
COMMON LISP:
A Gentle Introduction
to Symbolic Computation

David S. Touretzky
Carnegie Mellon University

The Benjamin/Cummings Publishing Company,Inc.

Redwood City, California • Fort Collins, Colorado • Menlo Park, California
Reading, Massachusetts• New York • Don Mill, Ontario • Workingham, U.K.
Amsterdam • Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan



Sponsoring Editor:  Alan Apt
Developmental Editor:  Mark McCormick
Production Coordinator:  John Walker
Copy Editor:  Steven Sorenson
Text and Cover Designer:  Michael Rogondino
Cover image selected by David S. Touretzky
Cover: La Grande Vitesse, sculpture by Alexander Calder

Copyright (c) 1990 by Symbolic Technology, Ltd.
Published by The Benjamin/Cummings Publishing Company, Inc.

This document may be redistributed in hardcopy form only, and  only for
educational purposes at no charge to the recipient.  Redistribution in
electronic form, such as on a web page or CD-ROM  disk, is prohibited.
All other rights are reserved.  Any other use of  this material is prohibited
without the written permission of the  copyright holder.

The programs presented in this book have been included for their
instructional value.  They have been tested with care but are not
guaranteed for any particular purpose.  The publisher does not offer any
warranties or representations, nor does it accept any liabilities with
respect to the programs.

Library of Congress Cataloging-in-Publication Data

Touretzky, David S.
Common LISP : a gentle introduction to symbolic computation /

David S. Touretzky
p. cm.

Includes index.
ISBN 0-8053-0492-4
1. COMMON LISP (Computer program language) I. Title.

QA76.73.C28T68 1989
005.13’3–dc20 89-15180

CIP

ISBN 0-8053-0492-4

ABCDEFGHIJK - DO - 8932109

The Benjamin/Cummings Publishing Company, Inc.
390 Bridge Parkway
Redwood City, California 94065



231

8
Recursion

8.1 INTRODUCTION

Because some instructors prefer to teach recursion as the first major control
structure, this chapter and the preceding one may be taught in either order.
They are independent.

Recursion is one of the most fundamental and beautiful ideas in computer
science. A function is said to be ‘‘recursive’’ if it calls itself.  Recursive
control structure is the main topic of this chapter, but we will also take a look
at recursive data structures in the Advanced Topics section.  The insight
necessary to recognize the recursive nature of many problems takes a bit of
practice to develop, but once you ‘‘get it,’’ you’ll be amazed at the interesting
things you can do with just a three- or four-line recursive function.

We will use a combination of three techniques to illustrate what recursion
is all about: dragon stories, program traces, and recursion templates.  Dragon
stories are the most controversial technique:  Students enjoy them and find
them helpful, but computer science professors aren’t always as appreciative.
If you don’t like dragons, you may skip Sections 8.2, 8.4, 8.6, and 8.9.  The
intervening sections will still make sense; they just won’t be as much fun.



232 Common Lisp:  A Gentle Introduction to Symbolic Computation

8.2 MARTIN AND THE DRAGON

In ancient times, before computers were invented, alchemists studied the
mystical properties of numbers.  Lacking computers, they had to rely on
dragons to do their work for them.  The dragons were clever beasts, but also
lazy and bad-tempered.  The worst ones would sometimes burn their keeper to
a crisp with a single fiery belch.  But most dragons were merely
uncooperative, as violence required too much energy.  This is the story of how
Martin, an alchemist’s apprentice, discovered recursion by outsmarting a lazy
dragon.

One day the alchemist gave Martin a list of numbers and sent him down to
the dungeon to ask the dragon if any were odd.  Martin had never been to the
dungeon before.  He took a candle down with him, and in the furthest, darkest
corner found an old dragon, none too friendly looking.  Timidly, he stepped
forward. He did not want to be burnt to a crisp.

‘‘What do you want?’’ grumped the dragon as it eyed Martin suspiciously.

‘‘Please, dragon, I have a list of numbers, and I need to know if any of
them are odd’’ Martin began. ‘‘Here it is.’’  He wrote the list in the dirt with
his finger:

(3142 5798 6550 8914)

The dragon was in a disagreeable mood that day.  Being a dragon, it
always was. ‘‘Sorry, boy’’ the dragon said.  ‘‘I might be willing to tell you if
the first number in that list is odd, but that’s the best I could possibly do.
Anything else would be too complicated; probably not worth my trouble.’’

‘‘But I need to know if any number in the list is odd, not just the first
number’’ Martin explained.

‘‘Too bad for you!’’ the dragon said.  ‘‘I’m only going to look at the first
number of the list.  But I’ll look at as many lists as you like if you give them to
me one at a time.’’

Martin thought for a while.  There had to be a way around the dragon’s
orneriness. ‘‘How about this first list then?’’ he asked, pointing to the one he
had drawn on the ground:

(3142 5798 6550 8914)

‘‘The first number in that list is not odd,’’ said the dragon.

Martin then covered the first part of the list with his hand and drew a new
left parenthesis, leaving



CHAPTER 8 Recursion 233

(5798 6550 8914)

and said ‘‘How about this list?’’

‘‘The first number in that list is not odd,’’ the dragon replied.

Martin covered some more of the list.  ‘‘How about this list then?’’

(6550 8914)

‘‘The first number in that list isn’t odd either,’’ said the dragon.  It sounded
bored, but at least it was cooperating.

‘‘And this one?’’ asked Martin.

(8914)

‘‘Not odd.’’

‘‘And this one?’’

()

‘‘That’s the empty list!’’ the dragon snorted.  ‘‘There can’t be an odd
number in there, because there’s nothing in there.’’

‘‘Well,’’ said Martin, ‘‘I now know that not one of the numbers in the list
the alchemist gave me is odd.  They’re all even.’’

‘‘I NEVER said that!!!’’ bellowed the dragon. Martin smelled smoke.  ‘‘I
only told you about the first number in each list you showed me.’’

‘‘That’s true, Dragon.  Shall I write down all of the lists you looked at?’’

‘‘If you wish,’’ the dragon replied.  Martin wrote in the dirt:

(3142 5798 6550 8914)
(5798 6550 8914)

(6550 8914)
(8914)

()

‘‘Don’t you see?’’ Martin asked. ‘‘By telling me that the first element of
each of those lists wasn’t odd, you told me that none of the elements in my
original list was odd.’’

‘‘That’s pretty tricky,’’ the dragon said testily. ‘‘It looks liked you’ve
discovered recursion. But don’t ask me what that means—you’ll have to
figure it out for yourself.’’  And with that it closed its eyes and refused to utter
another word.



234 Common Lisp:  A Gentle Introduction to Symbolic Computation

8.3 A FUNCTION TO SEARCH FOR ODD NUMBERS

Here is a recursive function ANYODDP that returns T if any element of a list
of numbers is odd.  It returns NIL if none of them are.

(defun anyoddp (x)
(cond ((null x) nil)

((oddp (first x)) t)
(t (anyoddp (rest x)))))

If the list of numbers is empty, ANYODDP should return NIL, since as the
dragon noted, there can’t be an odd number in a list that contains nothing.  If
the list is not empty, we go to the second COND clause and test the first
element. If the first element is odd, there is no need to look any further;
ANYODDP can stop and return T. When the first element is even,
ANYODDP must call itself on the rest of the list to keep looking for odd
elements. That is the recursive part of the definition.

To see better how ANYODDP works, we can use DTRACE to announce
every call to the function and every return value.  (The DTRACE tool used
here was introduced in the Lisp Toolkit section of Chapter 7.  If your Lisp
doesn’t have DTRACE, use TRACE instead.)

(defun anyoddp (x)
(cond ((null x) nil)

((oddp (first x)) t)
(t (anyoddp (rest x)))))

(dtrace anyoddp)

We’ll start with the simplest cases:  an empty list, and a list with one odd
number.

> (anyoddp nil)
----Enter ANYODDP
| X = NIL
\--ANYODDP returned NIL First COND clause returns NIL.
NIL

> (anyoddp ’(7))
----Enter ANYODDP
| X = (7)
\--ANYODDP returned T Second COND clause returns T.
T



CHAPTER 8 Recursion 235

Now let’s consider the case where the list contains one even number.  The
tests in the first two COND clauses will be false, so the function will end up at
the third clause, where it calls itself recursively on the REST of the list.  Since
the REST is NIL, this reduces to a previously solved problem:  (ANYODDP
NIL) is NIL due to the first COND clause.

> (anyoddp ’(6))
----Enter ANYODDP
| X = (6)
| ----Enter ANYODDP Third clause: recursive call.
| | X = NIL
| \--ANYODDP returned NIL First clause returns NIL.
\--ANYODDP returned NIL

NIL

If the list contains two elements, an even number followed by an odd
number, the recursive call will trigger the second COND clause instead of the
first:

> (anyoddp ’(6 7))
----Enter ANYODDP
| X = (6 7)
| ----Enter ANYODDP Third clause:  recursive call.
| | X = (7)
| \--ANYODDP returned T Second COND clause returns T.
\--ANYODDP returned T

T

Finally, let’s consider the general case where there are multiple even and
odd numbers:

> (anyoddp ’(2 4 6 7 8 9))
----Enter ANYODDP
| X = (2 4 6 7 8 9)
| ----Enter ANYODDP
| | X = (4 6 7 8 9)
| | ----Enter ANYODDP
| | | X = (6 7 8 9)
| | | ----Enter ANYODDP
| | | | X = (7 8 9)
| | | \--ANYODDP returned T
| | \--ANYODDP returned T
| \--ANYODDP returned T
\--ANYODDP returned T

T



236 Common Lisp:  A Gentle Introduction to Symbolic Computation

Note that in this example the function did not have to recurse all the way
down to NIL.  Since the FIRST of (7 8 9) is odd, ANYODDP could stop and
return T at that point.

EXERCISES

8.1. Use a trace to show how ANYODDP would handle the list (3142 5798
6550 8914).  Which COND clause is never true in this case?

8.2. Show how to write ANYODDP using IF instead of COND.

8.4 MARTIN VISITS THE DRAGON AGAIN

‘‘Hello Dragon!’’ Martin called as he made his way down the rickety dungeon
staircase.

‘‘Hmmmph! You again.  I’m on to your recursive tricks.’’ The dragon did
not sound glad to see him.

‘‘I’m supposed to find out what five factorial is,’’ Martin said.  ‘‘What’s
factorial mean, anyway?’’

At this the dragon put on a most offended air and said, ‘‘I’m not going to
tell you.  Look it up in a book.’’

‘‘All right,’’ said Martin.  ‘‘Just tell me what five factorial is and I’ll leave
you alone.’’

‘‘You don’t know what factorial means, but you want me to tell you what
factorial of five is???  All right buster, I’ll tell you, not that it will do you any
good. Factorial of five is five times factorial of four.  I hope you’re satisfied.
Don’t forget to bolt the door on your way out.’’

‘‘But what’s factorial of four?’’ asked Martin, not at all pleased with the
dragon’s evasiveness.

‘‘Factorial of four?  Why, it’s four times factorial of three, of course.’’

‘‘And I suppose you’re going to tell me that factorial of three is three times
factorial of two,’’ Martin said.

‘‘What a clever boy you are!’’ said the dragon.  ‘‘Now go away.’’

‘‘Not yet,’’ Martin replied. ‘‘Factorial of two is two times factorial of one.
Factorial of one is one times factorial of zero.  Now what?’’

‘‘Factorial of zero is one,’’ said the dragon. ‘‘That’s really all you ever
need to remember about factorials.’’



CHAPTER 8 Recursion 237

‘‘Hmmm,’’ said Martin. ‘‘There’s a pattern to this factorial function.
Perhaps I should write down the steps I’ve gone through.’’  Here is what he
wrote:

Factorial(5) = 5 × Factorial(4)
= 5 × 4 × Factorial(3)
= 5 × 4 × 3 × Factorial(2)
= 5 × 4 × 3 × 2 × Factorial(1)
= 5 × 4 × 3 × 2 × 1 × Factorial(0)
= 5 × 4 × 3 × 2 × 1 × 1

‘‘Well,’’ said the dragon, ‘‘you’ve recursed all the way down to factorial
of zero, which you know is one.  Now why don’t you try working your way
back up to....’’  When it realized what it was doing, the dragon stopped in
mid-sentence. Dragons aren’t supposed to be helpful.

Martin started to write again:

1 × 1= 1
2 × 1 × 1= 2

3 × 2 × 1 × 1= 6
4 × 3 × 2 × 1 × 1= 24

5 × 4 × 3 × 2 × 1 × 1= 120

‘‘Hey!’’ Martin yelped.  ‘‘Factorial of 5 is 120. That’s the answer!
Thanks!!’’

‘‘I didn’t tell you the answer,’’ the dragon said testily.  ‘‘I only told you
that factorial of zero is one, and factorial of n is n times factorial of n− 1. You
did the rest yourself.  Recursively, I might add.’’

‘‘That’s true,’’ said Martin.  ‘‘Now if I only knew what ‘recursively’ really
meant.’’

8.5 A LISP VERSION OF THE FACTORIAL FUNCTION

The dragon’s words gave a very precise definition of factorial: n factorial is n
times n− 1 factorial, and zero factorial is one. Here is a function called FACT
that computes factorials recursively:

(defun fact (n)
(cond ((zerop n) 1)

(t (* n (fact (- n 1))))))



238 Common Lisp:  A Gentle Introduction to Symbolic Computation

And here is how Lisp would solve Martin’s problem:

(dtrace fact)

> (fact 5)
----Enter FACT
| N = 5
| ----Enter FACT
| | N = 4
| | ----Enter FACT
| | | N = 3
| | | ----Enter FACT
| | | | N = 2
| | | | ----Enter FACT
| | | | | N = 1
| | | | | ----Enter FACT
| | | | | | N = 0
| | | | | \--FACT returned 1
| | | | \--FACT returned 1
| | | \--FACT returned 2
| | \--FACT returned 6
| \--FACT returned 24
\--FACT returned 120

120

EXERCISE

8.3. Why does (FACT 20.0) produce a different result than (FACT 20)?
Why do (FACT 0.0) and (FACT 0) both produce the same result?

8.6 THE DRAGON’S DREAM

The next time Martin returned to the dungeon, he found the dragon rubbing its
eyes, as if it had just awakened from a long sleep.

‘‘I had a most curious dream,’’ the dragon said.  ‘‘It was a recursive dream,
in fact.  Would you like to hear about it?’’

Martin was stunned to find the dragon in something resembling a friendly
mood. He forgot all about the alchemist’s latest problem.  ‘‘Yes, please do tell
me about your dream,’’ he said.

‘‘Very well,’’ began the dragon.  ‘‘Last night I was looking at a long loaf
of bread, and I wondered how many slices it would make. To answer my



CHAPTER 8 Recursion 239

question I actually went and cut one slice from the loaf. I had one slice, and
one slightly shorter loaf of bread, but no answer.  I puzzled over the problem
until I fell asleep.’’

‘‘And that’s when you had the dream?’’ Martin asked.

‘‘Yes, a very curious one.  I dreamt about another dragon who had a loaf of
bread just like mine, except his was a slice shorter.  And he too wanted to
know how many slices his loaf would make, but he had the same problem I
did. He cut off a slice, like me, and stared at the remaining loaf, like me, and
then he fell asleep like me as well.’’

‘‘So neither one of you found the answer,’’ Martin said disappointedly.
‘‘You don’t know how long your loaf is, and you don’t know how long his is
either, except that it’s one slice shorter than yours.’’

‘‘But I’m not done yet,’’ the dragon said.  ‘‘When the dragon in my dream
fell asleep, he had a dream as well.  He dreamt about—if you can imagine
this—a dragon whose loaf of bread was one slice shorter than his own loaf.
And this dragon also wanted to find out how many slices his loaf would make,
and he tried to find out by cutting a slice, but that didn’t tell him the answer,
so he fell asleep thinking about it.’’

‘‘Dreams within dreams!!’’ Martin exclaimed.  ‘‘You’re making my head
swim. Did that last dragon have a dream as well?’’

‘‘Yes, and he wasn’t the last either.  Each dragon dreamt of a dragon with a
loaf one slice shorter than his own.  I was piling up a pretty deep stack of
dreams there.’’

‘‘How did you manage to wake up then?’’  Martin asked.

‘‘Well,’’ the dragon said, ‘‘eventually one of the dragons dreamt of a
dragon whose loaf was so small it wasn’t there at all.  You might call it ‘the
empty loaf.’  That dragon could see his loaf contained no slices, so he knew
the answer to his question was zero; he didn’t fall asleep.

‘‘When the dragon who dreamt of that dragon woke up, he knew that since
his own loaf was one slice longer, it must be exactly one slice long. So he
awoke knowing the answer to his question.

‘‘And, when the dragon who dreamt of that dragon woke up, he knew that
his loaf had to be two slices long, since it was one slice longer than that of the
dragon he dreamt about.  And when the dragon who dreamt of him woke
up...."

‘‘I get it!’’ Martin said.  ‘‘He added one to the length of the loaf of the
dragon he dreamed about, and that answered his own question.  And when you



240 Common Lisp:  A Gentle Introduction to Symbolic Computation

finally woke up, you had the answer to yours.  How many slices did your loaf
make?’’

‘‘Twenty-seven,’’ said the dragon.  ‘‘It was a very long dream.’’

8.7 A RECURSIVE FUNCTION FOR COUNTING SLICES OF BREAD

If we represent a slice of bread by a symbol, then a loaf can be represented as
a list of symbols. The problem of finding how many slices a loaf contains is
thus the problem of finding how many elements a list contains.  This is of
course what LENGTH does, but if we didn’t have LENGTH, we could still
count the slices recursively.

(defun count-slices (loaf)
(cond ((null loaf) 0)

(t (+ 1 (count-slices (rest loaf))))))

(dtrace count-slices)

If the input is the empty list, then its length is zero, so COUNT-SLICES
simply returns zero.

> (count-slices nil)
----Enter COUNT-SLICES
| LOAF = NIL
\--COUNT-SLICES returned 0

0

If the input is the list (X), COUNT-SLICES calls itself recursively on the
REST of the list, which is NIL, and then adds one to the result.

> (count-slices ’(x))
----Enter COUNT-SLICES
| LOAF = (X)
| ----Enter COUNT-SLICES
| | LOAF = NIL
| \--COUNT-SLICES returned 0
\--COUNT-SLICES returned 1

1

When the input is a longer list, COUNT-SLICES has to recurse more deeply
to get to the empty list so it can return zero.  Then as each recursive call
returns, one is added to the result.



CHAPTER 8 Recursion 241

> (count-slices ’(x x x x x))
----Enter COUNT-SLICES
| LOAF = (X X X X X)
| ----Enter COUNT-SLICES
| | LOAF = (X X X X)
| | ----Enter COUNT-SLICES
| | | LOAF = (X X X)
| | | ----Enter COUNT-SLICES
| | | | LOAF = (X X)
| | | | ----Enter COUNT-SLICES
| | | | | LOAF = (X)
| | | | | ----Enter COUNT-SLICES
| | | | | | LOAF = NIL
| | | | | \--COUNT-SLICES returned 0
| | | | \--COUNT-SLICES returned 1
| | | \--COUNT-SLICES returned 2
| | \--COUNT-SLICES returned 3
| \--COUNT-SLICES returned 4
\--COUNT-SLICES returned 5

5

8.8 THE THREE RULES OF RECURSION

The dragon, beneath its feigned distaste for Martin’s questions, actually
enjoyed teaching him about recursion.  One day it decided to formally explain
what recursion means.  The dragon told Martin to approach every recursive
problem as if it were a journey.  If he followed three rules for solving
problems recursively, he would always complete the journey successfully.
The dragon explained the rules this way:

1. Know when to stop.

2. Decide how to take one step.

3. Break the journey down into that step plus a smaller journey.

Let’s see how each of these rules applies to the Lisp functions we wrote.
The first rule, ‘‘know when to stop,’’ warns us that any recursive function
must check to see if the journey has been completed before recursing further.
Usually this is done in the first COND clause.  In ANYODDP the first clause
checks if the input is the empty list, and if so the function stops and returns
NIL, since the empty list doesn’t contain any numbers.  The factorial function,
FACT, stops when the input gets down to zero.  Zero factorial is one, and, as



242 Common Lisp:  A Gentle Introduction to Symbolic Computation

the dragon said, that’s all you ever need to remember about factorial.  The rest
is computed recursively.  In COUNT-SLICES the first COND clause checks
for NIL, ‘‘the empty loaf.’’  COUNT-SLICES returns zero if NIL is the input.
Again, this is based on the realization that the empty loaf contains no slices, so
we do not have to recurse any further.

The second rule, ‘‘decide how to take one step,’’ asks us to break off from
the problem one tiny piece that we instantly know how to solve.  In
ANYODDP we check whether the FIRST of a list is an odd number; if so we
return T. In the factorial function we perform a single multiplication,
multiplying the input N by factorial of N− 1. In COUNT-SLICES the step is
the + function: For each slice we cut off the loaf, we add one to whatever the
length of the resulting loaf turned out to be.

The third rule, ‘‘break the journey down into that step plus a smaller
journey,’’ means find a way for the function to call itself recursively on the
slightly smaller problem that results from breaking a tiny piece off.  The
ANYODDP function calls itself on the REST of the list, a shorter list than the
original, to see if there are any odd numbers there.  The factorial function
recursively computes factorial of N-1, a slightly simpler problem than
factorial of N, and then uses the result to get factorial of N. In COUNT-
SLICES we use a recursive call to count the number of slices in the REST of a
loaf, and then add one to the result to get the size of the whole loaf.

The Dragon’s Three Recursive Functions

Function
Stop When

Input Is Return Step to Take Rest of Problem

ANYODDP NIL NIL (ODDP (FIRST X)) (ANYODDP (REST X))

FACT 0 1 N × ... (FACT (- N 1))

COUNT-SLICES NIL 0 1 + ... (COUNT-SLICES
(REST LOAF))

Table 8-1 Applying the three rules of recursion.

Table 8-1 sums up our understanding of how the three rules apply to
ANYODDP, FACT, and COUNT-SLICES.  Now that you know the rules, you
can write your own recursive functions.



CHAPTER 8 Recursion 243

FIRST RECURSION EXERCISE

8.4. We are going to write a function called LAUGH that takes a number as
input and returns a list of that many HAs.  (LAUGH 3) should return
the list (HA HA HA).  (LAUGH 0) should return a list with no HAs in
it, or, as the dragon might put it, ‘‘the empty laugh.’’

Here is a skeleton for the LAUGH function:

(defun laugh (n)
(cond (α β)

(t (cons ’ha γ))))

Under what condition should the LAUGH function stop recursing?
Replace the symbol α in the skeleton with that condition.  What value
should LAUGH return for that case?  Replace symbol β in the skeleton
with that value.  Given that a single step for this problem is to add a HA
onto the result of a subproblem, fill in that subproblem by replacing the
symbol γ.

Type your LAUGH function into the computer.  Then type (DTRACE
LAUGH) to trace it, and (LAUGH 5) to test it.  Do you get the result
you want? What happens for (LAUGH 0)?  What happens for
(LAUGH -1)?

Note: If the function looks like it’s in an infinite loop, break out of it
and get back to the read-eval-print loop.  (Exactly how this is done
depends on the particular version of Lisp you use.  Ask your local Lisp
expert if you need help.)  Then use DTRACE to help you understand
what’s going on.

EXERCISES

8.5. In this exercise we are going to write a function ADD-UP to add up all
the numbers in a list.  (ADD-UP ’(2 3 7)) should return 12.  You
already know how to solve this problem applicatively with REDUCE;
now you’ll learn to solve it recursively.  Before writing ADD-UP we
must answer three questions posed by our three rules of recursion.

a. When do we stop?  Is there any list for which we immediately
know what the sum of all its elements is?  What is that list?
What value should the function return if it gets that list as
input?

b. Do we know how to take a single step?  Look at the second
COND clause in the definition of COUNT-SLICES or FACT.



244 Common Lisp:  A Gentle Introduction to Symbolic Computation

Does this give you any ideas about what the single step
should be for ADD-UP?

c. How should ADD-UP call itself recursively to solve the rest
of the problem?  Look at COUNT-SLICES or FACT again if
you need inspiration.

Write down the complete definition of ADD-UP. Type it into the
computer. Trace it, and then try adding up a list of numbers.

8.6. Write ALLODDP, a recursive function that returns T if all the numbers
in a list are odd.

8.7. Write a recursive version of MEMBER.  Call it REC-MEMBER so you
don’t redefine the built-in MEMBER function.

8.8. Write a recursive version of ASSOC.  Call it REC-ASSOC.

8.9. Write a recursive version of NTH.  Call it REC-NTH.

8.10. For x a nonnegative integer and y a positive integer, x+y equals
x+1+(y-1). If y is zero then x+y equals x. Use these equations to build
a recursive version of + called REC-PLUS out of ADD1, SUB1,
COND and ZEROP.  You’ll have to write ADD1 and SUB1 too.

8.9 MARTIN DISCOVERS INFINITE RECURSION

On his next trip down to the dungeon Martin brought with him a parchment
scroll. ‘‘Look dragon,’’ he called, ‘‘someone else must know about recursion.
I found this scroll in the alchemist’s library.’’

The dragon peered suspiciously as Martin unrolled the scroll, placing a
candlestick at each end to hold it flat.  ‘‘This scroll makes no sense,’’ the
dragon said.  ‘‘For one thing, it’s got far too many parentheses.’’

‘‘The writing is a little strange,’’ Martin agreed, ‘‘but I think I’ve figured
out the message.  It’s an algorithm for computing Fibonacci numbers.’’

‘‘I already know how to compute Fibonacci numbers,’’ said the dragon.

‘‘Oh? How?’’

‘‘Why, I wouldn’t dream of spoiling the fun by telling you,’’ the dragon
replied.

‘‘I didn’t think you would,’’ Martin shot back.  ‘‘But the scroll says that
Fib of n equals Fib of n-1 plus Fib of n-2. That’s a recursive definition, and I



CHAPTER 8 Recursion 245

already know how to work with recursion.’’

‘‘What else does the scroll say?’’ the dragon asked.

‘‘Nothing else.  Should it say more?’’

Suddenly the dragon assumed a most ingratiating tone.  Martin found the
change startling.  ‘‘Dearest boy!  Would you do a poor old dragon one tiny
little favor? Compute a Fibonacci number for me.  I promise to only ask you
for a small one.’’

‘‘Well, I’m supposed to be upstairs now, cleaning the cauldrons,’’ Martin
began, but seeing the hurt look on the dragon’s face he added, ‘‘but I guess I
have time for a small one.’’

‘‘You won’t regret it,’’ promised the dragon.  ‘‘Tell me:  What is Fib of
four?’’

Martin traced his translation of the Fibonacci algorithm in the dust:

Fib(n) = Fib(n-1) + Fib(n-2)

Then he began to compute Fib of four:

Fib(4) = Fib(3) + Fib(2)
Fib(3) = Fib(2) + Fib(1)
Fib(2) = Fib(1) + Fib(0)
Fib(1) = Fib(0) + Fib(-1)
Fib(0) = Fib(-1) + Fib(-2)
Fib(-1) = Fib(-2) + Fib(-3)
Fib(-2) = Fib(-3) + Fib(-4)
Fib(-3) = Fib(-4) + Fib(-5)

‘‘Finished?’’ the dragon asked innocently.

‘‘No,’’ Martin replied.  ‘‘Something is wrong. The numbers are becoming
increasingly negative.’’

‘‘Well, will you be finished soon?’’

‘‘It looks like I won’t ever be finished,’’ Martin said.  ‘‘This recursion
keeps going on forever.’’

‘‘Aha! You see?  You’re stuck in an infinite recursion!’’ the dragon
gloated. ‘‘I noticed it at once.’’

‘‘Then why didn’t you say something?’’ Martin demanded.

The dragon grimaced and gave a little snort; blue flame appeared briefly in
its nostrils. ‘‘How will you ever come to master recursion if you rely on a
dragon to do your thinking for you?’’



246 Common Lisp:  A Gentle Introduction to Symbolic Computation

Martin wasn’t afraid, but he stepped back a bit anyway to let the smoke
clear. ‘‘Well, how did you spot the problem so quickly, dragon?’’

‘‘Elementary, boy. The scroll told how to take a single step, and how to
break the journey down to a smaller one.  It said nothing at all about when you
get to stop.  Ergo,’’ the dragon grinned, ‘‘you don’t.’’

8.10 INFINITE RECURSION IN LISP

Lisp functions can be made to recurse infinitely by ignoring the dragon’s first
rule of recursion, which is to know when to stop.  Here is the Lisp
implementation of Martin’s algorithm:

(defun fib (n)
(+ (fib (- n 1))

(fib (- n 2))))

(dtrace fib)

> (fib 4)
----Enter FIB
| N = 4
| ----Enter FIB
| | N = 3
| | ----Enter FIB
| | | N = 2
| | | ----Enter FIB
| | | | N = 1
| | | | ----Enter FIB
| | | | | N = 0
| | | | | ----Enter FIB
| | | | | | N = -1
| | | | | | ----Enter FIB
| | | | | | | N = -2
| | | | | | | ----Enter FIB
| | | | | | | | N = -3

ad infinitum

Usually a good programmer can tell just by looking at a function whether it
will exhibit infinite recursion, but in some cases this can be quite difficult to
determine. Try tracing the following function C, giving it inputs that are small
positive integers:



CHAPTER 8 Recursion 247

(defun c (n)
(cond ((equal n 1) t)

((evenp n) (c (/ n 2)))
(t (c (+ (* 3 n) 1)))))

> (c 3)
----Enter C
| N = 3
| ----Enter C
| | N = 10
| | ----Enter C
| | | N = 5
| | | ----Enter C
| | | | N = 16
| | | | ----Enter C
| | | | | N = 8
| | | | | ----Enter C
| | | | | | N = 4
| | | | | | ----Enter C
| | | | | | | N = 2
| | | | | | | ----Enter C
| | | | | | | | N = 1
| | | | | | | \--C returned T
| | | | | | \--C returned T
| | | | | \--C returned T
| | | | \--C returned T
| | | \--C returned T
| | \--C returned T
| \--C returned T
\--C returned T

T

Try calling C on other values between one and ten.  Notice that there is no
obvious relationship between the size of the input and the number of recursive
calls that result.  Number theorists believe the function returns T for every
positive integer, in other words, there are no inputs which cause it to recurse
infinitely. This is known as Collatz’s conjecture.  But until the conjecture is
proved, we can’t say for certain whether or not C always returns.

EXERCISES

8.11. The missing part of Martin’s Fibonacci algorithm is the rule for Fib(1)
and Fib(0).  Both of these are defined to be one. Using this



248 Common Lisp:  A Gentle Introduction to Symbolic Computation

information, write a correct version of the FIB function. (FIB 4) should
return five.  (FIB 5) should return eight.

8.12. Consider the following version of ANY-7-P, a recursive function that
searches a list for the number seven:

(defun any-7-p (x)
(cond ((equal (first x) 7) t)

(t (any-7-p (rest x)))))

Give a sample input for which this function will work correctly.  Give
one for which the function will recurse infinitely.

8.13. Review the definition of the factorial function, FACT, given previously.
What sort of input could you give it to cause an infinite recursion?

8.14. Write the very shortest infinite recursion function you can.

8.15. Consider the circular list shown below.  What is the car of this list?
What is the cdr?  What will the COUNT-SLICES function do when
given this list as input?

X

8.11 RECURSION TEMPLATES

Most recursive Lisp functions fall into a few standard forms.  These are
described by recursion templates, which capture the essence of the form in a
fill-in-the-blanks pattern.  You can create new functions by choosing a
template and filling in the blanks.  Also, once you’ve mastered them, you can
use the templates to analyze existing functions to see which pattern they fit.

8.11.1 Double-Test Tail Recursion

The first template we’ll study is double-test tail recursion, which is shown in
Figure 8-1.  ‘‘Double-test’’ indicates that the recursive function has two end
tests; if either is true, the corresponding end value is returned instead of
proceeding with the recursion. When both end tests are false, we end up at the



CHAPTER 8 Recursion 249

Double-Test Tail Recursion

Template:

(DEFUN func (X)
(COND (end-test-1 end-value-1)

(end-test-2 end-value-2)
(T (func reduced-x))))

Example:

Func: ANYODDP
End-test-1: (NULL X)
End-value-1: NIL
End-test-2: (ODDP (FIRST X))
End-value-2: T
Reduced-x: (REST X)

(defun anyoddp (x)
(cond ((null x) nil)

((oddp (first x)) t)
(t (anyoddp (rest x)))))

Figure 8-1 Template for double-test tail recursion.



250 Common Lisp:  A Gentle Introduction to Symbolic Computation

last COND clause, where the function reduces the input somehow and then
calls itself recursively. This template is said to be tail-recursive because the
action part of the last COND clause does not do any work after the recursive
call. Whatever result the recursive call produces, that is what the COND
returns, so that is what each parent call returns.  ANYODDP is an example of
a tail-recursive function.

EXERCISES

8.16. What would happen if we switched the first and second COND clauses
in ANYODDP?

8.17. Use double-test tail recursion to write FIND-FIRST-ODD, a function
that returns the first odd number in a list, or NIL if there are none.  Start
by copying the recursion template values for ANYODDP; only a small
change is necessary to derive FIND-FIRST-ODD.

8.11.2 Single-Test Tail Recursion

A simpler but less frequently used template is single-test tail recursion, which
is shown in Figure 8-2.  Suppose we want to find the first atom in a list, where
the list may be nested arbitrarily deeply.  We can do this by taking successive
FIRSTs of the list until we reach an atom.  The function FIND-FIRST-ATOM
does this:

(find-first-atom ’(ooh ah eee)) ⇒ ooh

(find-first-atom ’((((a f)) i) r)) ⇒ a

(find-first-atom ’fred) ⇒ fred

In general, single-test recursion is used when we know the function will
always find what it’s looking for eventually; FIND-FIRST-ATOM is
guaranteed to find an atom if it keeps taking successive FIRSTs of its input.
We use double-test recursion when there is the possibility the function might
not find what it’s looking for.  In ANYODDP, for example, the second test
checked if it had found an odd number, but first a test was needed to see if the
function had run off the end of the list, in which case it should return NIL.

EXERCISES

8.18. Use single-test tail recursion to write LAST-ELEMENT, a function that
returns the last element of a list. LAST-ELEMENT should recursively



CHAPTER 8 Recursion 251

Single-Test Tail Recursion

Template:

(DEFUN func (X)
(COND (end-test end-value)

(T (func reduced-x))))

Example:

Func: FIND-FIRST-ATOM
End-test: (ATOM X)
End-value: X
Reduced-x: (FIRST X)

(defun find-first-atom (x)
(cond ((atom x) x)

(t (find-first-atom (first x)))))

Figure 8-2 Template for single-test tail recursion.



252 Common Lisp:  A Gentle Introduction to Symbolic Computation

travel down the list until it reaches the last cons cell (a cell whose cdr is
an atom); then it should return the car of this cell.

8.19. Suppose we decided to convert ANYODDP to single-test tail recursion
by simply eliminating the COND clause with the NULL test. For
which inputs would it still work correctly?  What would happen in
those cases where it failed to work correctly?

8.11.3 Augmenting Recursion

Augmenting recursive functions like COUNT-SLICES build up their result
bit-by-bit. We call this process augmentation. Instead of dividing the
problem into an initial step plus a smaller journey, they divide it into a smaller
journey plus a final step.  The final step consists of choosing an augmentation
value and applying it to the result of the previous recursive call.  In COUNT-
SLICES, for example, we built up the result by first making a recursive call
and then adding one to the result. A template for single-test augmenting
recursion is shown in Figure 8-3.

No augmentation of the result is permitted in tail-recursive functions.
Therefore, the value returned by a tail-recursive function is always equal to
one of the end-values in the function definition; it isn’t built up bit-by-bit as
each recursive call returns. Compare ANYODDP, which always returns T or
NIL; it never augments its result.

EXERCISES

8.20. Of the three templates we’ve seen so far, which one describes FACT,
the factorial function?  Write down the values of the various template
components for FACT.

8.21. Write a recursive function ADD-NUMS that adds up the numbers N,
N− 1, N− 2, and so on, down to 0, and returns the result.  For example,
(ADD-NUMS 5) should compute 5+4+3+2+1+0, which is 15.

8.22. Write a recursive function ALL-EQUAL that returns T if the first
element of a list is equal to the second, the second is equal to the third,
the third is equal to the fourth, and so on.  (ALL-EQUAL ’(I I I I))
should return T. (ALL-EQUAL ’(I I E I)) should return NIL. ALL-
EQUAL should return T for lists with less than two elements.  Does this
problem require augmentation?  Which template will you use to solve
it?



CHAPTER 8 Recursion 253

Single-Test Augmenting Recursion

Template:

(DEFUN func (X)
(COND (end-test end-value)

(T (aug-fun aug-val
(func reduced-x)))))

Example:

Func: COUNT-SLICES
End-test: (NULL X)
End-value: 0
Aug-fun: +
Aug-val: 1
Reduced-x: (REST X)

(defun count-slices (x)
(cond ((null x) 0)

(t (+ 1 (count-slices (rest x))))))

Figure 8-3 Template for single-test augmenting recursion.



254 Common Lisp:  A Gentle Introduction to Symbolic Computation

8.12 VARIATIONS ON THE BASIC TEMPLATES

The templates we’ve learned so far have many uses.  Certain ways of using
them are especially common in Lisp programming, and deserve special
mention. In this section we’ll cover four variations on the basic templates.

8.12.1 List-Consing Recursion

List-consing recursion is used very frequently in Lisp.  It is a special case of
augmenting recursion where the augmentation function is CONS.  As each
recursive call returns, we create one new cons cell.  Thus, the depth of the
recursion is equal to the length of the resulting cons cell chain, plus one
(because the last call returns NIL instead of a cons).  The LAUGH function
you wrote in the first recursion exercise is an example of list-consing
recursion. See Figure 8-4 for the template.

EXERCISES

8.23. Suppose we evaluate (LAUGH 5).  Make a table showing, for each call
to LAUGH, the value of N (from five down to zero), the value of the
first input to CONS, the value of the second input to CONS, and the
result returned by LAUGH.

8.24. Write COUNT-DOWN, a function that counts down from n using list-
consing recursion.  (COUNT-DOWN 5) should produce the list (5 4 3 2
1).

8.25. How could COUNT-DOWN be used to write an applicative version of
FACT? (You may skip this problem if you haven’t read Chapter 7 yet.)

8.26. Suppose we wanted to modify COUNT-DOWN so that the list it
constructs ends in zero.  For example, (COUNT-DOWN 5) would
produce (5 4 3 2 1 0).  Show two ways this can be done.

8.27. Write SQUARE-LIST, a recursive function that takes a list of numbers
as input and returns a list of their squares. (SQUARE-LIST ’(3 4 5 6))
should return (9 16 25 36).



CHAPTER 8 Recursion 255

List-Consing Recursion
(A Special Case of Augmenting Recursion)

Template:

(DEFUN func (N)
(COND (end-test NIL)

(T (CONS new-element
(func reduced-n)))))

Example:

Func: LAUGH
End-test: (ZEROP N)
New-element: ’HA
Reduced-n: (- N 1)

(defun laugh (n)
(cond ((zerop n) nil)

(t (cons ’ha (laugh (- n 1))))))

Figure 8-4 Template for list-consing recursion.



256 Common Lisp:  A Gentle Introduction to Symbolic Computation

8.12.2 Simultaneous Recursion on Several Variables

Simultaneous recursion on multiple variables is a straightforward extension to
any recursion template.  Instead of having only one input, the function has
several, and one or more of them is ‘‘reduced’’ with each recursive call. For
example, suppose we want to write a recursive version of NTH, called MY-
NTH. Recall that (NTH 0 x) is (FIRST x); this tells us which end test to use.
With each recursive call we reduce n by one and take successive RESTs of the
list x. The resulting function demonstrates single-test tail recursion with
simultaneous recursion on two variables. The template is shown in Figure 8-5.
Here is a trace in which you can see the two variables being reduced
simultaneously.

(defun my-nth (n x)
(cond ((zerop n) (first x))

(t (my-nth (- n 1) (rest x)))))

> (my-nth 2 ’(a b c d e))
----Enter MY-NTH
| N = 2
| X = (A B C D E)
| ----Enter MY-NTH
| | N = 1
| | X = (B C D E)
| | ----Enter MY-NTH
| | | N = 0
| | | X = (C D E)
| | \--MY-NTH returned C
| \--MY-NTH returned C
\--MY-NTH returned C

C

EXERCISES

8.28. The expressions (MY-NTH 5 ’(A B C)) and (MY-NTH 1000 ’(A B C))
both run off the end of the list. and hence produce a NIL result.  Yet the
second expression takes quite a bit longer to execute than the first.
Modify MY-NTH so that the recursion stops as soon the function runs
off the end of the list.

8.29. Write MY-MEMBER, a recursive version of MEMBER.  This function
will take two inputs, but you will only want to reduce one of them with
each successive call.  The other should remain unchanged.



CHAPTER 8 Recursion 257

Simultaneous Recursion on Several Variables
(Using the Single-Test Tail Recursion Template)

Template:

(DEFUN func (N X)
(COND (end-test end-value)

(T (func reduced-n reduced-x))))

Example:

Func: MY-NTH
End-test: (ZEROP N)
End-value: (FIRST X)
Reduced-n: (- N 1)
Reduced-x: (REST X)

(defun my-nth (n x)
(cond ((zerop n) (first x))

(t (my-nth (- n 1) (rest x)))))

Figure 8-5 Template for simultaneous recursion on several variables, using single-test
tail recursion.



258 Common Lisp:  A Gentle Introduction to Symbolic Computation

8.30. Write MY-ASSOC, a recursive version of ASSOC.

8.31. Suppose we want to tell as quickly as possible whether one list is
shorter than another.  If one list has five elements and the other has a
million, we don’t want to have to go through all one million cons cells
before deciding that the second list is longer. So we must not call
LENGTH on the two lists.  Write a recursive function COMPARE-
LENGTHS that takes two lists as input and returns one of the following
symbols: SAME-LENGTH, FIRST-IS-LONGER, or SECOND-IS-
LONGER. Use triple-test simultaneous recursion. Hint: If x is shorter
than y and both are nonempty, then (REST x) is shorter than (REST y).

8.12.3 Conditional Augmentation

In some list-processing problems we want to skip certain elements of the list
and use only the remaining ones to build up the result.  This is known as
conditional augmentation. For example, in EXTRACT-SYMBOLS, defined
on the facing page, only elements that are symbols will be included in the
result.

> (extract-symbols ’(3 bears and 1 girl))
----Enter EXTRACT-SYMBOLS
| X = (3 BEARS AND 1 GIRL)
| ----Enter EXTRACT-SYMBOLS
| | X = (BEARS AND 1 GIRL)
| | ----Enter EXTRACT-SYMBOLS
| | | X = (AND 1 GIRL)
| | | ----Enter EXTRACT-SYMBOLS
| | | | X = (1 GIRL)
| | | | ----Enter EXTRACT-SYMBOLS
| | | | | X = (GIRL)
| | | | | ----Enter EXTRACT-SYMBOLS
| | | | | | X = NIL
| | | | | \--EXTRACT-SYMBOLS returned NIL
| | | | \--EXTRACT-SYMBOLS returned (GIRL)
| | | \--EXTRACT-SYMBOLS returned (GIRL)
| | \--EXTRACT-SYMBOLS returned (AND GIRL)
| \--EXTRACT-SYMBOLS returned (BEARS AND GIRL)
\--EXTRACT-SYMBOLS returned (BEARS AND GIRL)

(BEARS AND GIRL)

The body of EXTRACT-SYMBOLS contains two recursive calls.  One call
is nested inside an augmentation expression, which in this case conses a new



CHAPTER 8 Recursion 259

Conditional Augmentation

Template:

(DEFUN func (X)
(COND (end-test end-value)

(aug-test (aug-fun aug-val
(func reduced-x))

(T (func reduced-x))))

Example:

Func: EXTRACT-SYMBOLS
End-test: (NULL X)
End-value: NIL
Aug-test: (SYMBOLP (FIRST X))
Aug-fun: CONS
Aug-val: (FIRST X)
Reduced-x: (REST X)

(defun extract-symbols (x)
(cond ((null x) nil)

((symbolp (first x))
(cons (first x)

(extract-symbols (rest x))))
(t (extract-symbols (rest x)))))

Figure 8-6 Template for conditional augmentation.



260 Common Lisp:  A Gentle Introduction to Symbolic Computation

element onto the result list.  The other call is unaugmented; instead its result is
simply returned.  In the preceding trace output you’ll note that sometimes two
successive calls return the same value, such as two lists (GIRL) and two lists
(BEARS AND GIRL); that’s because one of each pair of calls chose the
unaugmented COND clause.  When the augmented clause was chosen, the
result got longer, as when we went from NIL to (GIRL), from there to (AND
GIRL), and from there to (BEARS AND GIRL).  See Figure 8-6 for the
general template for conditional augmentation.

EXERCISES

8.32. Write the function SUM-NUMERIC-ELEMENTS, which adds up all
the numbers in a list and ignores the non-numbers. (SUM-NUMERIC-
ELEMENTS ’(3 BEARS 3 BOWLS AND 1 GIRL)) should return
seven.

8.33. Write MY-REMOVE, a recursive version of the REMOVE function.

8.34. Write MY-INTERSECTION, a recursive version of the
INTERSECTION function.

8.35. Write MY-SET-DIFFERENCE, a recursive version of the SET-
DIFFERENCE function.

8.36. The function COUNT-ODD counts the number of odd elements in a list
of numbers; for example, (COUNT-ODD ’(4 5 6 7 8)) should return
two. Show how to write COUNT-ODD using conditional
augmentation. Then write another version of COUNT-ODD using the
regular augmenting recursion template.  (To do this you will need to
write a conditional expression for the augmentation value.)

8.12.4 Multiple Recursion

A function is multiple recursive if it makes more than one recursive call with
each invocation.  (Don’t confuse simultaneous with multiple recursion.  The
former technique just reduces several variables simultaneously; it does not
involve multiple recursive calls with each invocation.) The Fibonacci function
is a classic example of multiple recursion.  Fib(N) calls itself twice: once for
Fib(N− 1) and again for Fib(N− 2). The results of the two calls are combined
using +. A general template for multiple recursion is shown in Figure 8-7.

A good way to visualize the process of multiple recursion is to look at the
shape of the nested calls in the trace output.  Let’s define a terminal call as a



CHAPTER 8 Recursion 261

Multiple Recursion

Template:

(DEFUN func (N)
(COND (end-test-1 end-value-1)

(end-test-2 end-value-2)
(T (combiner (func first-reduced-n)

(func second-reduced-n)))))

Example:

Func: FIB
End-test-1: (EQUAL N 0)
End-value-1: 1
End-test-2: (EQUAL N 1)
End-value-2: 1
Combiner: +
First-reduced-n: (− N 1)
Second-reduced-n: (− N 2)

(defun fib (n)
(cond ((equal n 0) 1)

((equal n 1) 1)
(t (+ (fib (- n 1))

(fib (- n 2))))))

Figure 8-7 Template for multiple recursion.



262 Common Lisp:  A Gentle Introduction to Symbolic Computation

call that does not recurse any further.  In all previous functions, successive
calls were nested strictly one inside the other, and the innermost call was the
only terminal call.  Then, the return values flowed in a straight line from the
innermost call back to the outermost.  But with a multiple-recursive function
such as FIB, each call produces two new calls. The two are nested inside the
parent call, but they cannot nest inside each other.  Instead they appear side by
side within the parent. Multiple recursive functions therefore have many
terminal calls.  In the following trace output, there are three terminal calls and
two nonterminal calls.

> (fib 3)
----Enter FIB
| N = 3
| ----Enter FIB
| | N = 2
| | ----Enter FIB
| | | N = 1
| | \--FIB returned 1
| | ----Enter FIB
| | | N = 0
| | \--FIB returned 1
| \--FIB returned 2
| ----Enter FIB
| | N = 1
| \--FIB returned 1
\--FIB returned 3

3

EXERCISE

8.37. Define a simple function COMBINE that takes two numbers as input
and returns their sum.  Now replace the occurence of + in FIB with
COMBINE. Trace FIB and COMBINE, and try evaluating (FIB 3) or
(FIB 4).  What can you say about the relationship between COMBINE,
terminal calls, and nonterminal calls?

8.13 TREES AND CAR/CDR RECURSION

Sometimes we want to process all the elements of a nested list, not just the
top-level elements. If the list is irregularly shaped, such as (((GOLDILOCKS
. AND)) (THE . 3) BEARS), this might appear difficult.  When we write our
function, we won’t know how long or how deeply nested its inputs will be.



CHAPTER 8 Recursion 263

CAR/CDR Recursion
(A Special Case of Multiple Recursion)

Template:

(DEFUN func (X)
(COND (end-test-1 end-value-1)

(end-test-2 end-value-2)
(T (combiner (func (CAR X))

(func (CDR X))))))

Example:

Func: FIND-NUMBER
End-test-1: (NUMBERP X)
End-value-1: X
End-test-2: (ATOM X)
End-value-2: NIL
Combiner: OR

(defun find-number (x)
(cond ((numberp x) x)

((atom x) nil)
(t (or (find-number (car x))

(find-number (cdr x))))))

Figure 8-8 Template for CAR/CDR recursion.



264 Common Lisp:  A Gentle Introduction to Symbolic Computation

GOLDILOCKS

AND

NIL

THE

3
BEARS

NIL

The trick to solving this problem is not to think of the input as an
irregularly shaped nested list, but rather as a binary tree (see the following
illustration.) Binary trees are very regular:  Each node is either an atom or a
cons with two branches, the car and the cdr.  Therefore all our function has to
do is process the atoms, and call itself recursively on the car and cdr of each
cons. This technique is called CAR/CDR recursion; it is a special case of
multiple recursion.

 NIL

GOLDILOCKS  AND THE  3 BEARS  NIL



CHAPTER 8 Recursion 265

For example, suppose we want a function FIND-NUMBER to search a tree
and return the first number that appears in it, or NIL if there are none.  Then
we should use NUMBERP and ATOM as our end tests and OR as the
combiner. (See the template in Figure 8-8.)  Note that since OR is a
conditional, as soon as one clause of the OR evaluates to true, the OR stops
and returns that value.  Thus we don’t have to search the whole tree; the
function will stop recursing as soon as any call results in a non-NIL value.

Besides tree searching, another common use for CAR/CDR recursion is to
build trees by using CONS as the combiner.  For example, here is a function
that takes a tree as input and returns a new tree in which every non-NIL atom
has been replaced by the symbol Q.

(defun atoms-to-q (x)
(cond ((null x) nil)

((atom x) ’q)
(t (cons (atoms-to-q (car x))

(atoms-to-q (cdr x))))))

> (atoms-to-q ’(a . b))
(Q . Q)

> (atoms-to-q ’(hark (harold the angel) sings))
(Q (Q Q Q) Q)

EXERCISES

8.38. What would be the effect of deleting the first COND clause in
ATOMS-TO-Q?

8.39. Write a function COUNT-ATOMS that returns the number of atoms in
a tree.  (COUNT-ATOMS ’(A (B) C)) should return five, since in
addition to A, B, and C there are two NILs in the tree.

8.40. Write COUNT-CONS, a function that returns the number of cons cells
in a tree.  (COUNT-CONS ’(FOO)) should return one. (COUNT-
CONS ’(FOO BAR)) should return two.  (COUNT-CONS ’((FOO)))
should also return two, since the list ((FOO)) requires two cons cells.
(COUNT-CONS ’FRED) should return zero.

8.41. Write a function SUM-TREE that returns the sum of all the numbers
appearing in a tree.  Nonnumbers should be ignored.  (SUM-TREE ’((3
BEARS) (3 BOWLS) (1 GIRL))) should return seven.

8.42. Write MY-SUBST, a recursive version of the SUBST function.



266 Common Lisp:  A Gentle Introduction to Symbolic Computation

8.43. Write FLATTEN, a function that returns all the elements of an
arbitrarily nested list in a single-level list.  (FLATTEN ’((A B (R)) A C
(A D ((A (B)) R) A))) should return (A B R A C A D A B R A).

8.44. Write a function TREE-DEPTH that returns the maximum depth of a
binary tree.  (TREE-DEPTH ’(A . B)) should return one.  (TREE-
DEPTH ’((A B C D))) should return five, and (TREE-DEPTH ’((A . B)
. (C .  D))) should return two.

8.45. Write a function PAREN-DEPTH that returns the maximum depth of
nested parentheses in a list.  (PAREN-DEPTH ’(A B C)) should return
one, whereas TREE-DEPTH would return three.  (PAREN-DEPTH ’(A
B ((C) D) E)) should return three, since there is an element C that is
nested in three levels of parentheses. Hint: This problem can be solved
by CAR/CDR recursion, but the CAR and CDR cases will not be
exactly symmetric.

8.14 USING HELPING FUNCTIONS

For some problems it is useful to structure the solution as a helping function
plus a recursive function.  The recursive function does most of the work.  The
helping function is the one that you call from top level; it performs some
special service either at the beginning or the end of the recursion.  For
example, suppose we want to write a function COUNT-UP that counts from
one up to n:

(count-up 5) ⇒ (1 2 3 4 5)

(count-up 0) ⇒ nil

This problem is harder than COUNT-DOWN because the innermost
recursive call must terminate the recursion when the input reaches five (in the
preceding example), not zero.  In general, how will the function know when to
stop? The easiest way is to supply the original value of N to the recursive
function so it can decide when to stop.  We must also supply an extra
argument: a counter that tells the function how far along it is in the recursion.
The job of the helping function is to provide the initial value for the counter.

(defun count-up (n)
(count-up-recursively 1 n))



CHAPTER 8 Recursion 267

(defun count-up-recursively (cnt n)
(cond ((> cnt n) nil)

(t (cons cnt
(count-up-recursively

(+ cnt 1) n)))))

(dtrace count-up count-up-recursively)

> (count-up 3)
----Enter COUNT-UP
| N = 3
| ----Enter COUNT-UP-RECURSIVELY
| | CNT = 1
| | N = 3
| | ----Enter COUNT-UP-RECURSIVELY
| | | CNT = 2
| | | N = 3
| | | ----Enter COUNT-UP-RECURSIVELY
| | | | CNT = 3
| | | | N = 3
| | | | ----Enter COUNT-UP-RECURSIVELY
| | | | | CNT = 4
| | | | | N = 3
| | | | \--COUNT-UP-RECURSIVELY returned NIL
| | | \--COUNT-UP-RECURSIVELY returned (3)
| | \--COUNT-UP-RECURSIVELY returned (2 3)
| \--COUNT-UP-RECURSIVELY returned (1 2 3)
\--COUNT-UP returned (1 2 3)

(1 2 3)

EXERCISES

8.46. Another way to solve the problem of counting upward is to to add an
element to the end of the list with each recursive call instead of adding
elements to the beginning. This approach doesn’t require a helping
function. Write this version of COUNT-UP.

8.47. Write MAKE-LOAF, a function that returns a loaf of size
N. (MAKE-LOAF 4) should return (X X X X).  Use IF instead of
COND.

8.48. Write a recursive function BURY that buries an item under n levels of
parentheses. (BURY ’FRED 2) should return ((FRED)), while (BURY
’FRED 5) should return (((((FRED))))).  Which recursion template did
you use?



268 Common Lisp:  A Gentle Introduction to Symbolic Computation

8.49. Write PAIRINGS, a function that pairs the elements of two lists.
(PAIRINGS ’(A B C) ’(1 2 3)) should return ((A 1) (B 2) (C 3)).  You
may assume that the two lists will be of equal length.

8.50. Write SUBLISTS, a function that returns the successive sublists of a
list. (SUBLISTS ’(FEE FIE FOE)) should return ((FEE FIE FOE) (FIE
FOE) (FOE)).

8.51. The simplest way to write MY-REVERSE, a recursive version of
REVERSE, is with a helping function plus a recursive function of two
inputs. Write this version of MY-REVERSE.

8.52. Write MY-UNION, a recursive version of UNION.

8.53. Write LARGEST-EVEN, a recursive function that returns the largest
even number in a list of nonnegative integers.  (LARGEST-EVEN ’(5 2
4 3)) should return four.  (LARGEST-EVEN NIL) should return zero.
Use the built-in MAX function, which returns the largest of its inputs.

8.54. Write a recursive function HUGE that raises a number to its own
power. (HUGE 2) should return 22, (HUGE 3) should return 33 = 27,
(HUGE 4) should return 44 = 256, and so on.  Do not use REDUCE.

8.15 RECURSION IN ART AND LITERATURE

Recursion can be found not only in computer programs, but also in stories and
in paintings. The classic One Thousand and One Arabian Nights contains
stories within stories within stories, giving it a recursive flavor. A similar
effect is expressed visually in some of Dr. Seuss’s drawings in The Cat in the
Hat Comes Back. One of these is shown in Figure 8-9.  The nesting of cats
within hats is like the nesting of contexts when a recursive function calls itself.
In the story, each cat’s taking off his hat plays the role of a recursive function
call. Little cat B has his hat on at this point, but the recursion eventually gets
all the way to Z, and terminates with an explosion. (If this story has any
moral, it would appear to be, ‘‘Know when to stop!’’)

Some of the most imaginative representations of recursion and self-
referentiality in art are the works of the Dutch artist M. C. Escher, whose
lithograph ‘‘Drawing Hands’’ appears in Figure 8-10.  Douglas Hofstadter
discusses the role of recursion in music, art, and mathematics in his book
Godel, Escher, Bach: An Eternal Golden Braid. The dragon stories in this
chapter were inspired by characters in Hofstadter’s book.



CHAPTER 8 Recursion 269

Figure 8-9 Recursively nested cats, from The Cat in the Hat Comes Back, by Dr.
Suess. Copyright (c) 1958 by Dr. Suess.  Reprinted by permission of Random House,
Inc.



270 Common Lisp:  A Gentle Introduction to Symbolic Computation

Figure 8-10 ‘‘Drawing Hands’’ by M. C. Escher.  Copyright (c) 1989 M. C. Escher
heirs/Cordon Art–Baarn–Holland.

SUMMARY

Recursion is a very powerful control structure, and one of the most important
ideas in computer science.  A function is said to be ‘‘recursive’’ if it calls
itself. To write a recursive function, we must solve three problems posed by
the Dragon’s three rules of recursion:

1. Know when to stop.

2. Decide how to take one step.

3. Break the journey down into that step plus a smaller journey.



CHAPTER 8 Recursion 271

We’ve seen a number of recursion templates in this chapter.  Recursion
templates capture the essence of certain stereotypical recursive solutions.
They can be used for writing new functions, or for analyzing existing
functions. The templates we’ve seen so far are:

1. Double-test tail recursion.
2. Single-test tail recursion.
3. Single-test augmenting recursion.
4. List-consing recursion.
5. Simultaneous recursion on several variables.
6. Conditional augmentation.
7. Multiple recursive calls.
8. CAR/CDR recursion.

REVIEW EXERCISES

8.55. What distinguishes a recursive function from a nonrecursive one?

8.56. Write EVERY-OTHER, a recursive function that returns every other
element of a list—the first, third, fifth, and so on.  (EVERY-OTHER
’(A B C D E F G)) should return (A C E G).  (EVERY-OTHER ’(I
CAME I SAW I CONQUERED)) should return (I I I).

8.57. Write LEFT-HALF, a recursive function in two parts that returns the
first n/2 elements of a list of length n. Write your function so that the
list does not have to be of even length.  (LEFT-HALF ’(A B C D E))
should return (A B C).  (LEFT-HALF ’(1 2 3 4 5 6 7 8)) should return
(1 2 3 4).  You may use LENGTH but not REVERSE in your
definition.

8.58. Write MERGE-LISTS, a function that takes two lists of numbers, each
in increasing order, as input.  The function should return a list that is a
merger of the elements in its inputs, in order.  (MERGE-LISTS ’(1 2 6
8 10 12) ’(2 3 5 9 13)) should return (1 2 2 3 5 6 8 9 10 12 13).

8.59. Here is another definition of the factorial function:

Factorial(0) = 1
Factorial(N) = Factorial(N+1) / (N+1)

Verify that these equations are true.  Is the definition recursive?  Write
a Lisp function that implements it.  For which inputs will the function
return the correct answer?  For which inputs will it fail to return the
correct answer?  Which of the three rules of recursion does the
definition violate?



272 Common Lisp:  A Gentle Introduction to Symbolic Computation

Lisp Toolkit:  The Debugger

All beginning Lispers quickly learn one debugger command, because as soon
as they type something wrong, that’s where they end up: in the debugger.
They have to learn how to get out!  Lisp implementations differ substantially
when it comes to debuggers, so there will be no standard way to recover from
an error. Some of you have probably been typing Q for Quit or :A for Abort,
while others may be typing Control-C or Control-G.  In any case, now that
you’re confident you can exit the debugger whenever you like, why not stay
around a while?

The debugger does not actually remove bugs from programs.  What it does
is let you examine the state of the computation when an error has occurred.
This also makes it a good tool for learning about recursion.  We can use the
BREAK function to enter the debugger at a strategic point in the computation.
The argument to BREAK is a message, in string quotes, to be printed when the
debugger is entered.  Here is a modified version of FACT that demonstrates
the use of BREAK:

(defun fact (n)
(cond ((zerop n) (break "N is zero."))

(t (* n (fact (- n 1))))))

> (fact 5)
N is zero.
Entering the debugger:

Debug>

We are now sitting in the debugger; ‘‘Debug>’’ is the debugger’s prompt.
(Your debugger may use a different prompt.)  One of the things we can do at
this point is display a backtrace of the control stack, which shows all the
recursive calls that are currently stacked up.  If you’re not familiar with terms
like ‘‘control stack’’ and ‘‘stack frame,’’ just play around with the debugger
for a while and you’ll get the hang of what’s going on.  (The control stack is
Lisp’s way of keeping track of a collection of nested function calls.  A stack
frame is an entry on the stack that describes one of these function calls.)  In
my debugger the command for displaying a backtrace is BK.



CHAPTER 8 Recursion 273

Debug> bk
(BREAK "N is zero.")
(FACT (- N 1))
(FACT (- N 1))
(FACT (- N 1))
(FACT (- N 1))
(FACT (- N 1))
(FACT 5)
<Bottom of Stack>

Variants of the BK command allow different sorts of control stack
information to be displayed.  In my debugger, BKFV gives a display of
function names and their local variables.

Debug> bkfv
BREAK
N = 0

FACT
N = 1

FACT
N = 2

FACT
N = 3

FACT
N = 4

FACT
N = 5

FACT
<Bottom of Stack>

While inside the debugger we can look at the values of variables, and type
arbitrary Lisp expressions using them.

Debug> n
0

Debug> (cons ’foo n)
(FOO . 0)

When we enter the debugger, we are sitting at the top of the stack.  We can
move around the stack using the commands called (in my debugger) UP and
DOWN. If we move down the stack, we can see other local variables named
N.

Debug> down
(FACT (- N 1))



274 Common Lisp:  A Gentle Introduction to Symbolic Computation

Debug> down
(FACT (- N 1))

Debug> down
(FACT (- N 1))

Debug> bkv
(BREAK "N is zero.")
N = 0

(FACT (- N 1))
N = 1

(FACT (- N 1))
N = 2

(FACT (- N 1)) <-- Current stack frame
N = 3

(FACT (- N 1))
N = 4

(FACT (- N 1))
N = 5

(FACT 5)
<Bottom of Stack>

Debug> n
3

Finally, we can use the debugger to return from any one of the function
calls currently on the stack.  This causes the computation to resume as if the
function had returned normally:

Debug> return 10
600

When we returned 10 from the current stack frame, the computation
resumed at that point, and the value produced was 5 × 4 × 3 × 10 = 600.

Your debugger won’t look exactly like mine, and it may provide somewhat
different capabilities, but the basic idea of examining the control stack is
common to all Lisp debuggers. Look in the user’s manual for your Lisp
implementation to see which debugger commands are offered.  Typing HELP
or :H or ‘‘?’’ to your debugger may also produce a list of commands.



CHAPTER 8 Recursion 275

Keyboard Exercise

In this exercise we will extract different sorts of information from a
genealogical database.  The database gives information for five generations of
a family, as shown in Figure 8-11.  Such diagrams are usually called family
trees, but this family’s genealogical history is not a simple tree structure.
Marie has married her first cousin Nigel.  Wanda has had one child with
Vincent and another with Ivan. Zelda and Robert, the parents of Yvette, have
two great grandparents in common.  (This might explain why Yvette turned
out so weird.)  And only Tamara knows who Frederick’s father is; she’s not
telling.

Figure 8-11 Genealogy information for five generations of a family.



276 Common Lisp:  A Gentle Introduction to Symbolic Computation

(setf family
’((colin nil nil)
(deirdre nil nil)
(arthur nil nil)
(kate nil nil)
(frank nil nil)
(linda nil nil)
(suzanne colin deirdre)
(bruce arthur kate)
(charles arthur kate)
(david arthur kate)
(ellen arthur kate)
(george frank linda)
(hillary frank linda)
(andre nil nil)
(tamara bruce suzanne)
(vincent bruce suzanne)
(wanda nil nil)
(ivan george ellen)
(julie george ellen)
(marie george ellen)
(nigel andre hillary)
(frederick nil tamara)
(zelda vincent wanda)
(joshua ivan wanda)
(quentin nil nil)
(robert quentin julie)
(olivia nigel marie)
(peter nigel marie)
(erica nil nil)
(yvette robert zelda)
(diane peter erica)))

Figure 8-12 The genealogy database.



CHAPTER 8 Recursion 277

Each person in the database is represented by an entry of form

(name father mother)

When someone’s father or mother is unknown, a value of NIL is used.

The functions you write in this keyboard exercise need not be recursive,
except where indicated.  For functions that return lists of names, the exact
order in which these names appear is unimportant, but there should be no
duplicates.

EXERCISE

8.60. If the genealogy database is already stored on the computer for you,
load the file containing it.  If not, you will have to type it in as it
appears in Figure 8-12.  Store the database in the global variable
FAMILY.

a. Write the functions FATHER, MOTHER, PARENTS, and
CHILDREN that return a person’s father, mother, a list of his or her
known parents, and a list of his or her children, respectively.
(FATHER ’SUZANNE) should return COLIN. (PARENTS
’SUZANNE) should return (COLIN DEIRDRE).  (PARENTS
’FREDERICK) should return (TAMARA), since Frederick’s father
is unknown.  (CHILDREN ’ARTHUR) should return the set
(BRUCE CHARLES DAVID ELLEN). If any of these functions is
given NIL as input, it should return NIL.  This feature will be useful
later when we write some recursive functions.

b. Write SIBLINGS, a function that returns a list of a person’s siblings,
including genetic half-siblings. (SIBLINGS ’BRUCE) should return
(CHARLES DAVID ELLEN).  (SIBLINGS ’ZELDA) should return
(JOSHUA).

c. Write MAPUNION, an applicative operator that takes a function and
a list as input, applies the function to every element of the list, and
computes the union of all the results.  An example is (MAPUNION
#’REST ’((1 A B C) (2 E C J) (3 F A B C D))), which should return
the set (A B C E J F D). Hint: MAPUNION can be defined as a
combination of two applicative operators you already know.

d. Write GRANDPARENTS, a function that returns the set of a
person’s grandparents.  Use MAPUNION in your solution.



278 Common Lisp:  A Gentle Introduction to Symbolic Computation

e. Write COUSINS, a function that returns the set of a person’s
genetically related first cousins, in other words, the children of any
of their parents’ siblings.  (COUSINS ’JULIE) should return the set
(TAMARA VINCENT NIGEL).  Use MAPUNION in your
solution.

f. Write the two-input recursive predicate DESCENDED-FROM that
returns a true value if the first person is descended from the second.
(DESCENDED-FROM ’TAMARA ’ARTHUR) should return
T. (DESCENDED-FROM ’TAMARA ’LINDA) should return NIL.
(Hint: You are descended from someone if he is one of your
parents, or if either your father or mother is descended from him.
This is a recursive definition.)

g. Write the recursive function ANCESTORS that returns a person’s
set of ancestors. (ANCESTORS ’MARIE) should return the set
(ELLEN ARTHUR KATE GEORGE FRANK LINDA).  (Hint: A
person’s ancestors are his parents plus his parents’ ancestors.  This is
a recursive definition.)

h. Write the recursive function GENERATION-GAP that returns the
number of generations separating a person and one of his or her
ancestors. (GENERATION-GAP ’SUZANNE ’COLIN) should
return one. (GENERATION-GAP ’FREDERICK ’COLIN) should
return three.  (GENERATION-GAP ’FREDERICK ’LINDA) should
return NIL, because Linda is not an ancestor of Frederick.

i. Use the functions you have written to answer the following
questions:

1. Is Robert descended from Deirdre?
2. Who are Yvette’s ancestors?
3. What is the generation gap between Olivia and Frank?
4. Who are Peter’s cousins?
5. Who are Olivia’s grandparents?


