R0
QR SR S S
.¢.¢.¢.¢.¢.¢.§.
= b $ b bt nd
.0.0 PR/ 0.0 0.
bl '#.’0.0 0'.0.
atabod oy 0.0“.0"
.0.'*.0.*.0 & 0.'
.§.¢.¢.¢.¢.¢. 0.
A0~ "a0e

UNIT 4B
Iteration: Sorting

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Exponential Notation

Floating point number syntax:

5.716e+4 means 5.716 x 104 = 57160

T— exponent marker

decimal point

>> 5_.716e+4

=> 57160.0

>> 5.716 * 10**15
=> 5.716e+15

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

What Does Your Code Say About You?

def linsearch (list , key)
len = list.length
index=0
while index < len do
if list[index] == key then
return index
end
index = index + 1
end
return nil
end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

What Does Your Code Say About You?

def linsearch (list ,key)
len =list.length
index=0
while index<len do
if list[index]==key then

return index
end
index= index+1
end return nil

end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Grading on Code Formatting

* From now on, you will be graded on the
appearance of your code.

* Proper indentation, no gratuitous blank lines.
(But in long functions, blank lines can be a
good way to group code into sections.)

e Why are we doing this?
— Because we’re mean.

— Because you cannot find the bugs in your code if
you cannot read it properly.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Indenting a FOR Loop

—for var in values do

loop body stuff

more loop body stuff

even mode loop body stuff
—end

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Indenting a WHILE Loop

—while test do

loop body stuff

more loop body stuff

even mode loop body stuff
—end

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Indenting an IF

~if test then
some then stuff
more then stuff
-else
some else stuff
more else stuff
~end

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Nesting

x =[3, 13,5, 25, 4, 64]

~forvinxdo

~if v< 10 then
print “ “ v

-else
print v

_end

print “\n”
~end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 9
L
Sorting
Sort by Sort by: | Best Match =)
[oescrpTion] < éscendng
" Descending Price + P&P: lowest first
Then by Price + P&P: highest first
’—Ll (% fscending Price: lowest first
Pricg: highest first
Name Artist =3 E :
TiiEm ri g Your Grave Modest Mouse IR
’— [) Ostriches & Chirping Elliott Smith
[Interlude (Milo) Modest Mouse :
My list h % We've Got a File On... Blur 1:02 -
E Fewer Words Badly Drawn _.. 1:13 vuu TUI}E i
ri Life's Incredible Ag... | Michael Giacc... 1:24 Search results for amd
optio| | [#] 30 Century Man Scott Walker 1:26 ‘About 83,600 resuls
'E Lava In the Afterno... | Michael Giacc... 1:29
ﬁ The Chase Stephen Trask 1:31 5 Sort by:
E The Way | Feel Inside ' The Zombies 1:34 ?:LEOS Rem"m‘
[Mr. Huph Will See ... | Michael Giacc...| 1:35 Channels View count
I o Playlists Rating
] Don't Ask Me I'm O.._ | Badly Drawn ... 1:36 |+
[l Let Me Tell You Ab... | Mark Mothers.. 13817 L
15110 Principles of Computing, 10

Carnegie Mellon University - CORTINA

The Art of Computer Programming
Volume 3: Sorting and Searching

The Art of
Computer
Programming

VOLUME 3
sorting and Searching

%

DONALD E. KNUTH

15110 Principles of Computing

Carnegie Mellon University - CORTINA H
.
Insertion Sort
15110 Principles of Computing 12

Carnegie Mellon University - CORTINA

Insertion Sort Qutline

def isort (list)
result =[]
for valin list do
insert val in its proper place in result
end
return result
end

15110 Principles of Computing 13
Carnegie Mellon University - CORTINA -

insert
* list.insert(position, value)

>> a = [10, 20, 30]

=> [10, 20, 30]

>> a.insert(0,”fo0™)

=> [*“foo””, 10, 20, 30]

>> a.insert(2, “bar™)

=> [“foo0”, 10, “bar”, 20, 30]

>> a.insert(b5, “baz™)

=> [“foo”, 10, “bar”, 20, 30, “baz’]

15110 Principles of Computing

Carnegie Mellon University - CORTINA 4

Insertion Sort, Refined

def isort (list)
result =[]
for val in list do
result.insert(p/ace, val)
end
return result
end

15110 Principles of Computing

Carnegie Mellon University - CORTINA 15

gindex

index of first element greater than item
def gindex (list, item)
index=0
while index < list.length and
list[index] < item do
index =index + 1
end
return index
end

15110 Principles of Computing

Carnegie Mellon University - CORTINA 16

Testing gindex

>> a = [10, 20, 30, 40, 50]
=> [10, 20, 30, 40, 50]

>> gindex(a,3)

= 0

>> gindex(a,14)

== 1

>> gindex(a,37)

=> 3

>> gindex(a,99)

= 5

15110 Principles of Computing

Carnegie Mellon University - CORTINA 7

Insertion Sort, Complete

def isort (list)
result =[]
for valin list do
result.insert(gindex(result,val), val)
end
return result
end

15110 Principles of Computing

Carnegie Mellon University - CORTINA 18

Instrumenting Insertion Sort

def isort (list)
result =[]
p result # for debugging
for val in list do
result.insert(gindex(result,val), val)
p result # for debugging
end
return result
end

15110 Principles of Computing

Carnegie Mellon University - CORTINA 19

Testing isort

>> 1sort([3, 1, 4, 1, 5, 9, 2, 6])
[1

15110 Principles of Computing

Carnegie Mellon University - CORTINA 20

10

Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])
[]
[3]

15110 Principles of Computing 21
Carnegie Mellon University - CORTINA

Testing isort

>> 1sort([3, 1, 4, 1, 5, 9, 2, 6])
[1

[3]

[1, 31

15110 Principles of Computing 2
Carnegie Mellon University - CORTINA

11

Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])
[1

[3]

[1’ 3]

[1, 3, 4]

15110 Principles of Computing 23
Carnegie Mellon University - CORTINA -

Testing isort

>> 1sort([3, 1, 4, 1, 5, 9, 2, 6])
[1

[3]

[1, 3]

[1, 3, 4]

[1, 1, 3, 4]

15110 Principles of Computing 20
Carnegie Mellon University - CORTINA

12

Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])

[

[3]
[1,
[1,
[1,
[1,

R = WwWw
w b
el
N
bl

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])

L]

[3]
[1,
[1,
[1,
[1,
[1,

N
el

5]
5, 9]

PR EFPWW

W ww
D

15110 Principles of Computing
Carnegie Mellon University - CORTINA

26

13

Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])

[1

[3]

[1’ 3]

[1, 3, 4]

[1, 1, 3, 4]

[1, 1, 3, 4, 5]

[1, 1, 3, 4, 5, 9]
[1, 1, 2, 3, 4, 5, 9]

15110 Principles of Computing

Testing isort
>> 1sort([3, 1, 4, 1, 5, 9, 2, 6]
[1
[3]
[1, 3]
[1, 3, 4]
[1, 1, 3, 4]
[1, 1, 3, 4, 5]
[1, 1, 3, 4, 5, 9]
[1, 1, 3, 4, 5, 6, 9]
[1, 1, 2, 3, 4, 5, 6, 9]
=> [1, 1, 2, 3, 4, 5, 6, 9]

Carnegie Mellon University - CORTINA

14

Can We Do Better?

* isort doesn’t change its input list.
* Instead it makes a new list, called result.
e This takes twice as much memory.

e Can we write a destructive version of the
algorithm that doesn’t use extra memory?

e That is the version shown in the book (see
chapter 4).

15110 Principles of Computing

Carnegie Mellon University - CORTINA 29

Destructive Insertion Sort

Given an array a of length n, n > 0.
1. Seti=1.
2. While i is not equal to n, do the following:

a. Insert a[i] into its correct position in a[0..i],
shifting the other elements as necessary.

b.Add 1toi.
3. Return the array a which will now be sorted.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

15

Example

a = [5\3, 26, 76, 30, 14, 91, 68, 42]
1 = \\ 1
Insert a[1]\'nto its correct position in a[0..1]
and then'add 1 to i:
53 moves to the right,
26 is inserted back into the array

a = [26, 53, 76, 30, 14, 91, 68, 42]

1 = 2

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example

= [26, 53, 76, 30, 14, 91, 68, 42]
= 2

Insert a[2] into its correct position in a[0..2]

and then add 1 to i:

76 is already in the correct place in a[0..2]
a = [26, 53, 76, 30, 14, 91, 68, 42]

1 = 3

= Q)

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example

a = [26, 53, 76, 30, 14, 91, 68, 42]

3, 76, 14, 91, 68, 42]
1 = 4

15110 Principles of Computing
Carnegie Mellon University - CORTINA

33

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1. Seti=1.

2. Whileiis not equal to n, do the following:
Precondition for each iteration: a[0..i-1] is sorted

a. Insert a[i] into its correct position in a[0..i].
Now a[0..i] is sorted.

b.Add 1toi.
Postcondition for each iteration: a[0..i-1] is sorted

3. Return the array a which will now be sorted.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

34

17

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1. Seti=1.

2. Whileiis not equal to n, do the following:
Loop invariant: a[0..i-1] is sorted
a. Insert a[i] into its correct position in a[0..i].
b.Add 1toi.

3. Return the array a which will now be sorted.

A loop invariant is a condition that is true at the
start and end of each iteration of a loop.

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example (cont’d)

a = [2\6, 3\0, 5\3, 7\6, 14, 91, 68, 42]
i - \\ \\ \\ \\ 4

\ \

Insert a[4]\|nto |ts corr‘ect posmon in a[0..4]
and then, add 1to it | \

76 moves td the rrght then 53 moves to the right,
then 30 moves to the rlght the\n 26 moves to the right,
now 14 is mserted back |r\to the\array

a = [14, 26 30 53 76 91, 68, 42]

1 = 5

15110 Principles of Computing
Carnegie Mellon University - CORTINA

18

Example

a = [14, 26, 30, 53, 76, 91, 68, 42]
1 = 5
Insert a[5] into its correct position in a[0..5]

and thenadd 1toi:

91 is already in its correct position
a = [14, 26, 30, 53, 76, 91, 68, 42]

1 = 6

15110 Principles of Computing
Carnegie Mellon University - CORTINA

Example

a = [14, 26, 30, 53, 76 91 68, 42]
i =
Insert a[6] into its correct posmon in a[0\6]
and thenadd 1to i:
91 moves to the right,
76 moves to the right, \
now 68 is inserted back into the array
= [14, 26, 30, 53, 68, 76, 91, 42]
1 = 7

15110 Principles of Computing 38
Carnegie Mellon University - CORTINA D

19

Example

a = [14, 26, 30, 53, 68, 76, 91, 42]
i = R N N

\\ \\ \\
Insert a[7] into its correct position\in a[axi] \

and thenadd 1to i: \\ \ \ \
91 moves to the right, then 76 moves to the right,

then 68 moves to the right, thé\n 53 gvoves\to th% right,
then 42 is inserted back into the array, \ \

a = [14, 26, 30, 42, 53, 68, 76, 91]

15110 Principles of Computing 39
Carnegie Mellon University - CORTINA -

Example

a = [14, 26, 30, 42, 53, 68, 76, 91]
8

The array is sorted.

But how do we know that the algorithm always
sorts correctly?

15110 Principles of Computing

Carnegie Mellon University - CORTINA 40

20

Reasoning with the Loop Invariant

The loop invariant is true at the end of each
iteration, including the last iteration. After the
last iteration, when we go to step 3:

a[0..i-1] is sorted AND i is equal to n

These 2 conditions imply that a[0..n-1] is sorted,
but this range covers the entire array, so the
array must always be sorted when we return our
final answer!

15110 Principles of Computing

Carnegie Mellon University - CORTINA 4

Insertion Sort in Ruby

def isort!(list)
1 =1
while 1 = list.length do
Tovejl efe(list, 1) insert a[i] into a[o..i]
1=1+1 <€— inits correct sorted
end position

return list
end

15110 Principles of Computing
Carnegie Mellon University - CORTINA

21

Moving left

To move the element x at index i “left” to its correct
position, start at position i-1, and search left until we
find the first element that is less than x.

Then insert x back into the array to the right of the first
element that is less than x when you searched from
right to left in the sorted part of the array.

(The insert operation does not overwrite. Think of it
as “squeezing into the array”.)

Can you think of a special case for the step above?

15110 Principles of Computing 43
Carnegie Mellon University - CORTINA °

Moving left: examples
Insert 68: k//’—\\\\

a = [14, 26, 30, 53, 76, 91, 68, 42]

Searching from right to left starting with 91, the first element less than 68 is 53.

Insert 68 to the right of 53.

Insert 76:

a = [26, 53, 76, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53.
Insert 76 to the right of 53 (where it was before).

Insert 14: SPECIAL CASE

a = [26, 30, 53, 76, 14, 91, 68, 42]
Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into the position 0.

15110 Principles of Computing 24
Carnegie Mellon University - CORTINA

22

The move left algorithm

Given an array a of length n, n >0 and a value at
index i to be “moved left” in the array.
Remove a[i] from the array and store in x.
Setj=i-1.
While j >= 0 and a[j] > x, do the following:
a. Subtract 1 fromj.
4. Reinsert x into position a[j+1].

How is the special case handled here?

15110 Principles of Computing
Carnegie Mellon University - CORTINA

move_leftin Ruby

def move left(a, 1) _
remove the item at

X = a.slicel (1) <«—— positoniinarraya
and store it in x

J =1-1
while J >= 0 and a[j] > x do

P = F _ logical operator AND:

J J + both conditions must be true
end for the loop to continue

a.insert(J+1, X) <—— insertxat position
j+1 of array a, shifting
end all elements from j+1
and beyond over one
position

15110 Principles of Computing

Carnegie Mellon University - CORTINA 46

23

