DR
oooooooo

UNIT 5A
Recursion: Basics

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Feedback in Autolab

 When your CAs grade your programming
assignments, they should be leaving feedback
if you don’t get full credit on a problem.

* Click on the score to see the feedback.

* If you still have questions about why an
answer wasn’t correct, ask your CA.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Recursion

e A “recursive” function is one that calls itself.
* Infinite loop? Not necessarily.

Not like this.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

e The recursive
function calls itself
on a smaller
version of the
problem to be
solved.

e Recursion looks
more like this:

Recursive Definitions

e Every recursive definition includes two parts:

— Base case (non-recursive)
A simple case that can be done without solving
the same problem again.

— Recursive case(s)
One or more cases that are “simpler” versions
of the original problem.

* By “simpler”, we sometimes mean “smaller” or
“shorter” or “closer to the base case”.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example: Factorial

e NI'=Nx(N-1)x(N-2)x~x1

e 5= 5x4x3x2x1

* 6l=6x5%x4x3x2x1

e So6!=6x5!

e And 5! =5 x4l

e And4! =4 x 3!

 What is the base case? 0!=1

Carnegie Mellon University - CORTINA

Factorial in Ruby (Recursive)

def factorial (n)

if n== % base case
return 1
else % recursive case
return n * factorial(n-1)
end

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Tracing Factorial

factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1)
factorial(1) = 1 * factorial(0)
factorial(0) = 1

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Tracing Factorial

factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1)
factorial(1) =1 * factorial(0)=1*1=1
factorial(0) = 1

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Tracing Factorial

factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)

factorial(2) = 2 * factorial(1) = 2*1=2
factorial(1) =1 * factorial(0)=1*1=1
factorial(0) = 1

15110 Principles of Computing

Carnegie Mellon University - CORTINA 10

Tracing Factorial

factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)

factorial(3) = 3 * factorial(2) = 3*2=6
factorial(2) = 2 * factorial(1) = 2*1=2
factorial(1) =1 * factorial(0)=1*1=1
factorial(0) = 1

15110 Principles of Computing

Carnegie Mellon University - CORTINA i

Tracing Factorial

factorial(5) = 5 * factorial(4)

factorial(4) = 4 * factorial(3) = 4*6=24
factorial(3) = 3 * factorial(2) = 3*2=6
factorial(2) = 2 * factorial(1) = 2*1=2
factorial(1) =1 * factorial(0)=1*1=1
factorial(0) = 1

15110 Principles of Computing

Carnegie Mellon University - CORTINA 12

Tracing Factorial

factorial(5) =5 * factorial(4) = 5*24=120
factorial(4) = 4 * factorial(3) = 4*6=24
factorial(3) = 3 * factorial(2) = 3*2=6
factorial(2) = 2 * factorial(1) = 2*1=2
factorial(1) =1 * factorial(0)=1*1=1
factorial(0) = 1

15110 Principles of Computing 13
Carnegie Mellon University - CORTINA °

Recursive vs. Iterative Solutions

e For every recursive function, there is an
equivalent iterative solution.

* For every iterative function, there is an
equivalent recursive solution.

* But some problems are easier to solve one
way than the other way.

15110 Principles of Computing 14
Carnegie Mellon University - CORTINA

Factorial Function (Iterative)

def factorial (n)
result=1
foriin1..ndo

result = result * i
end
return result
end

15110 Principles of Computing

Carnegie Mellon University - CORTINA 15

Fibonacci Sequence

Start with 1 pair of baby ‘
rabbits. ‘

Babies take 1 month to
reach maturity.

Mature rabbits produce
1 new pair of babies
every month.

After a year, how many
rabbits do you have?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

16

Recursive Fibonacci

e Base case: we start with nothing.
—fib(0) is O
* In the first month we have 1 baby rabbit:
—fib(1) is 1
e At n>1 months, the number of rabbits is:
of rabbits from last month fib(n-1)
+
of babies born this month ?7?7?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 18

Recursive Fibonacci

e How many babies are born in month n?
— One baby for every adult who was alive at n-1
 How many adults were alive in month n-17?

— As many as the total number of rabbits at n-2

e Therefore:
fib(n) =\fib(n—1)} + \fib(n—2)}

[[
Adults in Babies in
month n month n

15110 Principles of Computing
Carnegie Mellon University - CORTINA

19

Recursive Fibonacci in Ruby

def fib(n)
ifn==0orn==
return n
else
return fib(n-1) + fib(n-2)
end

>> (0..20).each { |i] p [i, fib(i)] }

15110 Principles of Computing
Carnegie Mellon University - CORTINA

20

10

Recursive Definition

fib(5)
fib(4) fib(3)
fib(3) fib(2) fib(2) fib(1)
fib(2) || fib(1) fib(1) || fib(0) | | fib(1) fib(0)
fib(0) = 0
fib(1) || fib(0) fib(1) =1 _
fib(n) = fib(n-1) + fib(n-2), n > 1
Camegie Melon Universty - CORTINA 21
Recursive Definition
5)
3 2
2 1 1 1
1 1 1 0 1 0
fib(0) = 0
1 0 fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1
15110 Principles of Computing 2

Carnegie Mellon University - CORTINA

11

Fibonacci Numbers in Nature

0,1,1,2,3,5,8,13, 21, 34,55, 89, 144, 233, etc.
Number of branches on a tree.

Number of petals on a flower.

Number of spirals on a pineapple.

PR SRR R
13 4 4 4 AN

N

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Iterative Fibonacci

def fib(n)
x=0
next x=1
foriin1..ndo
X, next_x = next_x, x+next_x

end
return x Much faster than
end the recursive
version. Why?

15110 Principles of Computing

Carnegie Mellon University - CORTINA 24

12

GCD

def gcd2(x, Yy)

iIT y == 0 then
base case
return Xx
else
return gcd2(y, X % y) recursive
end case
(a “simpler”
end version of
the same
problem)
15110 Principles of Computing 25

Carnegie Mellon University - CORTINA

Recursive sum of a list

def sumlist(list)
n = list.length

- Base case:
if n == then .
The sum of an empty list is 0.
return O
else

return list[0] + sumlist(list[1l..n-1])

end \

Recursive case:
The sum of a list is the first element +
the sum of the rest of the list.

end

15110 Principles of Computing 26
Carnegie Mellon University - CORTINA

13

Towers of Hanoi

* Apuzzle invented by
French mathematician = = 8 di
Edouard Lucas in 1883. . Wi B disce.

* Atatemple far away, priests were led to a courtyard with
three pegs and 64 discs stacked on one peg in size order.

— Priests are only allowed to move one disc at a time
from one peg to another.

— Priests may not put a larger disc on top of a smaller
disc at any time.

* The goal of the priests was to move all 64 discs from the
leftmost peg to the rightmost peg.

* According to the story, the world would end when the

priests finished their work.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Towers of Hanoi

Towers of Hanoi

Problem: Move n discs E
from peg A to peg C using peg B. A B c
1. Move n-1 discs from peg A to peg B é
i C. ive st —
using peg C. (recursive step) A . c
2. Move 1 disc from peg A to peg C. é
A B C
3. Move n-1 discs from peg B to C
using peg A. (recursive step)
A B C

15110 Principles of Computing
Carnegie Mellon University - CORTINA

14

Towers of Hanoi in Ruby

def hanoi (disks, from, temp, to)
n = disks.length
ifn>1 then
towers(disks[1..n-1], from, to, temp)
end

print ""Move ",disks[0]," from ", from,
(] tO ll’ to, ll\nll

if n>1 then
hanoi(disks[1..n-1], temp, from, to)
end
end

Inirb: towers([4,3,2,1], "A", "B", "C')

How many moves do the priests need to move 64 discs? >

Geometric Recursion (Fractals)

* Arecursive operation performed on
successively smaller regions.

Sierpinski's
Triangle

http://fusionanomaly.net/recursion.jpg

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 30

15

Sierpinski’s Triangle

15110 Principles of Computing,

Carnegie Mellon University - CORTINA sl
. .)
Sierpinski’s Carpet
15110 Principles of Computing 32

Carnegie Mellon University - CORTINA

16

