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UNIT 3A
Ranges, Arrays, and lterators

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

Ruby Data Types

Numbers:

— Integers: 3 -5

— Floats: 1.557 3.05e+11

Bools: true false

Strings:  “Woof” “jelly beans”

Ranges: 1.5 -38400..65536

Arrays: [3,1,5, 2] [“Moe”, “Larry”, “Curly”]
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Type Conversion Is Easy in Ruby

e Convert to integer: to i
e Convert to float: to_f
e Convert to string: to_s
e Convert to array: to_a

5.to s => “5”

“63"to i => 63

“bam”to_i => 0

“12 spicy tacos” .to i => 12
“12 warm churros” .to_f => 12.0
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Extended Meanings For + And *

What should + and * mean for non-numbers?

* We can use + to mean concatenation:
“woof” + “meow” => “woofmeow”
[3,1]+[5,2,1] => [3,1,5,2,1]

e We can use * to mean replication:
“woof” * 3 => “woofwoofwoof”
[Ilk”’ 9] k 3 => [l(klI’ 9’ l(kll’ 9’ llkII’ 9]
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Ranges
* Arange is defined by first and last elements.

rl=-5..3
r2 = “eel” .. “hippo”
r1.first => -5
r2.last => “hippo”
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Range Inclusion
e The include? method returns a bool:

ri=-5..3 numerical order
rl.include?(4) => false
rl.include?(-4) => true

r2 = “eel” .. “hippo” alphabetical order
r2.include?(“frog”) => true
r2.include?(“zebra”) => false
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Successor and Predecessor

e succ and pred work for integers;
only succ works for strings:

Xx=5

X.succ => 6
X.pred => 4
y = Ilcatﬂ

y.succ => “cau”
y.pred => error!
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Surprised?
e Ruby’s interesting rules for string successor:
“99” succ => “100”
“z2”.succ => “aaa”
“wo0f99”.succ => “woog00”

“9bh9zzz”.succ => “9c0aaa”
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Arrays

e Arrays can hold any kind of object:
a=[8, “strawberry”, -5.062, false]

a[0] => 8 Ruby numbers items from 0!
a[l] => “strawberry”

a.length => 4
e The empty array is written [ ]
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Converting a Range to an Array

r=3..8
rtoa => [3,4,5,6,7,8]

(8.3).to_a => []

S - llguﬂ llhell
S.to_a => [ngﬂl llgvll’ llgWII’ ”gX”, llgyll’
llgzll’ llha”’ llhb”, IIhC”’ llhdll’ l(hell]
The to_a method uses succ to generate elements.
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lteration Review

def testl () >> testl
foriin 1..5do wooi
“« ” (0] 0]
puts “Woof o
end Woof
end Woof
=>1.5
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Iteration Review

def test2 () >> test2
foriin 1..5 do 1
. 2

puts i
q 3
en 4
end 5
=>1..5
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lteration Review

def test3 () >> test3
foriin 1..5 do wooiw .
" ” o s oofWoo
p(;'lts Woof I WoofWoofWoof
en WoofWoofWoofWoof
end WoofWoofWoofWoofWoof
=>1..5
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You Can Loop Over Arrays Too

n u

fruits = [“apple”, “banana”, “cherry”, “date”]

for f in fruits do
puts “Yummy ” + f + “ pie
end

|II

Yummy apple pie!

Yummy banana pie!

Yummy cherry pie!

Yummy date pie!

=> [“apple”, “banana”, “cherry”, “date”]

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

14




Ilterators

* |terators are another way to operate on the
elements of an array.

* The each iterator is similar to a for loop:
fruits.each { |f| puts “Yummy ” + f + “pie!” }

This { } thing is called a “block” in Ruby

e Ruby provides lots of other iterators that do
cool and useful things.
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Compare

Using a for loop: Using an iterator:

for f in fruits do fruits.each { | f|
puts “Yummy ” +f puts “Yummy ” +f
end }
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Fun With Iterators

 fruits.collect { |f| f.length }
=>15, 6, 6, 4]

 fruits.collect { |f]| f.reverse }

n «u

=> [“elppa”, “ananab”, “yrrehc”, “etad”]

e fruits.select { |f| (“b”..“cz”).include? f}

n u

=> [“banana”, “cherry”]
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“Destructive” lterators
e Some iterators modify the array. Beware!

items =(1..10).to_a
=>[1,2,3,4,5,6,7,8,9, 10]

items.delete_if { |i| i.odd? }
=>[2, 4,6, 8, 10]

items => [2,4, 6, 8, 10]
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Ruby Has Hundreds of Methods,

Classes, Keywords, Iterators, Etc.

Too much to
remember!

That’s why we have online documentation:
http://www.ruby-doc.org

AND NOW FOR
SOMETHING

COMPLETELY
DIFFERENT
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What Is a “Sieve” or “Sifter”?

Separates stuff you want from stuff you don’t:

. == _——

"

b .,
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SIEVe
) OF

fRATOSTHENSS

A 2000 year old algorithm (procedure) for
generating a table of prime numbers.

2,3,5,7,11,13,17, 23, 29, 31, ...
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Prime Numbers

e Anintegeris “prime” if it is not divisible by
any smaller integers except 1.

e 10is not prime because 10=2 x5

e 11is prime

e 12 isnot prime because 12=2x6=2x2x3
e 13is prime

e 15is not prime because 15=3 x5
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Testing Divisibility in Ruby
* xis “divisible by” y if the remainder is O

* 15is divisible by 3 and 5, but not by 2:

15%3 =>0
15%5 =>0
15%2 =>1
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Divisible By Three?

def threezy? (n)
return (n % 3) ==
end
Equality test
threezy?(5) => false
threezy?(6) => true
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The Sieve of Eratosthenes

Start with a table of
integers from 2 to N.

Cross out all the
entries that are

divisible by the
primes known so far.

The first value
remaining is the next
prime.
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Finding Primes Between 2 and 50

2345 67 8910
11121314151617 1819 20
2122 2324252627 282930
31323334353637383940
41424344 45464748 49 50

2 is the first prime.
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Finding Primes Between 2 and 50

2 3 5 7 9
111213 14151617 1219
212223 242576277529
31523334353637 3239
41 42 43 4445 46 47 22 49

Filter out everything divisible by 2.
Now we see that 3 is the next prime.
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Finding Primes Between 2 and 50

2 3 5 7
111213 17 1219
23 7425 29

31 35 36 37
41 47 43 47 12 49

Filter out everything divisible by 3.
Now we see that 5 is the next prime.
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Finding Primes Between 2 and 50

2 3 5 7
111213 17 1219
23 2425 29

31 353637
41 47 43 47 /12 49

Filter out everything divisible by 5.
Now we see that 7 is the next prime.
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Finding Primes Between 2 and 50

2 3 5 7
111213 17 1219
23 2425 29

31 353637

41 47 43 47

Filter out everything divisible by 7.
Now we see that 11 is the next prime.
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Finding Primes Between 2 and 50

2 3 5 7
111213 17 1819
23 24 25 29

31 3536 37

41 42 43 47

Since 11 x 11 > 50, all the remaining table
entries must be prime.
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Doing It (Crudely) In Ruby

items = (2..50).to_a

items.delete_if { |i]| (i>2) & (i%2 ==0) }
items.delete_if { |i| (i>3) & (i%3 ==0) }
items.delete_if { |i| (i>5) & (i%5 ==0) }
items.delete_if { |i| (i>7) & (i%7 ==0) }

* What if we wanted a table of the first 1000
primes? How would you automate this?
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Algorithm-Inspired Sculpture

B The Sieve of Eratosthenes, 1999
sculpture by Mark di Suvero.
Displayed at Stanford University.
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