UNIT 4C
Iteration: Scalability & Big O

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Course Announcements

* No collaboration on assignments, including in
the help sessions. If you need help, ask a CA.
e Questions about grading?
— Ask your CA to explain the grade.
— If issue can’t be resolved, talk to Dave or Dilsun.

— You have one week from the time you get your
grades on an assignment to contest the grading.

* First written exam is Monday, October 1.
— We will have a review session on Sunday.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Loop Invariants Again

e What is a loop invariant?

— A statement about the computation that remains
true every time around the loop.

e Why are they useful?

— They form the basis of an inductive proof that the
algorithm produces the desired result.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example: Sum Of Array Elements

def sum(list)
result = 0
index = 0
~while Index < list.length do
result = result + list[index]
index = Index + 1
—end
return result
end

>> sum([3, 7, 2, 4, 6])

15110 Principles of Computing
Carnegie Mellon University - CORTINA

What Is the Invariant?

e Must be true at start of body: a precondition.
* Might not be true in the middle of the bodly.
* Must be true at end of body: a postcondition.

index <= list.length and
result == sum of list[0..index-1]

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example: Sum Of Array Elements

def sum(list) result is 0
result = 0

index is O

index = 0
~while #ndex < list.length do
result = result + list[index]
index = index + 1
—end
return res

end

result is 3
index is 1

>> sum([3, 7, 2, 4, 6])

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example: Sum Of Array Elements

def sum(list) result is 3
result = 0 index is 1
index = 0O

-whille_#ndex < list.length do

result = result + list[index]
index = index + 1

—end
return res
end .
result is 10
index is 2

>> sum([3, 7, 2, 4, 6])

15110 Principles of Computing
Carnegie Mellon University - CORTINA

The Loop Invariant Is Always True
>>sum([3, 7, 2, 4, 6])

result index

0 0

3 1 index <= list.length and
10 2 result == sum of

12 3 list[O..index-1]
16 4

22 5

15110 Principles of Computing
Carnegie Mellon University - CORTINA

After the Loop

When do we exit the WHILE loop?

— When index == list.length

What does the invariant tell us at this point?
— result == sum of list[0..index-1]

— So result == sum of list[0..list.length-1]

— But that’s everything in the list!

Therefore, the result returned by sum must be
the sum of every element in the list.

We've proved the function is correct.

15110 Principles of Computing 9
Carnegie Mellon University - CORTINA)

Efficiency

A computer program should be totally correct, but it
should also

— execute as quickly as possible (time-efficiency)

— use memory wisely (storage-efficiency)

How do we compare programs (or algorithms in
general) with respect to execution time?

— various computers run at different speeds due to different
processors

— compilers optimize code before execution

— the same algorithm can be written differently depending
on the programming paradigm

15110 Principles of Computing 10
Carnegie Mellon University - CORTINA

Counting Operations

e We measure time efficiency by counting the
number of operations performed by the
algorithm.

e But whatis an “operation”?

— assignment statements
— comparisons

— function calls

- return statements

15110 Principles of Computing

Carnegie Mellon University - CORTINA H

Linear Search: Best Case

let n = the length of list.
def search(list, key)
index = 0
while index < list.length do
ifT list[index] == key then
return index

N

end
index = index + 1
end
return nil
end Total: 4

15110 Principles of Computing

Carnegie Mellon University - CORTINA 12

Linear Search: Worst Case

let n = the length of list.
def search(list, key)

index = 0 1
while 1ndex < list.length do n+1
iT list[index] == key then n
return index
end
index = index + 1 n
end
return nil 1
end Total: 3n+3

15110 Principles of Computing 13
Carnegie Mellon University - CORTINA °

Counting Operations

 How do we know that each operation we count
takes the same amount of time? (We don’t.)

* So generally, we look at the process more
abstractly and count whatever operation
depends on the amount or size of the data
we’re processing.

e For linear search, we would count the number
of times we compare elements in the array to
the key.

15110 Principles of Computing 14
Carnegie Mellon University - CORTINA

Linear Search: Best Case Simplified

let n = the length of list.
def search(list, key)
index = 0
while 1ndex < list.length do
iT list[index] == key then 1
return index
end
index = index + 1
end
return nil
end Total: 1

15110 Principles of Computing

Carnegie Mellon University - CORTINA 15

Linear Search: Worst Case Simplified

let n = the length of list.
def search(list, key)
index = 0
while index < list.length do
ifT list[index] == key then n
return index
end
index = index + 1
end
return nil
end Total: n

15110 Principles of Computing

Carnegie Mellon University - CORTINA 16

Order of Complexity

For very large n, we express the number of operations
as the (time) order of complexity.

Order of complexity is often expressed using
Big-O notation:

Number of operations Order of Complexity

n O(n) Usually doesn't
matter what the

3n+3 O(n) constants are...

2n+8 O(n) we are only
concerned about
the highest power
of n.

15110 Principles of Computing 17

Carnegie Mellon University - CORTINA

O(n) (“Linear”)

2n + 8
A 3n+3 n

Number of
Operations

»
»

n
(amount of data)

15110 Principles of Computing 18
Carnegie Mellon University - CORTINA

O(n)

Number of A

; n
Operations
30 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
20 (approximately).
10
10 20 30 n
(amount of data)
15110 Principles of Computing 19

Carnegie Mellon University - CORTINA

O(1) (“Constant-Time”)

For a constant-time algorithm,
if you double the amount

of data, the amount of work
you do stays the same.

Number of 4
Operations

4=0(1)

1=0(1)

»
»

n
(amount of data)

15110 Principles of Computing 20
Carnegie Mellon University - CORTINA

10

Linear Search

e Best Case:

0(1)
e Worst Case: O(n)
e Average Case: ?

— Depends on the distribution of queries
— But can’t be worse than O(n)

15110 Principles of Computing
Carnegie Mellon University - CORTINA

21

Insertion Sort: Worst Case

let n = the length of list.
def i1sort!(list)

a = list.clone

n
i =1

while 1 = a.length do
move_left(a, 1)

n-1
i=i+1
end

return a
end

15110 Principles of Computing
Carnegie Mellon University - CORTINA

22

11

Insertion Sort: Worst Case

let n = the length of list.
def move_left(a, 1)

X a.slice! (1)

Jj = i-1
while J >= 0 && a[j] > x do i+1

1=131-1

end
a.insert(jJ+1, x)
end

but how long do slice! and Insert take?

15110 Principles of Computing

3
Carnegie Mellon University - CORTINA 23

move_left (alternate version)

let n = the length of list.
def move_ left(a, 1)

x = a[i]

Jj = i-1

while J >= 0 && a[j] > x do i+1
apg+1] = alil
1=3-1

end

a[j+1] = x

end

15110 Principles of Computing

Carnegie Mellon University - CORTINA 24

12

Insertion Sort: Worst Case

So the total number of operations is

(n for list.clone) + (n-1 move_left’s)

But each move_left performs i+1 operations,
where i varies from 1 to n-1:

n-1 move_left’s=2+3 +4 + ... + n operations
Sincel+2+...+n=n(n+1)/2,

n-1 move_left’'s =n(n+1)/2 -1

The total number of operations is:
n+n(n+l)/2-1=n+n%/2+n/2-1=n2/2+3n/2-1

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Order of Complexity
Number of operations Order of Complexity
n2 0O(n?)
n%/2 +3n/2 -1 0(n?)
2n% +7 0O(n?)

Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 26

13

O(n?) (“Quadratic”)

n2
4 on2+7 n%/2 +3n/2-1
Number of
Operations
n
(amount of data)
15110 Principles of Computing 27
Carnegie Mellon University - CORTINA
Numbgr of a4 N2
Operations

For a quadratic algorithm,
900 if you double the amount
of data, the amount of work
you do quadruples
(approximately).

400

100

»
»

10 20 30 N
(amount of data)

15110 Principles of Computing 28
Carnegie Mellon University - CORTINA

14

Insertion Sort

* Worst Case: O(n?)
e Best Case: ?
e Average Case: ?

We’ll compare these algorithms with others soon to see how
scalable they really are based on their order of complexities.

15110 Principles of Computing

Carnegie Mellon University - CORTINA 29

15

