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UNIT 4B
Iteration: Sorting
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Exponential Notation

Floating point number syntax:

5.716e+4 means 5.716 x 104 = 57160

T— exponent marker

decimal point

>> 5_.716e+4

=> 57160.0

>> 5.716 * 10**15
=> 5.716e+15
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What Does Your Code Say About You?

def linsearch (list , key)
len = list.length
index=0
while index < len do
if list[index] == key then
return index
end
index = index + 1
end
return nil
end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

What Does Your Code Say About You?

def linsearch (list ,key)
len =list.length
index=0
while index<len do
if list[index ]==key then

return index
end
index= index+1
end return nil

end
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Grading on Code Formatting

* From now on, you will be graded on the
appearance of your code.

* Proper indentation, no gratuitous blank lines.
(But in long functions, blank lines can be a
good way to group code into sections.)

e Why are we doing this?
— Because we’re mean.

— Because you cannot find the bugs in your code if
you cannot read it properly.

15110 Principles of Computing
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Indenting a FOR Loop

—for var in values do

loop body stuff

more loop body stuff

even mode loop body stuff
—end

15110 Principles of Computing
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Indenting a WHILE Loop

—while test do

loop body stuff

more loop body stuff

even mode loop body stuff
—end

15110 Principles of Computing
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Indenting an IF

~if test then
some then stuff
more then stuff
-else
some else stuff
more else stuff
~end

15110 Principles of Computing
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Nesting

x =[3, 13,5, 25, 4, 64]

~forvinxdo

~if v< 10 then
print “ “ v

-else
print v

_end

print “\n”
~end

15110 Principles of Computing,
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The Art of Computer Programming
Volume 3: Sorting and Searching
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Computer
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sorting and Searching
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Insertion Sort
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Insertion Sort Qutline

def isort (list)
result =[]
for valin list do
# insert val in its proper place in result
end
return result
end

15110 Principles of Computing 13
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insert
* list.insert(position, value)

>> a = [10, 20, 30]

=> [10, 20, 30]

>> a.insert(0,”fo0™)

=> [*“foo””, 10, 20, 30]

>> a.insert(2, “bar™)

=> [“foo0”, 10, “bar”, 20, 30]

>> a.insert(b5, “baz™)

=> [“foo”, 10, “bar”, 20, 30, “baz’]

15110 Principles of Computing
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Insertion Sort, Refined

def isort (list)
result =[]
for val in list do
result.insert(p/ace, val)
end
return result
end

15110 Principles of Computing
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gindex

# index of first element greater than item
def gindex (list, item)
index=0
while index < list.length and
list[index] < item do
index =index + 1
end
return index
end

15110 Principles of Computing
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Testing gindex

>> a = [10, 20, 30, 40, 50]
=> [10, 20, 30, 40, 50]

>> gindex(a,3)

= 0

>> gindex(a,14)

== 1

>> gindex(a,37)

=> 3

>> gindex(a,99)

= 5

15110 Principles of Computing
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Insertion Sort, Complete

def isort (list)
result =[]
for valin list do
result.insert(gindex(result,val), val)
end
return result
end

15110 Principles of Computing
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Instrumenting Insertion Sort

def isort (list)
result =[]
p result # for debugging
for val in list do
result.insert(gindex(result,val), val)
p result # for debugging
end
return result
end

15110 Principles of Computing
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Testing isort

>> 1sort([3, 1, 4, 1, 5, 9, 2, 6])
[1

15110 Principles of Computing
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Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])
[]
[3]

15110 Principles of Computing 21
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Testing isort

>> 1sort([3, 1, 4, 1, 5, 9, 2, 6])
[1

[3]

[1, 31

15110 Principles of Computing 2
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Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])
[1

[3]

[1’ 3]

[1, 3, 4]

15110 Principles of Computing 23
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Testing isort

>> 1sort([3, 1, 4, 1, 5, 9, 2, 6])
[1

[3]

[1, 3]

[1, 3, 4]

[1, 1, 3, 4]

15110 Principles of Computing 20
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Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])

[

[3]
[1,
[1,
[1,
[1,

R = WwWw
w b
el
N
bl
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Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])

L]

[3]
[1,
[1,
[1,
[1,
[1,

N
el

5]
5, 9]

PR EFPWW

W ww
D
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Testing isort

>> isort([3, 1, 4, 1, 5, 9, 2, 6])

[1

[3]

[1’ 3]

[1, 3, 4]

[1, 1, 3, 4]

[1, 1, 3, 4, 5]

[1, 1, 3, 4, 5, 9]
[1, 1, 2, 3, 4, 5, 9]

15110 Principles of Computing

Testing isort
>> 1sort([3, 1, 4, 1, 5, 9, 2, 6]
[1
[3]
[1, 3]
[1, 3, 4]
[1, 1, 3, 4]
[1, 1, 3, 4, 5]
[1, 1, 3, 4, 5, 9]
[1, 1, 3, 4, 5, 6, 9]
[1, 1, 2, 3, 4, 5, 6, 9]
=> [1, 1, 2, 3, 4, 5, 6, 9]

Carnegie Mellon University - CORTINA
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Can We Do Better?

* isort doesn’t change its input list.
* Instead it makes a new list, called result.
e This takes twice as much memory.

e Can we write a destructive version of the
algorithm that doesn’t use extra memory?

e That is the version shown in the book (see
chapter 4).

15110 Principles of Computing
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Destructive Insertion Sort

Given an array a of length n, n > 0.
1. Seti=1.
2. While i is not equal to n, do the following:

a. Insert a[i] into its correct position in a[0..i],
shifting the other elements as necessary.

b.Add 1toi.
3. Return the array a which will now be sorted.

15110 Principles of Computing
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Example

a = [5\3, 26, 76, 30, 14, 91, 68, 42]
1 = \\ 1
Insert a[1]\'nto its correct position in a[0..1]
and then'add 1 to i:
53 moves to the right,
26 is inserted back into the array

a = [26, 53, 76, 30, 14, 91, 68, 42]

1 = 2

15110 Principles of Computing
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Example

= [26, 53, 76, 30, 14, 91, 68, 42]
= 2

Insert a[2] into its correct position in a[0..2]

and then add 1 to i:

76 is already in the correct place in a[0..2]
a = [26, 53, 76, 30, 14, 91, 68, 42]

1 = 3

= Q)

15110 Principles of Computing
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Example

a = [26, 53, 76, 30, 14, 91, 68, 42]

3, 76, 14, 91, 68, 42]
1 = 4

15110 Principles of Computing
Carnegie Mellon University - CORTINA

33

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1. Seti=1.

2. Whileiis not equal to n, do the following:
Precondition for each iteration: a[0..i-1] is sorted

a. Insert a[i] into its correct position in a[0..i].
Now a[0..i] is sorted.

b.Add 1toi.
Postcondition for each iteration: a[0..i-1] is sorted

3. Return the array a which will now be sorted.

15110 Principles of Computing
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Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1. Seti=1.

2. Whileiis not equal to n, do the following:
Loop invariant: a[0..i-1] is sorted
a. Insert a[i] into its correct position in a[0..i].
b.Add 1toi.

3. Return the array a which will now be sorted.

A loop invariant is a condition that is true at the
start and end of each iteration of a loop.

15110 Principles of Computing
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Example (cont’d)

a = [2\6, 3\0, 5\3, 7\6, 14, 91, 68, 42]
i - \\ \\ \\ \\ 4

\ \

Insert a[4]\|nto |ts corr‘ect posmon in a[0..4]
and then, add 1to it | \

76 moves td the rrght then 53 moves to the right,
then 30 moves to the rlght the\n 26 moves to the right,
now 14 is mserted back |r\to the\array

a = [14, 26 30 53 76 91, 68, 42]

1 = 5

15110 Principles of Computing
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Example

a = [14, 26, 30, 53, 76, 91, 68, 42]
1 = 5
Insert a[5] into its correct position in a[0..5]

and thenadd 1toi:

91 is already in its correct position
a = [14, 26, 30, 53, 76, 91, 68, 42]

1 = 6

15110 Principles of Computing
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Example

a = [14, 26, 30, 53, 76 91 68, 42]
i =
Insert a[6] into its correct posmon in a[0\6]
and thenadd 1to i:
91 moves to the right,
76 moves to the right, \
now 68 is inserted back into the array
= [14, 26, 30, 53, 68, 76, 91, 42]
1 = 7

15110 Principles of Computing 38
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Example

a = [14, 26, 30, 53, 68, 76, 91, 42]
i = R N N

\\ \\ \\
Insert a[7] into its correct position\in a[axi] \

and thenadd 1to i: \\ \ \ \
91 moves to the right, then 76 moves to the right,

then 68 moves to the right, thé\n 53 gvoves\to th% right,
then 42 is inserted back into the array, \ \

a = [14, 26, 30, 42, 53, 68, 76, 91]

15110 Principles of Computing 39
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Example

a = [14, 26, 30, 42, 53, 68, 76, 91]
8

The array is sorted.

But how do we know that the algorithm always
sorts correctly?

15110 Principles of Computing
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Reasoning with the Loop Invariant

The loop invariant is true at the end of each
iteration, including the last iteration. After the
last iteration, when we go to step 3:

a[0..i-1] is sorted AND i is equal to n

These 2 conditions imply that a[0..n-1] is sorted,
but this range covers the entire array, so the
array must always be sorted when we return our
final answer!

15110 Principles of Computing
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Insertion Sort in Ruby

def isort!(list)
1 =1
while 1 = list.length do
Tovejl efe(list, 1) insert a[i] into a[o..i]
1=1+1 <€— inits correct sorted
end position

return list
end

15110 Principles of Computing
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Moving left

To move the element x at index i “left” to its correct
position, start at position i-1, and search left until we
find the first element that is less than x.

Then insert x back into the array to the right of the first
element that is less than x when you searched from
right to left in the sorted part of the array.

(The insert operation does not overwrite. Think of it
as “squeezing into the array”.)

Can you think of a special case for the step above?

15110 Principles of Computing 43
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Moving left: examples
Insert 68: k//’—\\\\

a = [14, 26, 30, 53, 76, 91, 68, 42]

Searching from right to left starting with 91, the first element less than 68 is 53.

Insert 68 to the right of 53.

Insert 76:

a = [26, 53, 76, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53.
Insert 76 to the right of 53 (where it was before).

Insert 14: SPECIAL CASE

a = [26, 30, 53, 76, 14, 91, 68, 42]
Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into the position 0.

15110 Principles of Computing 24
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The move left algorithm

Given an array a of length n, n >0 and a value at
index i to be “moved left” in the array.
Remove a[i] from the array and store in x.
Setj=i-1.
While j >= 0 and a[j] > x, do the following:
a. Subtract 1 fromj.
4. Reinsert x into position a[j+1].

How is the special case handled here?

15110 Principles of Computing
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move_leftin Ruby

def move left(a, 1) _
remove the item at

X = a.slicel (1) <«—— positoniinarraya
and store it in x

J =1-1
while J >= 0 and a[j] > x do

P = F _ logical operator AND:

J J + both conditions must be true
end for the loop to continue

a.insert(J+1, X) <—— insertxat position
j+1 of array a, shifting
end all elements from j+1
and beyond over one
position

15110 Principles of Computing
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