley"] = 120000
120000
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Hash Tables in Ruby

>> h
{"Mercedes" => 50000,
"Bentley" => 120000}

>> h["Mercedes"]
=50000
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Hash Tables in Ruby

>> h2 = {:apple => :red,
:banana => :yellow,
:cherry => :red}

>> h2[ :banana]
=:yellow
>> h2.invert

={:red => :cherry,
:yellow => :banana}

Alternative Constructor Syntax

>> h3 = {1, 2, 3, 4, 5, 6}
=> {5=>6, 1=>2, 3=>4}

>> h3.size
=3

>> h3[:woof]
—>nil




Fixed-Width Encoding

In a fixed-width encoding scheme, each
character is given a binary code with the
same number of bits.

Example:

Standard ASCII is a fixed width encoding
scheme, where each character is encoded with
7 bits.

This gives us 27 = 128 different codes for
characters.
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Fixed-Width Encoding

Given a character set with n characters, what is the
minimum number of bits needed for a fixed-width
encoding of these characters?

Since a fixed width of k bits gives us n unique codes to
use for characters, where n = 2k,

So given n characters, the number of bits needed is
given by k = |—Iog2n—| . (We use the ceiling function since
log,n may not be an integer.)

Example: To encode just the alphabet A-Z using a fixed-

width encoding, we would need |—Iog226—| =5 bits:
e.g. A=>00000, B =>00001, C=>00010, ..., Z=>11001.
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Using Fixed-Width Encoding

If we have a fixed-width encoding scheme using
n bits for a character set and we want to
transmit or store a file with m characters, we
would need mn bits to store the entire file.

Can we do better?

—  If we assign fewer bits to more frequent characters,
and more bits to less frequent characters, then the
overall length of the message might be shorter.
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Huffman Coding

We can use an encoding scheme named
after David A. Huffman to compress our
text without losing any information.

Based on the idea
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The Hawaiian Alphabet Y
* The Hawaiian alphabet ' 0.068
. A 0.262
consists of 13 characters. E 0.072
— ' is the okina which H 0.045
sometimes occurs between I 0.084
vowels (e.g. KAMA’ AINA ) kK 0.106
L 0.044
* The table to the right M 0.032
shows each character along ‘; ggiz
with its relative frequency P 0.030
in Hawaiian words. U 0.059
W 0.009
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The Huffman Tree

* We use a tree structure to develop the unique
binary code for each letter.

* Start with each letter/frequency as its own node:

‘ | L
0.068 0.084 0.044

N 0] P W
0.083 0.106, 0.030 0.009
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The Huffman Tree

* Combine lowest two frequency nodes into a tree
with a new parent with the sum of their
frequencies.

‘ |
0.068 0.084
N o L
0083/ \0.106/ \0.044
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The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

‘ |
0.068 0.084
N o) L
0083/ \0.106/ \0.044
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The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies...
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@ 0.068
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L ‘ N |
0.044 0.068 0.083 0.084
* Repeat until you @ @

have one tree with

all nodes linked in.
0.009 0.030

BOW
0.428 @
1

0
KO ON @ @ .
L0600, 8 &
0 1 0.106 0 1 0 1 O 1
@ G @G &
0.044 0.068 0.083 0.084
0 1
e Label all left & @
branches with O 0 1
and all right
branches with 1 0.009 0.030
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BON
0.428 @
1 0

0 1
IDERONGOENOR
o), (aing) Giog) ) () (o)
01 S 1 O 1 0 1
) ) o) (o) (o)
0.044 0.068 0.083 0.084
0 1
* The binary code for & @
each character is 0 1
obtained by following
the path from the root

to the character.

BOW
0.428 @
1

0
B, 8. @ @ .
(0]
o), (oo ‘ i @ i

0 1 S 1 0 1 0 1
@) ) () Gy
0.044 0.068 0.083 0.084

0 1

Examples: & @

H=>0001 0 1

A=>10 W p

P=>110011 0.009, 0.030
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Fixed Width vs. Huffman Coding

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

S w0 Z2ZRPRHDHE D

0111
10
1101
0001
1111
001
0000
11000
1110
010
110011
0110
110010

S5 dmw o Z2BHRHDME Y
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ALOHA

Fixed Width:
0001 01101001 0011 0001
20 bits

Huffman Code:
10 0000010 0001 10
15 bits
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Variable Length Codes

* |n a fixed-width code, the boundaries

between letters are fixed in advance:
0001 0110 1001 0011 o001

* With a variable-length code, the boundaries
are determined by the letters themselves.

— No letter’s code can be a prefix of another letter.

— Example: since A is “10”, no other letter’s code can
begin with “10”. All the remaining codes begin

with “00”, “01”, or “11”.

15110 Principles of Computing,
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Programming the Huffman Tree

* Let’s write Ruby code to produce a Huffman
encoding of an alphabet.

* At each step we need to find the two nodes
with the lowest frequency scores.

* This will be easy if nodes are kept in a list that
is sorted by score value.

* Solution: use a priority queue.
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Priority Queues

NOTE: For this unit, you will need RubyLabs set up and you will
need to include BitLab (see p. 167)

. A priority queue (PQ) is like an array that is sorted
P9 = PriorityQueue.new
=> [1
. To add element into the priority queue in its correct
position, we use the << operator:
Pg << "peach"
Pg << "apple"
P9 << "banana"
=> ["apple", "banana", "peach"]

15110 Principles of Computing
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Priority Queues (cont’d)

To remove the first element from the priority queue, we
will use the shift method:

fruitl = pqg.shift

=> "apple"

Pq

=> ["banana", "peach"]

fruit2 = pqg.shift

=> "banana"

Pa
=> ["peach"]
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Tree Nodes

We can store all of the node data into a 2-dimensional array:

table = [ ["'", 0.068], ["A", 0.262],
["E", 0.072], ["H", 0.045], ["I", 0.084],
["K", 0.106], ["L", 0.044], ["M", 0.032],
['N", 0.083], ["O", O0.106], ["P", 0.030],
["U", 0.059], ["W", 0.009] ]

A tree node consists of two values, the character and its
frequency. Making one of the tree nodes:

char table[2] .first # "E"

freq table[2] .last # 0.072

node = Node.new(char, freq)

15110 Principles of Computing
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Building a PQ of Single Nodes

def make table
—Pq( ) Remember: each item

Pq = PriorityQueue.new __inthetableisa
for item in table do 2-element array with
a character and a

char = item.first frequency.

freq = item.last

node Node.new (char, freq)
P9 << node

end

return pq

end
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Building our Priority Queue

pg = make pqg(table)
=> [( W: 0.009 ), ( P: 0.030 ),

( M: 0.032 ), ( L: 0.044 ),
( H: 0.045 ), ( U: 0.059 ),
(': 0.068 ), (E: 0.072 ),
( N: 0.083 ), ( I: 0.084 ),
( K: 0.106 ), ( O: 0.106 ),
( A: 0.262 )]

\ This is our priority queue
showing the 13 nodes
in sorted order based on
frequency.
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Building a Huffman Tree

(Slightly different than book version fig 7.9)

def build tree(pq)
while pg.length > 1
nodel = pqg.shift
node2 = pqg.shift
P9 << Node.combine (nodel, node2)

end \\

return pq.first Creates a new node
with node1 as its left child

end
and node2 as its right child
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Building our Huffman Tree

tree = build tree (pq)

=> (1.000 ( 0.428 ( 0.195 ( 0.089

L: 0.044 ) ( H: 0.045 ) ) ( K: 0.106 ) )
0.233 ( O: 0.106 ) ( 0.127 ( U: 0.059 )
': 0.068 ) ) ) ) (0.572 ( A: 0.262 )
0.310 ( 0.143 ( 0.071 ( M: 0.032 )

0.039 ( W: 0.009 ) ( P: 0.030) ) )

E: 0.072 ) ) ( 0.167 ( N: 0.083 )

I: 0.084 ) ) ) ))

This is just our Huffman tree
expressed using recursively nested
parenthetical components:

( root ( left ) ( right ) )

e R e e e
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Assigning Codes, Encoding & Decoding

ht = assign codes (tree) from BitLab
- takes a Huffman tree and
\ returns a hash table that
ht["W"] maps each letter to its
=> 110010 binary code
ht["A"] «—
= 10 Note the [ ] syntax.

This returns the code
associated with the
msg = encode ("ALOHA", tree) characterfrom the

=> 100000010000110 ': hash table.
decode (msg, tree) from BitLab
=> "ALOHA" encode and decode functions
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