e e )
sucoseee
.0.#.0.0‘0.0‘0.
.¢‘¢.¢.¢.¢.¢.¢‘
(e N S
CCCORRC
el g Yo igon
a'a'a’~'~'a'a's

UNIT 3A
Ranges, Arrays, and lterators

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

Ruby Data Types

Numbers:

— Integers: 3 -5

— Floats: 1.557 3.05e+11

Bools: true false

Strings:  “Woof” “jelly beans”

Ranges: 1.5 -38400..65536

Arrays: [3,1,5, 2] [“Moe”, “Larry”, “Curly”]

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY




Type Conversion Is Easy in Ruby

e Convert to integer: to i
e Convert to float: to_f
e Convert to string: to_s
e Convert to array: to_a

5.to s => “5”

“63"to i => 63

“bam”to_i => 0

“12 spicy tacos” .to i => 12
“12 warm churros” .to_f => 12.0

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

Extended Meanings For + And *

What should + and * mean for non-numbers?

* We can use + to mean concatenation:
“woof” + “meow” => “woofmeow”
[3,1]+[5,2,1] => [3,1,5,2,1]

e We can use * to mean replication:
“woof” * 3 => “woofwoofwoof”
[Ilk”’ 9] k 3 => [l(klI’ 9’ l(kll’ 9’ llkII’ 9]

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY




Ranges
* Arange is defined by first and last elements.

rl=-5..3
r2 = “eel” .. “hippo”
r1.first => -5
r2.last => “hippo”

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

Range Inclusion
e The include? method returns a bool:

ri=-5..3 numerical order
rl.include?(4) => false
rl.include?(-4) => true

r2 = “eel” .. “hippo” alphabetical order
r2.include?(“frog”) => true
r2.include?(“zebra”) => false

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY




Successor and Predecessor

e succ and pred work for integers;
only succ works for strings:

Xx=5

X.succ => 6
X.pred => 4
y = Ilcatﬂ

y.succ => “cau”
y.pred => error!

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

Surprised?
e Ruby’s interesting rules for string successor:
“99” succ => “100”
“z2”.succ => “aaa”
“wo0f99”.succ => “woog00”

“9bh9zzz”.succ => “9c0aaa”

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY




Arrays

e Arrays can hold any kind of object:
a=[8, “strawberry”, -5.062, false]

a[0] => 8 Ruby numbers items from 0!
a[l] => “strawberry”

a.length => 4
e The empty array is written [ ]

15110 Principles of Computing, Carnegie 9
Mellon University - TOURETZKY

Converting a Range to an Array

r=3..8
rtoa => [3,4,5,6,7,8]

(8.3).to_a => []

S - llguﬂ llhell
S.to_a => [ngﬂl llgvll’ llgWII’ ”gX”, llgyll’
llgzll’ llha”’ llhb”, IIhC”’ llhdll’ l(hell]
The to_a method uses succ to generate elements.

15110 Principles of Computing, Carnegie

Mellon University - TOURETZKY 10




lteration Review

def testl () >> testl
foriin 1..5do wooi
“« ” (0] 0]
puts “Woof o
end Woof
end Woof
=>1.5

15110 Principles of Computing, Carnegie

Iteration Review

def test2 () >> test2
foriin 1..5 do 1
. 2

puts i
q 3
en 4
end 5
=>1..5

Mellon University - TOURETZKY




lteration Review

def test3 () >> test3
foriin 1..5 do wooiw .
" ” o s oofWoo
p(;'lts Woof I WoofWoofWoof
en WoofWoofWoofWoof
end WoofWoofWoofWoofWoof
=>1..5

Mellon University - TOURETZKY

You Can Loop Over Arrays Too

n u

fruits = [“apple”, “banana”, “cherry”, “date”]

for f in fruits do
puts “Yummy ” + f + “ pie
end

|II

Yummy apple pie!

Yummy banana pie!

Yummy cherry pie!

Yummy date pie!

=> [“apple”, “banana”, “cherry”, “date”]

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

14




Ilterators

* |terators are another way to operate on the
elements of an array.

* The each iterator is similar to a for loop:
fruits.each { |f| puts “Yummy ” + f + “pie!” }

This { } thing is called a “block” in Ruby

e Ruby provides lots of other iterators that do
cool and useful things.

15110 Principles of Computing, Carnegie 15
Mellon University - TOURETZKY

Compare

Using a for loop: Using an iterator:

for f in fruits do fruits.each { | f|
puts “Yummy ” +f puts “Yummy ” +f
end }

15110 Principles of Computing, Carnegie

Mellon University - TOURETZKY 16




Fun With Iterators

 fruits.collect { |f| f.length }
=>15, 6, 6, 4]

 fruits.collect { |f]| f.reverse }

n «u

=> [“elppa”, “ananab”, “yrrehc”, “etad”]

e fruits.select { |f| (“b”..“cz”).include? f}

n u

=> [“banana”, “cherry”]

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

17

“Destructive” lterators
e Some iterators modify the array. Beware!

items =(1..10).to_a
=>[1,2,3,4,5,6,7,8,9, 10]

items.delete_if { |i| i.odd? }
=>[2, 4,6, 8, 10]

items => [2,4, 6, 8, 10]

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

18




Ruby Has Hundreds of Methods,

Classes, Keywords, Iterators, Etc.

Too much to
remember!

That’s why we have online documentation:
http://www.ruby-doc.org

AND NOW FOR
SOMETHING

COMPLETELY
DIFFERENT

Mellon University - TOURETZKY

10



What Is a “Sieve” or “Sifter”?

Separates stuff you want from stuff you don’t:

. == _——

"

b .,

15110 Principles of Computing, Carnegie

Mellon University - TOURETZKY 2t

SIEVe
) OF

fRATOSTHENSS

A 2000 year old algorithm (procedure) for
generating a table of prime numbers.

2,3,5,7,11,13,17, 23, 29, 31, ...

15110 Principles of Computing, Carnegie

Mellon University - TOURETZKY 22

11



Prime Numbers

e Anintegeris “prime” if it is not divisible by
any smaller integers except 1.

e 10is not prime because 10=2 x5

e 11is prime

e 12 isnot prime because 12=2x6=2x2x3
e 13is prime

e 15is not prime because 15=3 x5

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

Testing Divisibility in Ruby
* xis “divisible by” y if the remainder is O

* 15is divisible by 3 and 5, but not by 2:

15%3 =>0
15%5 =>0
15%2 =>1

15110 Principles of Computing, Carnegie

Mellon University - TOURETZKY 24

12



Divisible By Three?

def threezy? (n)
return (n % 3) ==
end
Equality test
threezy?(5) => false
threezy?(6) => true

15110 Principles of Computing, Carnegie 25
Mellon University - TOURETZKY

The Sieve of Eratosthenes

Start with a table of
integers from 2 to N.

Cross out all the
entries that are

divisible by the
primes known so far.

The first value
remaining is the next
prime.

15110 Principles of Computing, Carnegie 26
Mellon University - TOURETZKY

13



Finding Primes Between 2 and 50

2345 67 8910
11121314151617 1819 20
2122 2324252627 282930
31323334353637383940
41424344 45464748 49 50

2 is the first prime.

15110 Principles of Computing, Carnegie

Mellon University - TOURETZKY 2

Finding Primes Between 2 and 50

2 3 5 7 9
111213 14151617 1219
212223 242576277529
31523334353637 3239
41 42 43 4445 46 47 22 49

Filter out everything divisible by 2.
Now we see that 3 is the next prime.

15110 Principles of Computing, Carnegie

Mellon University - TOURETZKY 28

14



Finding Primes Between 2 and 50

2 3 5 7
111213 17 1219
23 7425 29

31 35 36 37
41 47 43 47 12 49

Filter out everything divisible by 3.
Now we see that 5 is the next prime.

15110 Principles of Computing, Carnegie 29
Mellon University - TOURETZKY

Finding Primes Between 2 and 50

2 3 5 7
111213 17 1219
23 2425 29

31 353637
41 47 43 47 /12 49

Filter out everything divisible by 5.
Now we see that 7 is the next prime.

15110 Principles of Computing, Carnegie 30
3

Mellon University - TOURETZKY

15



Finding Primes Between 2 and 50

2 3 5 7
111213 17 1219
23 2425 29

31 353637

41 47 43 47

Filter out everything divisible by 7.
Now we see that 11 is the next prime.

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

Finding Primes Between 2 and 50

2 3 5 7
111213 17 1819
23 24 25 29

31 3536 37

41 42 43 47

Since 11 x 11 > 50, all the remaining table
entries must be prime.

15110 Principles of Computing, Carnegie
Mellon University - TOURETZKY

16



Doing It (Crudely) In Ruby

items = (2..50).to_a

items.delete_if { |i]| (i>2) & (i%2 ==0) }
items.delete_if { |i| (i>3) & (i%3 ==0) }
items.delete_if { |i| (i>5) & (i%5 ==0) }
items.delete_if { |i| (i>7) & (i%7 ==0) }

* What if we wanted a table of the first 1000
primes? How would you automate this?

15110 Principles of Computing, Carnegie

Mellon University - TOURETZKY 33

Algorithm-Inspired Sculpture

B The Sieve of Eratosthenes, 1999
sculpture by Mark di Suvero.
Displayed at Stanford University.

34

17



