
1

UNIT 6B
Organizing Data: Hash Tables

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

Quiz

Given: x = ["b", "c", "d"]

Write a short Ruby expression in terms of x to
produce each of the following results:

 ["a", "b", "c", "d"]

 ["b", "c", "d", "e"]

 [["b", "c", "d"]]

 ["a", ["b", "c", "d"]]

 [["a","b"], ["a", "c"], ["a", "d"]]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

2

Quiz

Analyze this recursive function:
 def sum_elements (list)

 if list = [] then

 return 0

 else

 return list[0] +

 sum_elements(list[1..list.length-1])

 end

 end

What is the base case? What is the base result?

What is the recursive case? How do you derive the result of this
case from the result of the easier recursive call?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

What Do We Know About Search?

• You can search an unordered list in O(n) time
by “brute force” (simple linear search).

• You can search an ordered list in O(log n) time
using binary search.

– For large n, this is much faster than linear search.

– But… sorting the list takes O(n log n) time.

– Worth it if you’re going to do lots of searches on
the same list, since you only have to sort once.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

3

Really Fast Searching

• Sorting has been proved to require O(n log n)
time. There cannot be a faster algorithm.
Life is hard.

• But you can search a
list in O(1) time!

• How? Use a hash table.
15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Requirements for
Constant Time Search

• An hash table (array) T with k elements, called
“buckets”. The exact value of k doesn’t matter
but it must be of size comparable to n.
In other words, k is of size O(n).

• A “hash function” h(x) that maps an item x to
an array index in 0..k-1.

• To search the array T for item x, look in T[h(x)]
15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

4

An Empty Hash Table

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

0:

1:

2:

3:

4:

5:

Add Element “fox”

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

0:

1:

2:

3:

4:

5:

fox h("fox") is 0

5

Add Element “goat”

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

0:

1:

2:

3:

4:

5:

h("goat") is 4 goat

fox

Add Element “hen”

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

0:

1:

2:

3:

4:

5:

h("goat") is 4 goat

fox

h("hen") is also 0

hen

6

Requirements for the
Hash Function h(x)

• Must be fast: O(1)

• Must distribute items roughly uniformly
throughout the array, so everything doesn’t
end up in the same bucket.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

Ruby Implementation

>> T = Array.new(6, [])

=> [[], [], [], [], [], []]

def hash_insert(T, item)

 index = h(item)

 if not T[index].include?(item) then

 T[index] << item

 end

 return nil

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

7

Testing Our Hash Table

>> hash_insert(T, "fox")

>> hash_insert(T, "goat")

>> hash_insert(T, "hen")

>> T

[["fox", "hen"], [], [], [], ["goat"], []]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

Constant Time Search

def hash_search(T, item)

 return T[h(item)].include?(item)

end

>> hash_search(T, "fox")

true

>> hash_search(T, "armadillo")

false

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

8

Review

• Why can the search be done in constant time?

– Because the hash function is O(1), and …

– A bucket contains only a few items.

• Why do buckets contain only a few items?

– Because we have O(n) buckets, and …

– Our hash function distributes items roughly
uniformly throughout the array, so there are few
collisions.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

What’s A Good Hash Function?

• For strings:

– Treat the characters in the string like digits in a
base-256 number.

– Divide this quantity by the number of buckets, k.

– Take the remainder, which will be an integer in the
range 0..k-1.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

9

Treating Characters As Numbers

>> "a"[0]

97

>> "A"[0]

65

>> s = "cat"

"cat"

>> s[0]

99

>> s[1]

97

>> s[2]

116 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

Base 10:

 “573” is 5×102 + 7×101 + 3×100 = 573

Base 256:

 “cat” is “c”×2562 + “a”×2561 + “t”×2560

 = 99×2562 + 97×2561 + 116×2560

 = 6513012

Hash Function For Strings

def h(s)

 sum = 0

 for i in 0..s.length-1 do

 sum = 256*sum + s[i]

 end

 return sum % 6

end

>> h("goat")

=> 4

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

Number of buckets

10

Fancier Hash Functions

• How would you hash an integer i?

– Perhaps i % k would work well.

• How would you hash a list?

– Sum the hashes of the list elements.

• How would you hash a floating point number?

– Maybe look at its binary representation and treat
that as an integer?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

Summary of Search Techniques

Technique Setup Cost Search Cost

Linear search 0, since we’re
given the list

O(n)

Binary search O(n log n)
 to sort the list

O(log n)

Hash table O(n) to fill the
buckets

O(1)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

