UNIT 4C
Iteration: Scalability & Big O
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Course Announcements

* No collaboration on assignments, including in
the help sessions. If you need help, ask a CA.
e Questions about grading?
— Ask your CA to explain the grade.
— If issue can’t be resolved, talk to Dave or Dilsun.

— You have one week from the time you get your
grades on an assignment to contest the grading.

* First written exam is Monday, October 1.
— We will have a review session on Sunday.

15110 Principles of Computing
Carnegie Mellon University - CORTINA




Loop Invariants Again

e What is a loop invariant?

— A statement about the computation that remains
true every time around the loop.

e Why are they useful?

— They form the basis of an inductive proof that the
algorithm produces the desired result.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example: Sum Of Array Elements

def sum(list)
result = 0
index = 0
~while Index < list.length do
result = result + list[index]
index = Index + 1
—end
return result
end

>> sum([3, 7, 2, 4, 6])
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What Is the Invariant?

e Must be true at start of body: a precondition.
* Might not be true in the middle of the bodly.
* Must be true at end of body: a postcondition.

index <= list.length and
result == sum of list[0..index-1]
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Example: Sum Of Array Elements

def sum(list) result is 0
result = 0

index is O

index = 0
~while #ndex < list.length do
result = result + list[index]
index = index + 1
—end
return res

end

result is 3
index is 1

>> sum([3, 7, 2, 4, 6])
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Example: Sum Of Array Elements

def sum(list) result is 3
result = 0 index is 1
index = 0O

-whille_#ndex < list.length do

result = result + list[index]
index = index + 1

—end
return res
end .
result is 10
index is 2

>> sum([3, 7, 2, 4, 6])
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The Loop Invariant Is Always True
>>sum([3, 7, 2, 4, 6])

result index

0 0

3 1 index <= list.length and
10 2 result == sum of

12 3 list[O..index-1]
16 4

22 5
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After the Loop

When do we exit the WHILE loop?

— When index == list.length

What does the invariant tell us at this point?
— result == sum of list[0..index-1]

— So result == sum of list[0..list.length-1]

— But that’s everything in the list!

Therefore, the result returned by sum must be
the sum of every element in the list.

We've proved the function is correct.
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Efficiency

A computer program should be totally correct, but it
should also

— execute as quickly as possible (time-efficiency)

— use memory wisely (storage-efficiency)

How do we compare programs (or algorithms in
general) with respect to execution time?

— various computers run at different speeds due to different
processors

— compilers optimize code before execution

— the same algorithm can be written differently depending
on the programming paradigm
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Counting Operations

e We measure time efficiency by counting the
number of operations performed by the
algorithm.

e But whatis an “operation”?

— assignment statements
— comparisons

— function calls

- return statements
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Linear Search: Best Case

# let n = the length of list.
def search(list, key)
index = 0
while index < list.length do
ifT list[index] == key then
return index

N

end
index = index + 1
end
return nil
end Total: 4
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Linear Search: Worst Case

# let n = the length of list.
def search(list, key)

index = 0 1
while 1ndex < list.length do n+1
iT list[index] == key then n
return index
end
index = index + 1 n
end
return nil 1
end Total: 3n+3
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Counting Operations

 How do we know that each operation we count
takes the same amount of time? (We don’t.)

* So generally, we look at the process more
abstractly and count whatever operation
depends on the amount or size of the data
we’re processing.

e For linear search, we would count the number
of times we compare elements in the array to
the key.
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Linear Search: Best Case Simplified

# let n = the length of list.
def search(list, key)
index = 0
while 1ndex < list.length do
iT list[index] == key then 1
return index
end
index = index + 1
end
return nil
end Total: 1
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Linear Search: Worst Case Simplified

# let n = the length of list.
def search(list, key)
index = 0
while index < list.length do
ifT list[index] == key then n
return index
end
index = index + 1
end
return nil
end Total: n
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Order of Complexity

For very large n, we express the number of operations
as the (time) order of complexity.

Order of complexity is often expressed using
Big-O notation:

Number of operations Order of Complexity

n O(n) Usually doesn't
matter what the

3n+3 O(n) constants are...

2n+8 O(n) we are only
concerned about
the highest power
of n.
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O(n) (“Linear”)

2n + 8
A 3n+3 n

Number of
Operations

»
»

n
(amount of data)
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O(n)

Number of A

; n
Operations
30 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
20 (approximately).
10
10 20 30 n
(amount of data)
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O(1) (“Constant-Time”)

For a constant-time algorithm,
if you double the amount

of data, the amount of work
you do stays the same.

Number of 4
Operations

4=0(1)

1=0(1)

»
»

n
(amount of data)
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Linear Search

e Best Case:

0(1)
e Worst Case: O(n)
e Average Case: ?

— Depends on the distribution of queries
— But can’t be worse than O(n)
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Insertion Sort: Worst Case

# let n = the length of list.
def i1sort!(list)

a = list.clone

n
i =1

while 1 = a.length do
move_left(a, 1)

n-1
i=i+1
end

return a
end
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Insertion Sort: Worst Case

# let n = the length of list.
def move_left(a, 1)

X a.slice! (1)

Jj = i-1
while J >= 0 && a[j] > x do i+1

1=131-1

end
a.insert(jJ+1, x)
end

but how long do slice! and Insert take?
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move_left (alternate version)

# let n = the length of list.
def move_ left(a, 1)

x = a[i]

Jj = i-1

while J >= 0 && a[j] > x do i+1
apg+1] = alil
1=3-1

end

a[j+1] = x

end
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Insertion Sort: Worst Case

So the total number of operations is

(n for list.clone) + (n-1 move_left’s)

But each move_left performs i+1 operations,
where i varies from 1 to n-1:

n-1 move_left’s=2+3 +4 + ... + n operations
Sincel+2+...+n=n(n+1)/2,

n-1 move_left’'s =n(n+1)/2 -1

The total number of operations is:
n+n(n+l)/2-1=n+n%/2+n/2-1=n2/2+3n/2-1
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Order of Complexity
Number of operations Order of Complexity
n2 0O(n?)
n%/2 +3n/2 -1 0(n?)
2n% +7 0O(n?)

Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.
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O(n?) (“Quadratic”)

n2
4 on2+7 n%/2 +3n/2-1
Number of
Operations
n
(amount of data)
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Numbgr of a4 N2
Operations

For a quadratic algorithm,
900 if you double the amount
of data, the amount of work
you do quadruples
(approximately).

400

100

»
»

10 20 30 N
(amount of data)
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Insertion Sort

* Worst Case: O(n?)
e Best Case: ?
e Average Case: ?

We’ll compare these algorithms with others soon to see how
scalable they really are based on their order of complexities.
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