VN
0 G
C o aanaanis
It
e
aa'aat e~

Sty ~
OO L 0
00000800

UNIT 7B

Data Representation: Compression

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Hash Tables in Ruby

* Last week we looked at hash tables as a
means of determining whether a key is in a list
in O(1) time.

* We can generalize this idea to associate a key
with a value.

* Examples:
— Employee name => Employee number
— Product code => Price
— Name in contacts list => Email address

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Hash Tables in Ruby

>> h = Hash.new
=1{}

>> h["Mercedes"] = 50000
50000

>> h["Bentley"] = 120000
120000

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Hash Tables in Ruby

>> h
{"Mercedes" => 50000,
"Bentley" => 120000}

>> h["Mercedes"]
=50000

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Hash Tables in Ruby

>> h2 = {:apple => :red,
:banana => :yellow,
:cherry => :red}

>> h2[:banana]
=:yellow
>> h2.invert

={:red => :cherry,
:yellow => :banana}

Alternative Constructor Syntax

>> h3 = {1, 2, 3, 4, 5, 6}
=> {5=>6, 1=>2, 3=>4}

>> h3.size
=3

>> h3[:woof]
—>nil

Fixed-Width Encoding

In a fixed-width encoding scheme, each
character is given a binary code with the
same number of bits.

Example:

Standard ASCII is a fixed width encoding
scheme, where each character is encoded with
7 bits.

This gives us 27 = 128 different codes for
characters.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Fixed-Width Encoding

Given a character set with n characters, what is the
minimum number of bits needed for a fixed-width
encoding of these characters?

Since a fixed width of k bits gives us n unique codes to
use for characters, where n = 2k,

So given n characters, the number of bits needed is
given by k = |—Iog2n—| . (We use the ceiling function since
log,n may not be an integer.)

Example: To encode just the alphabet A-Z using a fixed-

width encoding, we would need |—Iog226—| =5 bits:
e.g. A=>00000, B =>00001, C=>00010, ..., Z=>11001.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Using Fixed-Width Encoding

If we have a fixed-width encoding scheme using
n bits for a character set and we want to
transmit or store a file with m characters, we
would need mn bits to store the entire file.

Can we do better?

— If we assign fewer bits to more frequent characters,
and more bits to less frequent characters, then the
overall length of the message might be shorter.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Huffman Coding

We can use an encoding scheme named
after David A. Huffman to compress our
text without losing any information.

Based on the idea

OCCur more

frequently B]ﬁl,ﬂlﬂ!ﬂﬂﬂ

7 | 52

.

than others. i W |

p 34 EEERR ral ’0,54
Huffman codesare AT e Y 4
not fixed-width. E————— '}

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

. 'Y

The Hawaiian Alphabet Y
* The Hawaiian alphabet ' 0.068
. A 0.262
consists of 13 characters. E 0.072
— ' is the okina which H 0.045
sometimes occurs between I 0.084
vowels (e.g. KAMA’ AINA) kK 0.106
L 0.044
* The table to the right M 0.032
shows each character along ‘; ggiz
with its relative frequency P 0.030
in Hawaiian words. U 0.059
W 0.009

15110 Principles of Computing
Carnegie Mellon University - CORTINA

The Huffman Tree

* We use a tree structure to develop the unique
binary code for each letter.

* Start with each letter/frequency as its own node:

‘ | L
0.068 0.084 0.044

N 0] P W
0.083 0.106, 0.030 0.009

15110 Principles of Computing
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes into a tree
with a new parent with the sum of their
frequencies.

‘ |
0.068 0.084
N o L
0083/ \0.106/ \0.044

15110 Principles of Computing
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

‘ |
0.068 0.084
N o) L
0083/ \0.106/ \0.044

15110 Principles of Computing
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies...

15110 Principles of Computing
Carnegie Mellon University - CORTINA

@ 0.068

15110 Principles of Computing
Carnegie Mellon University - CORTINA

G@

@ 0.068

15110 Principles of Computing
Carnegie Mellon University - CORTINA

15110 Principles of Computing
Carnegie Mellon University - CORTINA

15110 Principles of Computing
Carnegie Mellon University - CORTINA

20

10

15110 Principles of Computing

Carnegie Mellon University - CORTINA 21

15110 Principles of Computing
Carnegie Mellon University - CORTINA

22

11

s S
SIIOEEOEEC
L ‘ N |
0.044 0.068 0.083 0.084
* Repeat until you @ @

have one tree with

all nodes linked in.
0.009 0.030

BOW
0.428 @
1

0
KO ON @ @ .
L0600, 8 &
0 1 0.106 0 1 0 1 O 1
@ G @G &
0.044 0.068 0.083 0.084
0 1
e Label all left & @
branches with O 0 1
and all right
branches with 1 0.009 0.030

12

BON
0.428 @
1 0

0 1
IDERONGOENOR
o), (aing) Giog)) () (o)
01 S 1 O 1 0 1
)) o) (o) (o)
0.044 0.068 0.083 0.084
0 1
* The binary code for & @
each character is 0 1
obtained by following
the path from the root

to the character.

BOW
0.428 @
1

0
B, 8. @ @ .
(0]
o), (oo ‘ i @ i

0 1 S 1 0 1 0 1
@)) () Gy
0.044 0.068 0.083 0.084

0 1

Examples: & @

H=>0001 0 1

A=>10 W p

P=>110011 0.009, 0.030

13

Fixed Width vs. Huffman Coding

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

S w0 Z2ZRPRHDHE D

0111
10
1101
0001
1111
001
0000
11000
1110
010
110011
0110
110010

S5 dmw o Z2BHRHDME Y

15110 Principles of Computing,

ALOHA

Fixed Width:
0001 01101001 0011 0001
20 bits

Huffman Code:
10 0000010 0001 10
15 bits

27

Carnegie Mellon University - CORTINA

Variable Length Codes

* |n a fixed-width code, the boundaries

between letters are fixed in advance:
0001 0110 1001 0011 o001

* With a variable-length code, the boundaries
are determined by the letters themselves.

— No letter’s code can be a prefix of another letter.

— Example: since A is “10”, no other letter’s code can
begin with “10”. All the remaining codes begin

with “00”, “01”, or “11”.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

28

14

Programming the Huffman Tree

* Let’s write Ruby code to produce a Huffman
encoding of an alphabet.

* At each step we need to find the two nodes
with the lowest frequency scores.

* This will be easy if nodes are kept in a list that
is sorted by score value.

* Solution: use a priority queue.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Priority Queues

NOTE: For this unit, you will need RubyLabs set up and you will
need to include BitLab (see p. 167)

. A priority queue (PQ) is like an array that is sorted
P9 = PriorityQueue.new
=> [1
. To add element into the priority queue in its correct
position, we use the << operator:
Pg << "peach"
Pg << "apple"
P9 << "banana"
=> ["apple", "banana", "peach"]

15110 Principles of Computing

Carnegie Mellon University - CORTINA 30

15

Priority Queues (cont’d)

To remove the first element from the priority queue, we
will use the shift method:

fruitl = pqg.shift

=> "apple"

Pq

=> ["banana", "peach"]

fruit2 = pqg.shift

=> "banana"

Pa
=> ["peach"]

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Tree Nodes

We can store all of the node data into a 2-dimensional array:

table = [["'", 0.068], ["A", 0.262],
["E", 0.072], ["H", 0.045], ["I", 0.084],
["K", 0.106], ["L", 0.044], ["M", 0.032],
['N", 0.083], ["O", O0.106], ["P", 0.030],
["U", 0.059], ["W", 0.009]]

A tree node consists of two values, the character and its
frequency. Making one of the tree nodes:

char table[2] .first # "E"

freq table[2] .last # 0.072

node = Node.new(char, freq)

15110 Principles of Computing
Carnegie Mellon University - CORTINA

16

Building a PQ of Single Nodes

def make table
—Pq() Remember: each item

Pq = PriorityQueue.new __inthetableisa
for item in table do 2-element array with
a character and a

char = item.first frequency.

freq = item.last

node Node.new (char, freq)
P9 << node

end

return pq

end

15110 Principles of Computing

Carnegie Mellon University - CORTINA 33

Building our Priority Queue

pg = make pqg(table)
=> [(W: 0.009), (P: 0.030),

(M: 0.032), (L: 0.044),
(H: 0.045), (U: 0.059),
(': 0.068), (E: 0.072),
(N: 0.083), (I: 0.084),
(K: 0.106), (O: 0.106),
(A: 0.262)]

\ This is our priority queue
showing the 13 nodes
in sorted order based on
frequency.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 34

Building a Huffman Tree

(Slightly different than book version fig 7.9)

def build tree(pq)
while pg.length > 1
nodel = pqg.shift
node2 = pqg.shift
P9 << Node.combine (nodel, node2)

end \\

return pq.first Creates a new node
with node1 as its left child

end
and node2 as its right child

15110 Principles of Computing

-
Carnegie Mellon University - CORTINA 35

Building our Huffman Tree

tree = build tree (pq)

=> (1.000 (0.428 (0.195 (0.089

L: 0.044) (H: 0.045)) (K: 0.106))
0.233 (O: 0.106) (0.127 (U: 0.059)
': 0.068)))) (0.572 (A: 0.262)
0.310 (0.143 (0.071 (M: 0.032)

0.039 (W: 0.009) (P: 0.030)))

E: 0.072)) (0.167 (N: 0.083)

I: 0.084)))))

This is just our Huffman tree
expressed using recursively nested
parenthetical components:

(root (left) (right))

e R e e e

15110 Principles of Computing

Carnegie Mellon University - CORTINA 36

18

Assigning Codes, Encoding & Decoding

ht = assign codes (tree) from BitLab
- takes a Huffman tree and
\ returns a hash table that
ht["W"] maps each letter to its
=> 110010 binary code
ht["A"] «—
= 10 Note the [] syntax.

This returns the code
associated with the
msg = encode ("ALOHA", tree) characterfrom the

=> 100000010000110 ': hash table.
decode (msg, tree) from BitLab
=> "ALOHA" encode and decode functions

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 87

19

