Algorithms in Nature

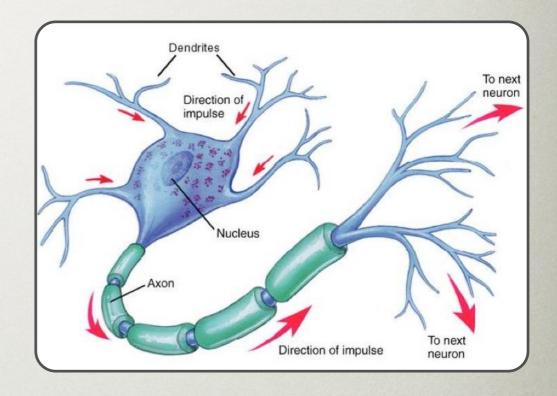
Pruning in neural networks

Neural network development

- Efficient signal propagation

 [e.g. information
 processing & integration
- Robust to noise and failures
 [e.g. cell or synapse failure]
- 3. **Cost-aware** design

 [e.g. energy, metabolic constraints, wiring]

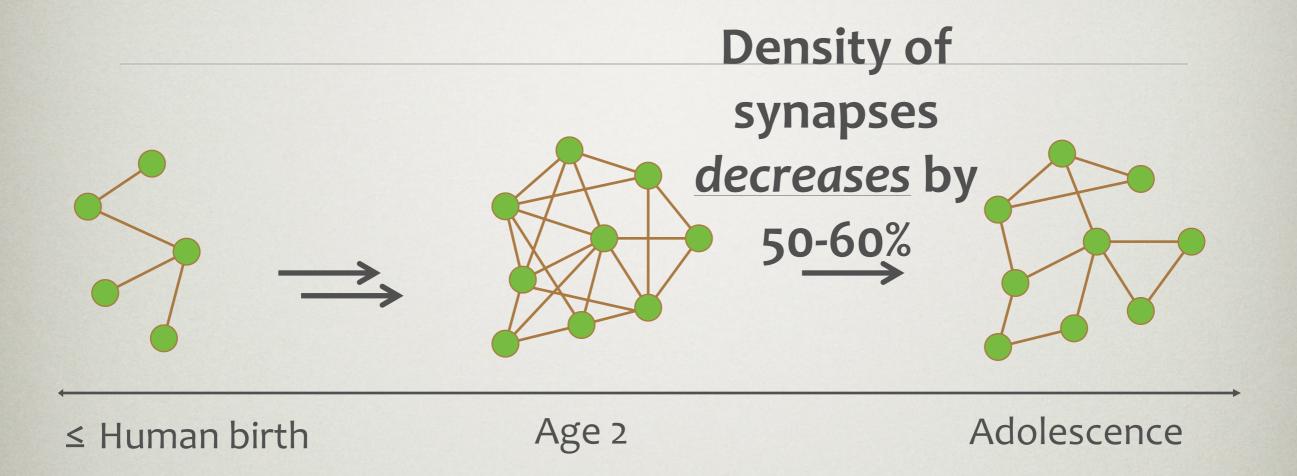


Abstracted to:

Pre-synaptic neuron; output along axon

Post-synaptic neuron; input via dendrites

Formation of neural networks

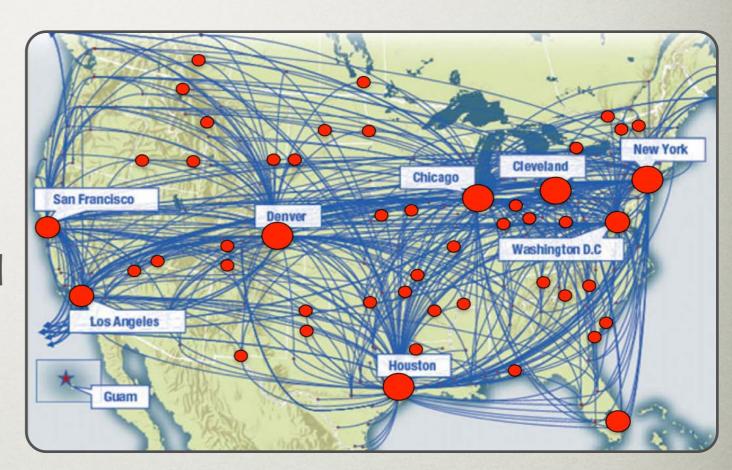


Synaptic pruning occurs in every brain region and organism studied that exhibits learning

Very different from current computational / engineering network design strategies!

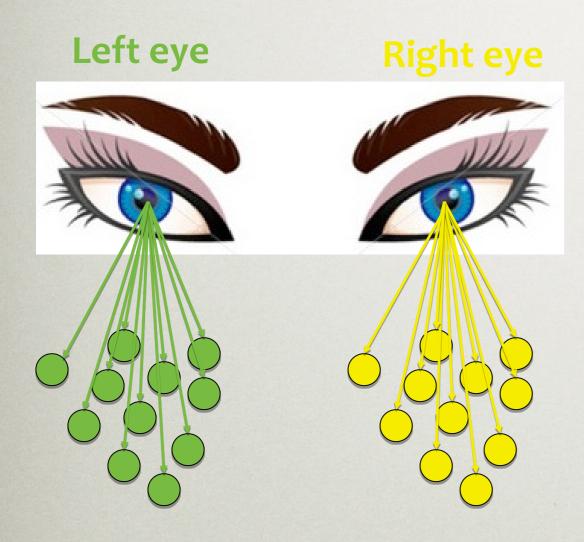
Engineered distributed networks:

- Engineered networks share similar goals: Efficiency, robustness, costs.
- Networks start sparse and can add more connections if needed
- A common starting strategy is based on spanning trees



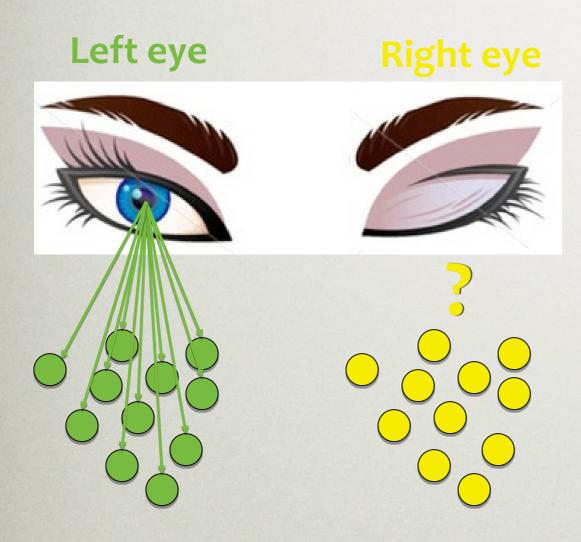
airline routes, USA

Advantages of pruning



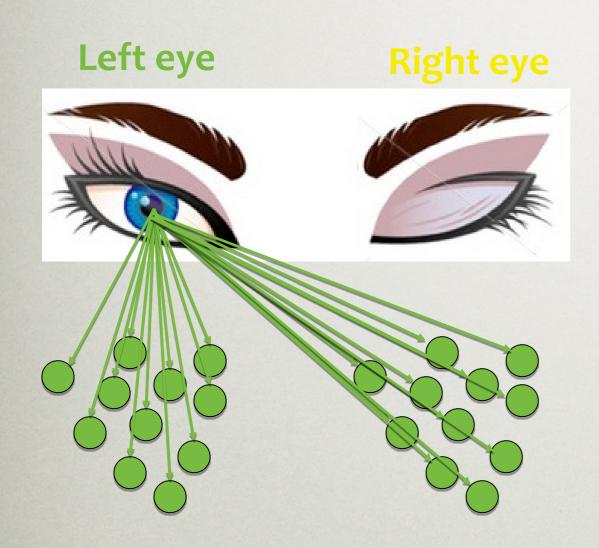
Two sets of neurons that each respond to stimuli from one eye

Advantages of pruning



What happens to the neurons that now receive no input?

Advantages of pruning



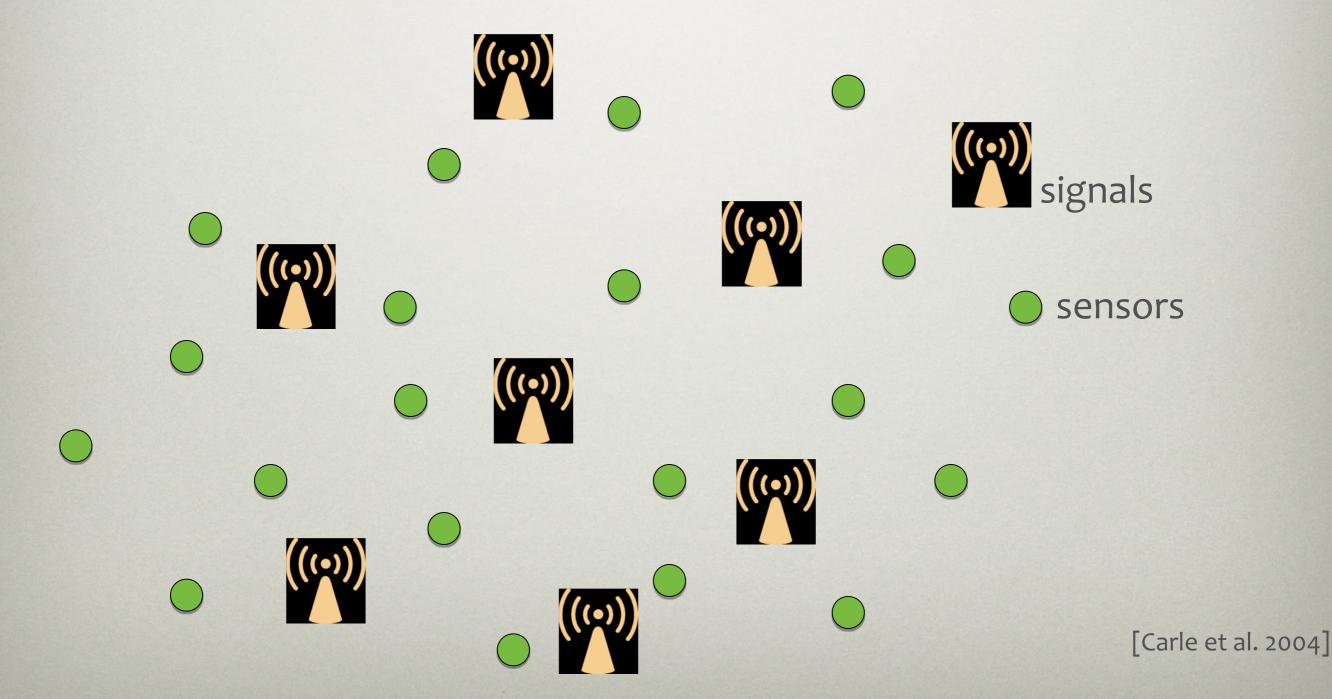
Both sets of neurons respond to activity from the <u>same</u> eye

Why does this happen?

- * Pool resources to compensate for loss of the right eye
- * More efficient and robust use of neurons and connections

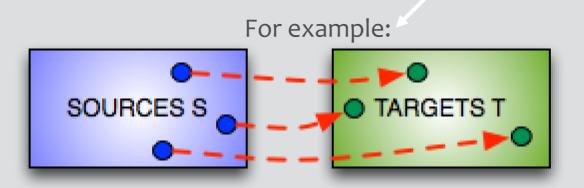
Distributed communication networks

In wireless networks, broadcast ranges are often required to be inferred based on active set of participants



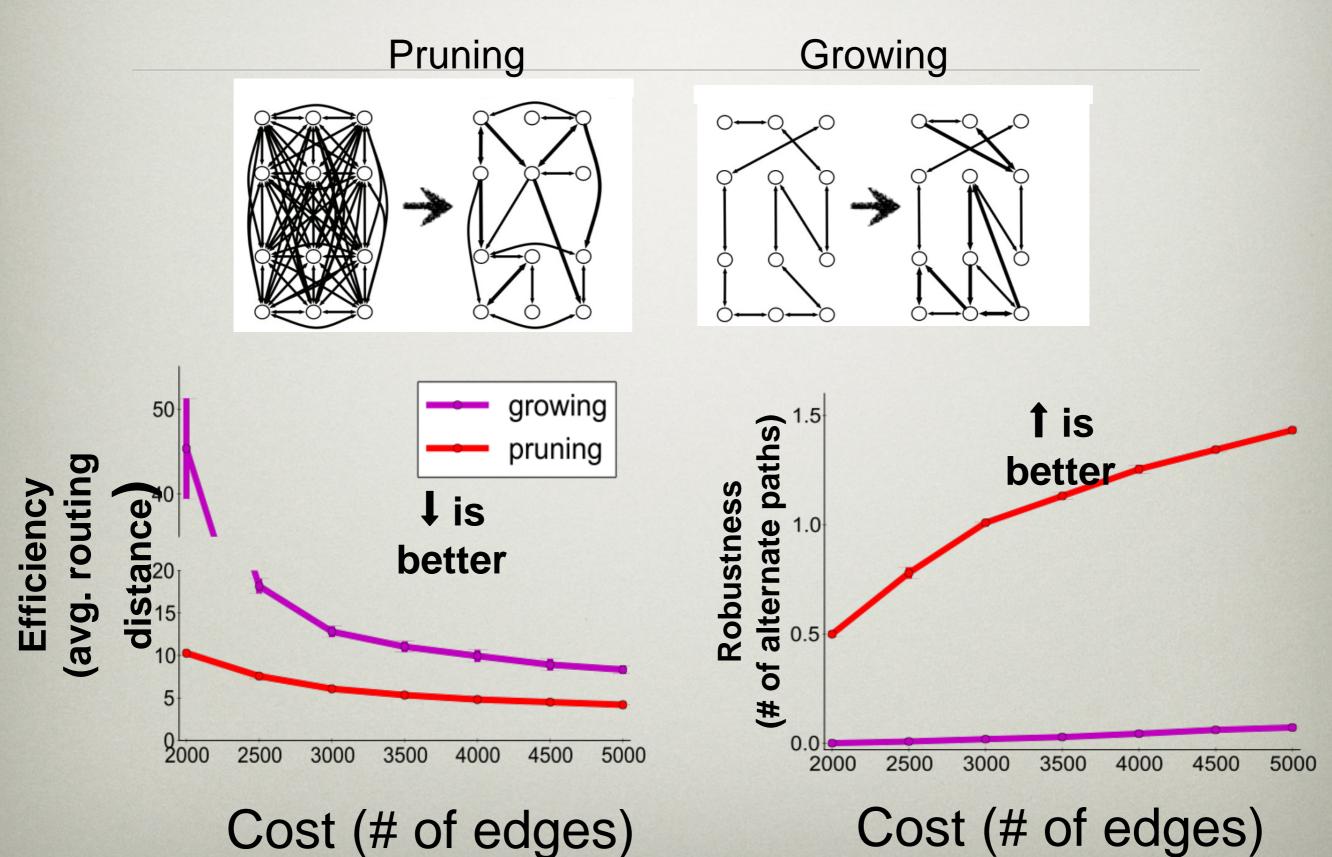
A theoretical model of network design

Input: Given n nodes and source-target pairs $\{(s_i, t_i)\}_{i=1}^p$ drawn from some a priori unknown distribution \mathcal{D}

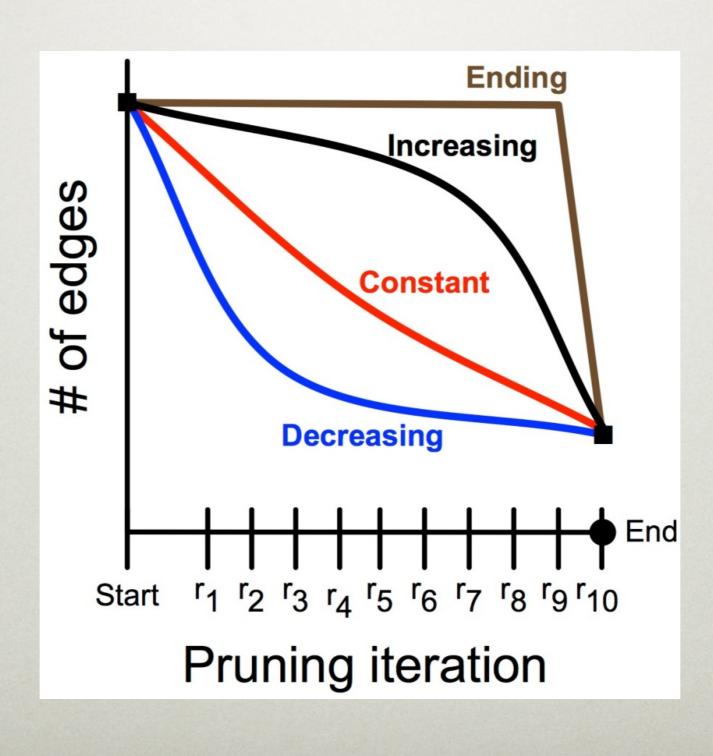


Output: A sparse graph G with $B \ll p$ edges that is "efficient" and "robust" with respect to \mathcal{D}

Pruning outperforms Growing

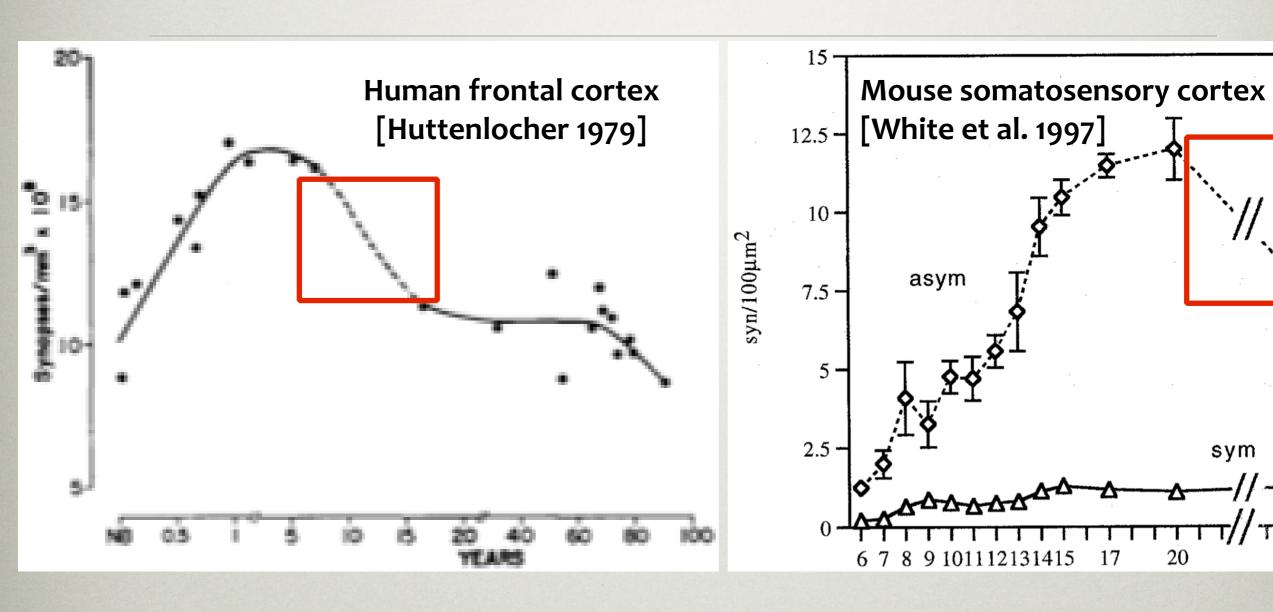


Does the rate of synapse pruning matter?

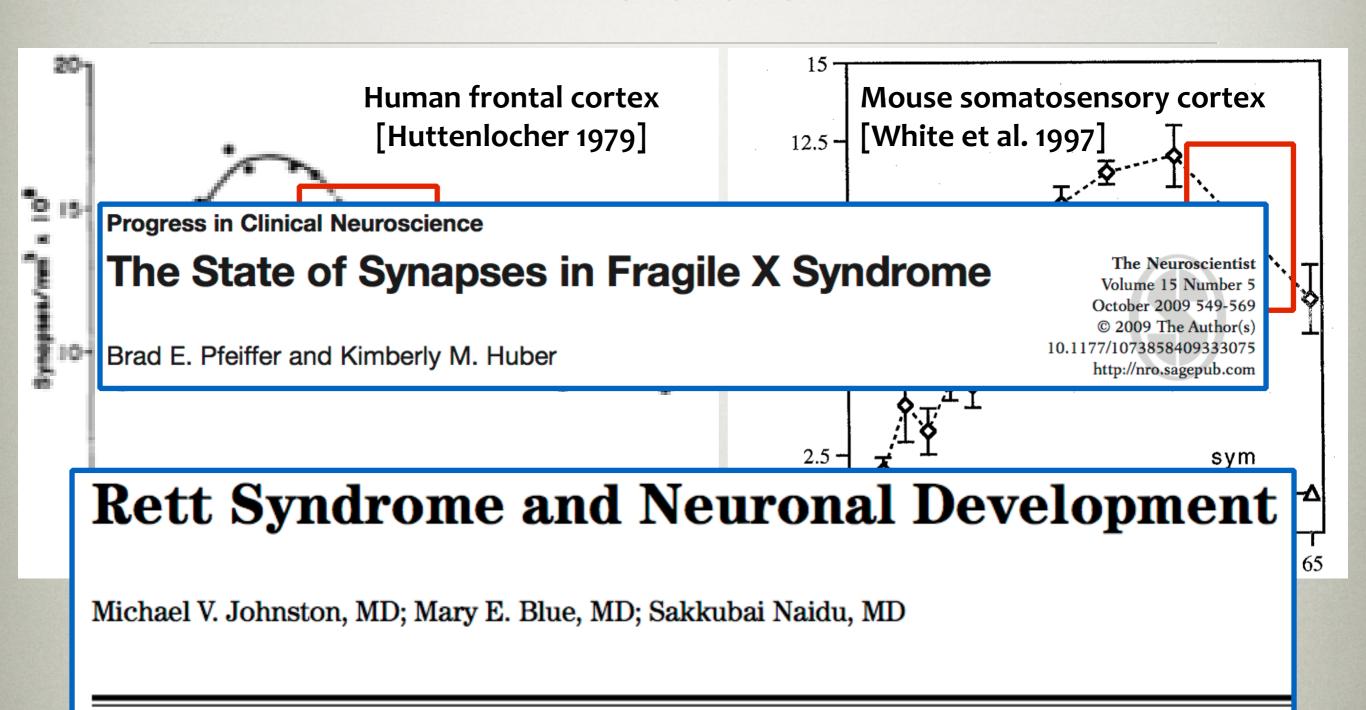


Pruning rates have been ignored in the literature

sym



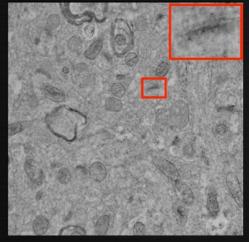
Pruning rates have been ignored in the literature



Experimental techniques to detect synapses

Fast data collection

Conventional EM



- Detect synapses, ultrastructure, pre- and post-synaptic neurons, etc
- X Low-throughput analysis

Array

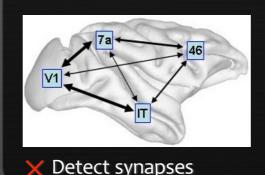
Tomography Michevat Shith, 1007

Low-throughput analysis, cumbersome experimental technique

?

- ✓ Detect synapses and measure synapse strength
- ✓ High-throughput data analysis and collection
- Limited synapse types, failure rates, etc

MRI [Honey et al. 2007]

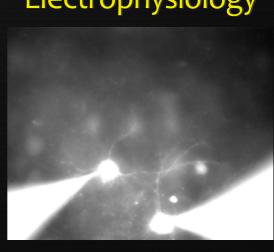


mGR

 $mGRASP \ [\mathsf{Kim} \ \mathsf{et} \ \mathsf{al.} \ \mathsf{2012}]$

X Requires transgenic mouse

Electrophysiology



- Detect synapses, failure rates, neuron properties, etc
- X Low-throughput collection

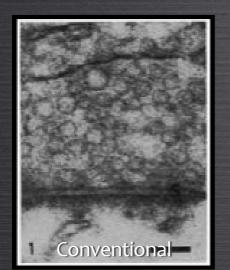
Slow data collection

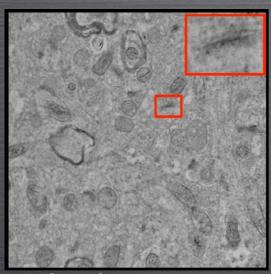
Slow data analysis

Fast data analysis

EPTA-staining

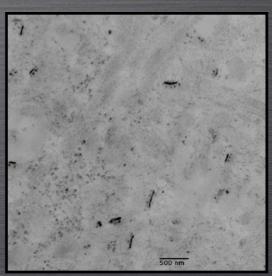
[Bloom and Aghajanian, Science 1966]



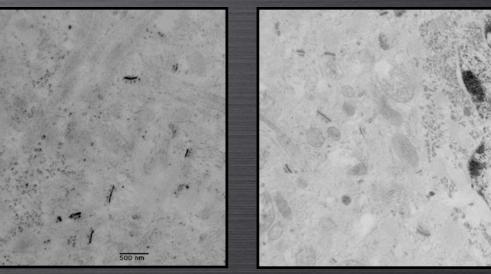


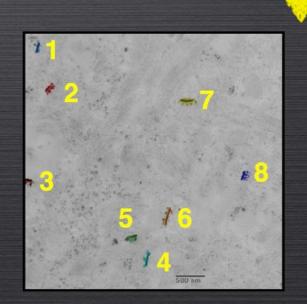
Hard to discern synapses

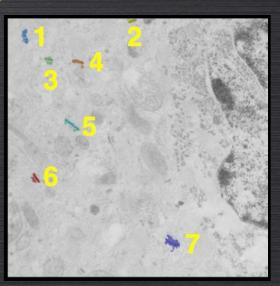
[Seaside Therapeutics] Ethanolic phosphotungstic acid (EPTA) targets proteins most prominently in the pre- and post-synaptic densities



EPTA-based EM



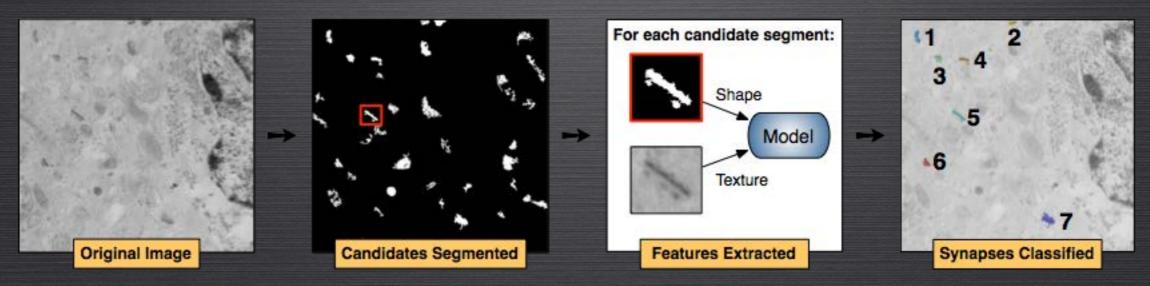




Pipeline for detecting synapses

EM images are inherently noisy due to variations in the:

- 1. Tissue sample (e.g. age, brain region)
- 2. EPTA chemical reactions
- 3. Image acquisition process (e.g. microscope, illumination, focus)

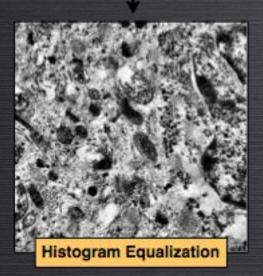


Step 1. Unsupervised segmentation

Step 2. Extract window and normalize

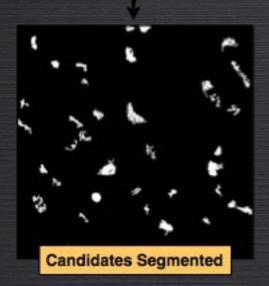
Steps 3+4. Extract features and build classifier

Step 1. Image segmentation



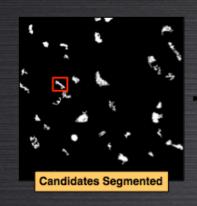
Adaptive histogram equalization [Zuiderveld, 1994]:

* Enhances contrast in each local window to match a flattened histogram; windows combined using bilinear interpolation to smoothen boundaries



Unsupervised segmentation:

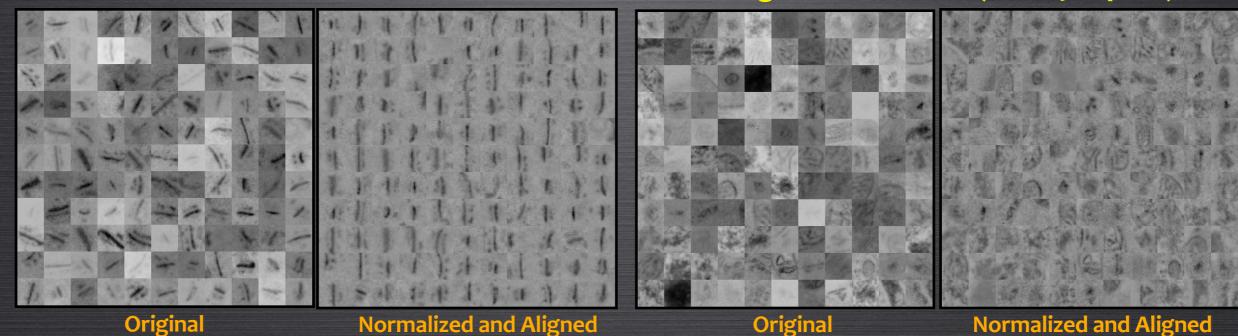
- * Binarize using a single sample-independent threshold (10%)
- * Lose only 1% of synapses in this step (two adjacent synapses get merged)



Step 2. Reduce heterogeneity

Positive windows (synapses)

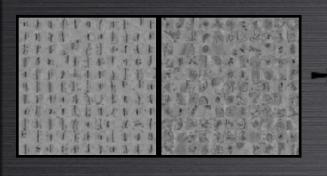
Negative windows (non-synapses)



* Extract surrounding window: 75x75-pixel window $W(\sim 325 \text{nm}^2)$ around segment centroid.

* Normalize window:
$$W = \frac{W - \mu(W)}{\sigma(W)}$$

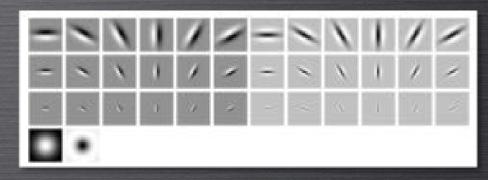
* Align vertically: Hough transform



- Step 3. Extract features

Texture: a common cue used by humans when manually segmenting EM images [Arbelaez et al. 2011]

MR8 filter bank: 38 filters (max of 6 orientations at 3 scales for 2 oriented filters, + 2 isotropic) = 8-dim filter response vector at each pixel



[Varma and Zisserman, 2004]

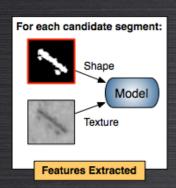
HoG: histogram of oriented gradients [Dalal+Triggs, 2005]

Shape: synapses are typically long and elongated

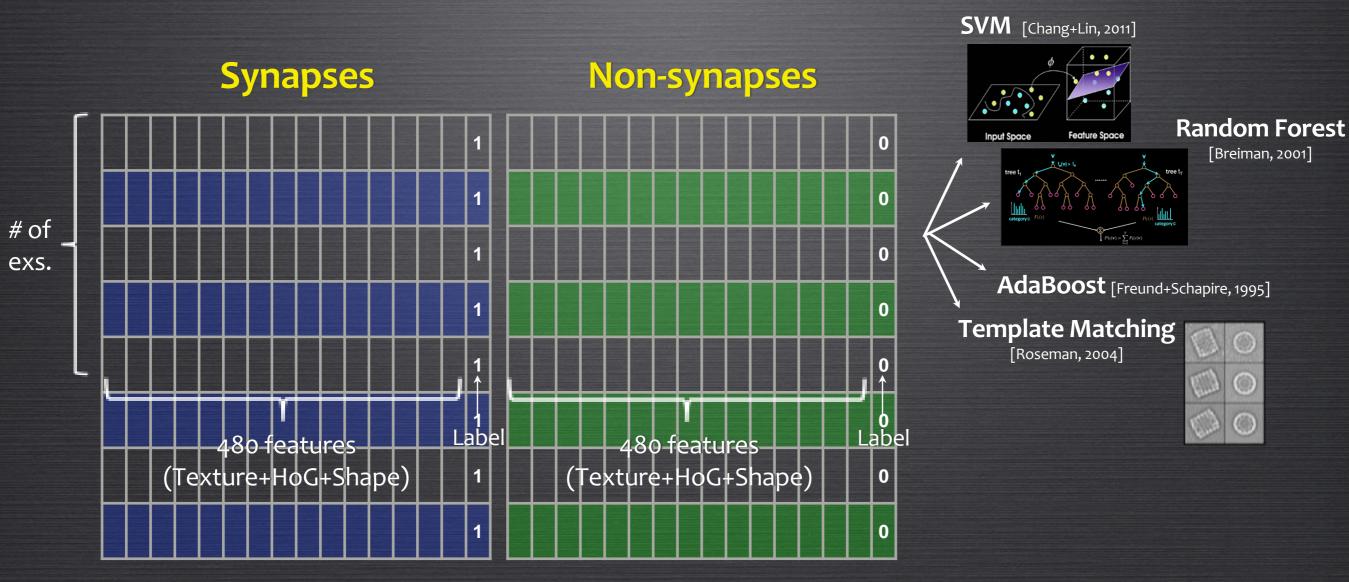
10 features for each segment: Length, Width, Perimeter, Area, etc.

Length = 85 pixels
Width = 20 pixels
Perimeter = 220 pixels

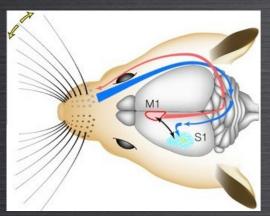
 \Rightarrow Overall: each window represented by a 480-dim vector $\in \mathbb{R}^n$ scaled to [0,1]



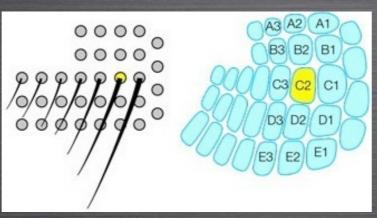
Step 4. Build classifier



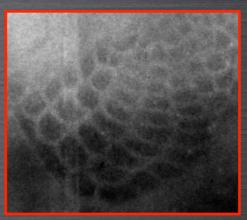
Experiments performed and data collected



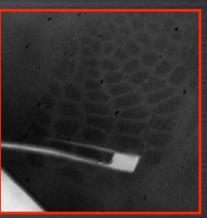
Somatosensory (whisker) cortex in the mouse



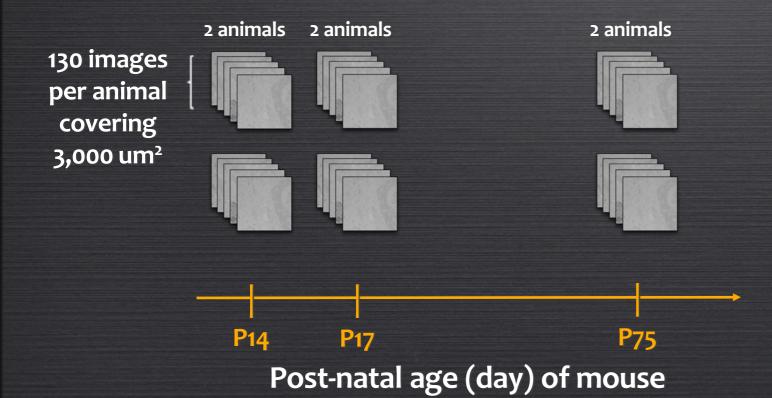
1-1 somatotopic mapping from whiskers to columns
[Aronoff+Petersen, 2008]



Staining barrels with cytochrome oxidase



Dissecting D1 barrel



Accurately detecting synapses in EPTA images

Training data: for P14 and P17, we manually labeled 11% of the 520 EPTA images (counting 230 synapses and 2062 non-synapses)

10-fold cross-validation

SVM outperformed all other methods:

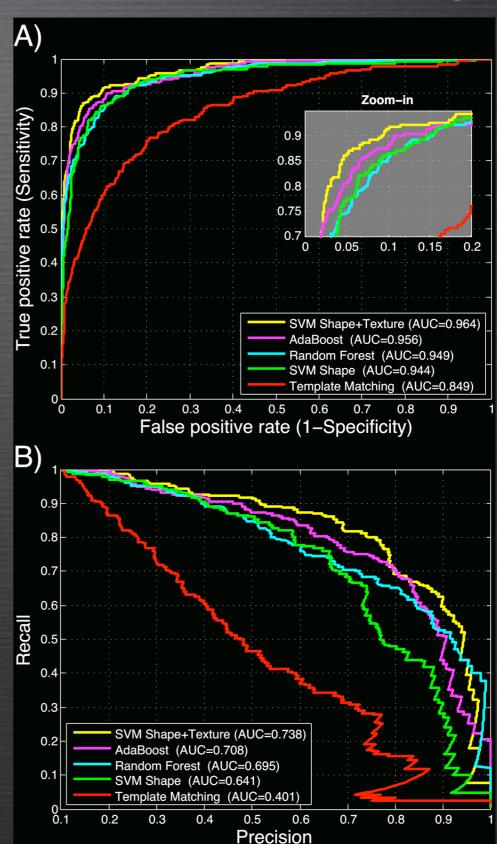
AUC ROC = 96.4% **AUC PR** = 73.8%

At default classifier threshold (0.5):

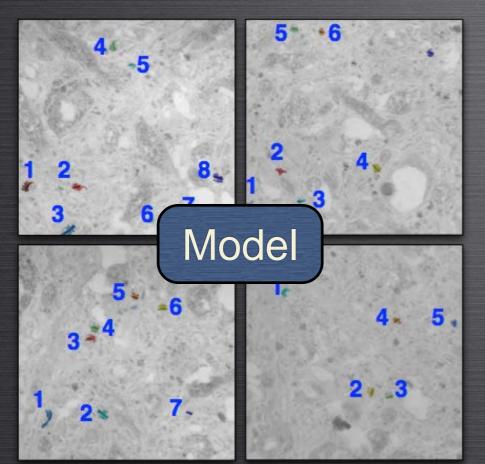
Precision = 83.3% **Recall** = 67.8%

Validation against independent human annotation of 30 EPTA images:

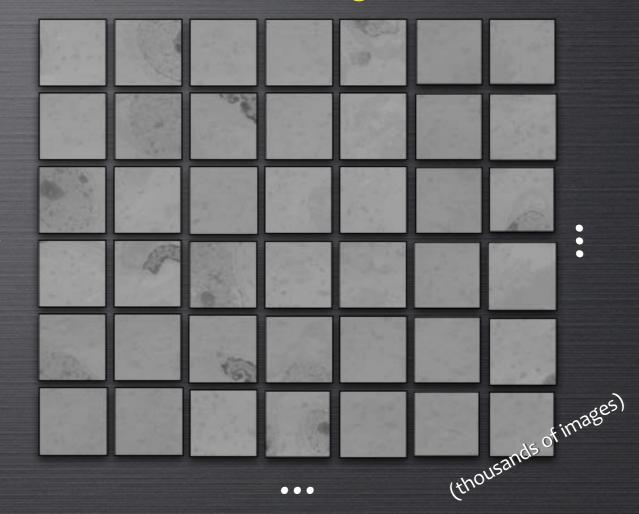
Precision = 87.3% **Recall** = 66.6%



Labeled images from Sample A used to build classifier



Unlabeled images from Sample B to analyze; variable staining and noise vs. A

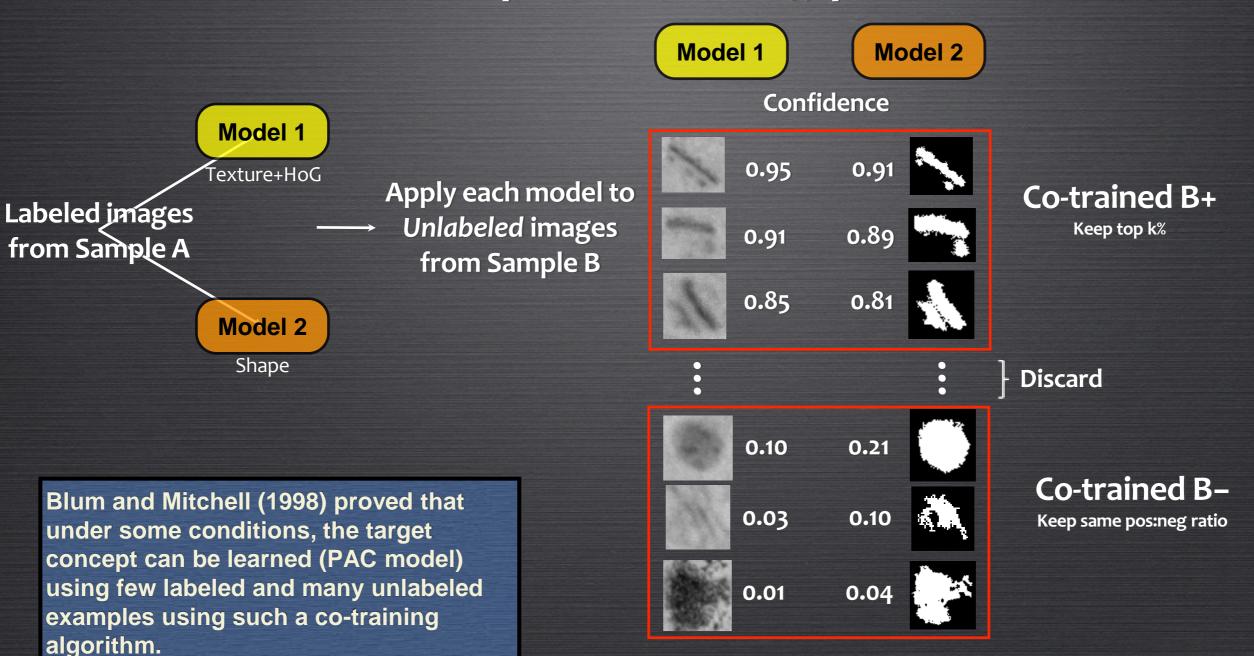


It would be laborious to build a new classifier for every new sample...

Can we improve the model by leveraging the enormous number of unlabeled images available?

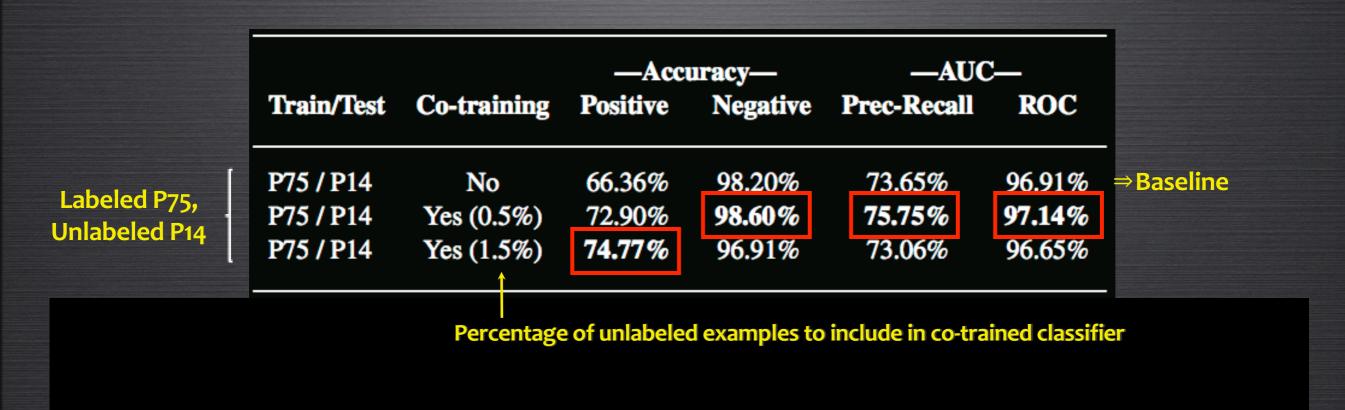
Co-training algorithm

[Blum and Mitchell, COLT 1998]



⇒ Retrain single model on examples from: Labeled A, Co-trained B+ and B-

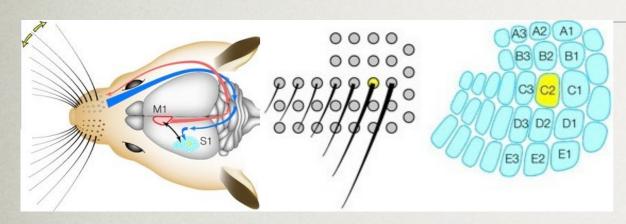
Semi-supervised learning improves classification accuracy



Co-training increases accuracy of positive examples by 8-12% and AUC by 1-4%

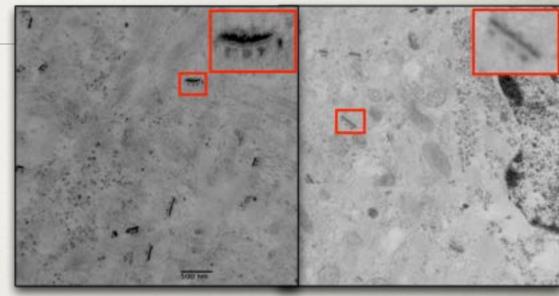
... but including too many unlabeled examples (1.5%) can decrease performance

Experimentally quantifying pruning rates

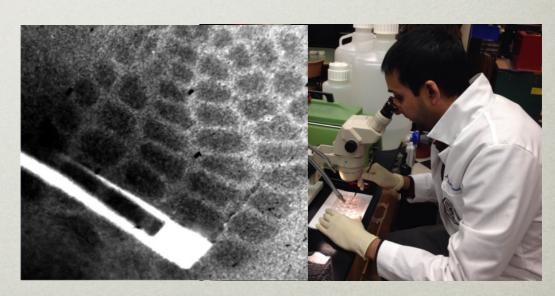


Mouse somatosensory cortex: whiskers ⇒ columns

slice brain

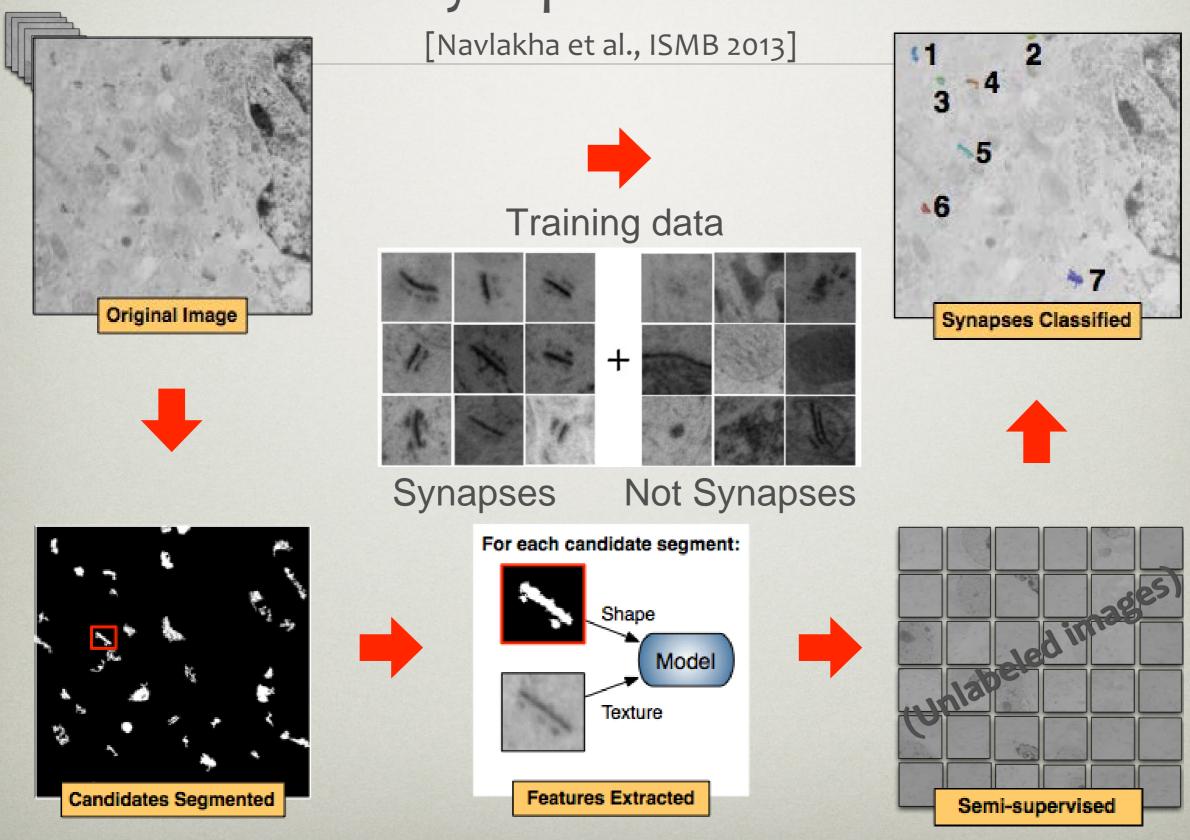


Electron microscopy images

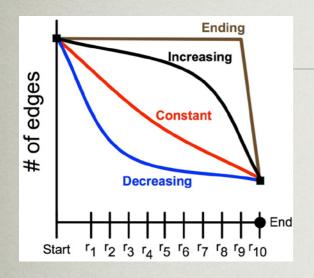


stain & extract D1 column

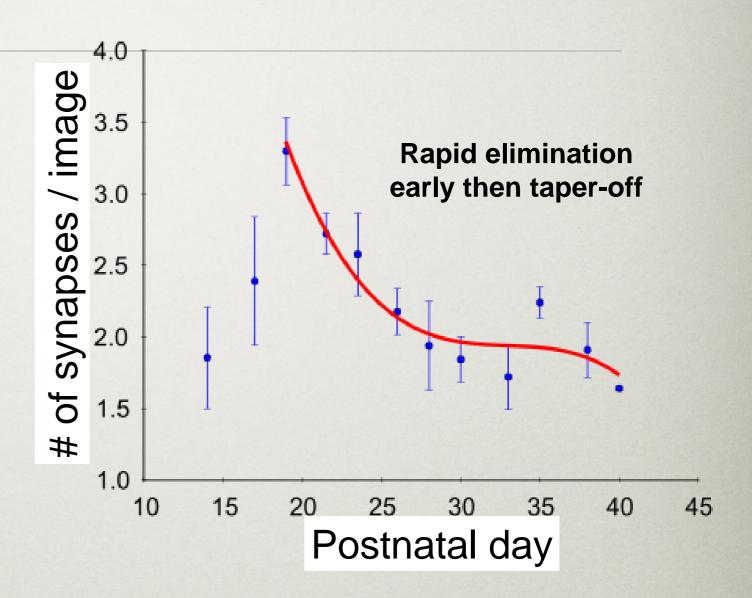
Machine learning algorithms to count synapses



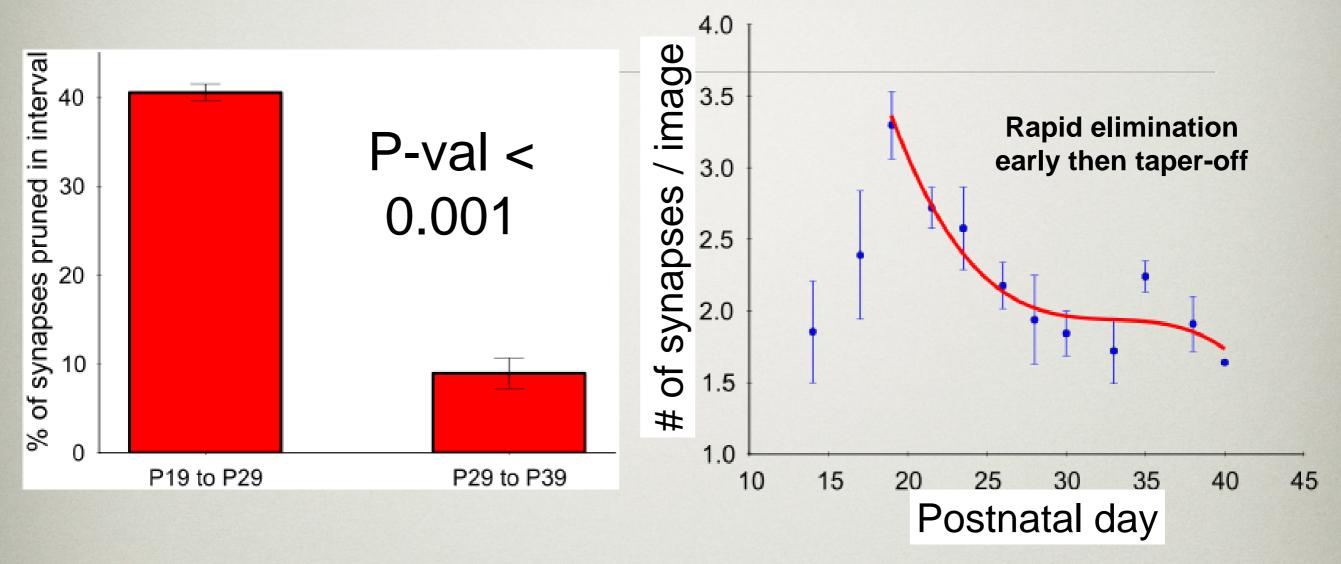
Pruning rates in the cortex



16 time-points
41 animals
9754 images
42709 synapses



Pruning rates are decreasing

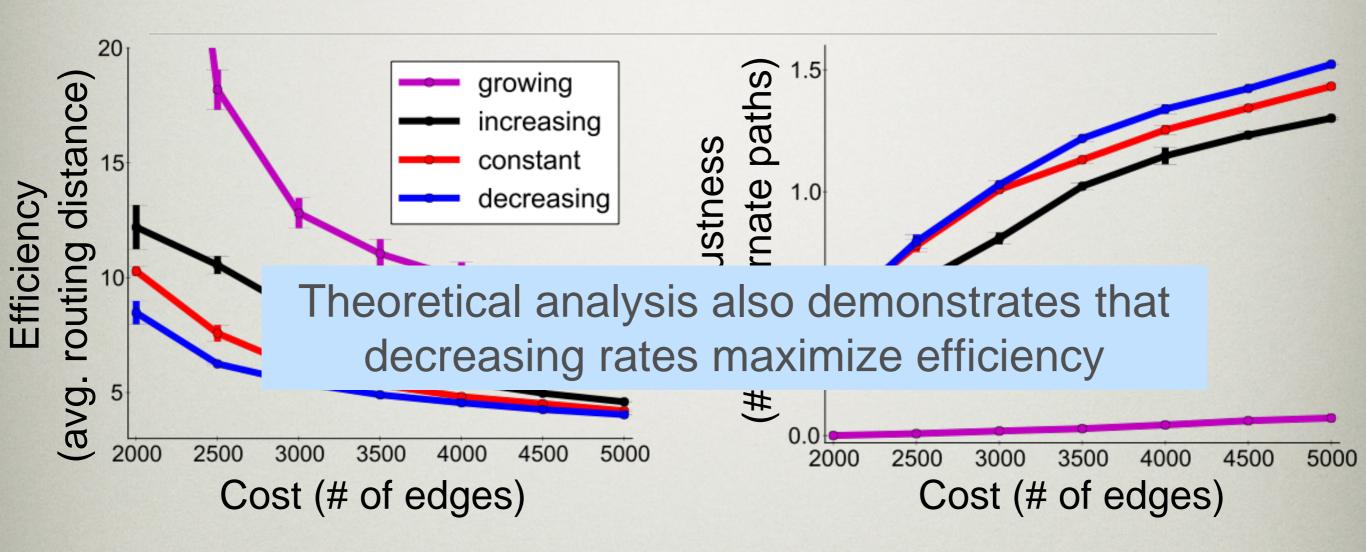


Decreasing rate remove aggressively at the beginning

But

- The process is distributed
- Provides more time for the network to stabilize
- More cost effective

Decreasing rates further optimize network function

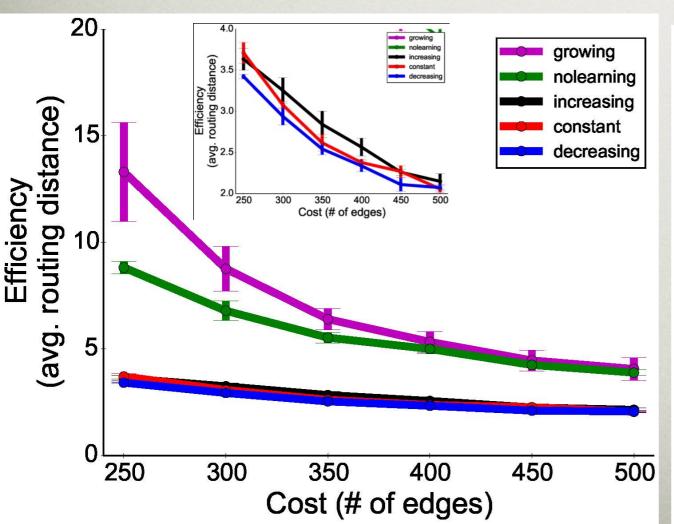


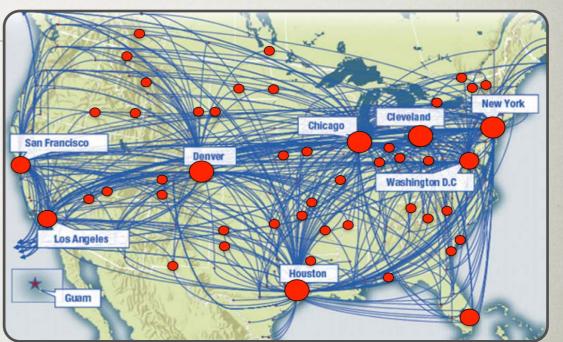
Decreasing rates 30% more efficient than increasing (20% > constant)

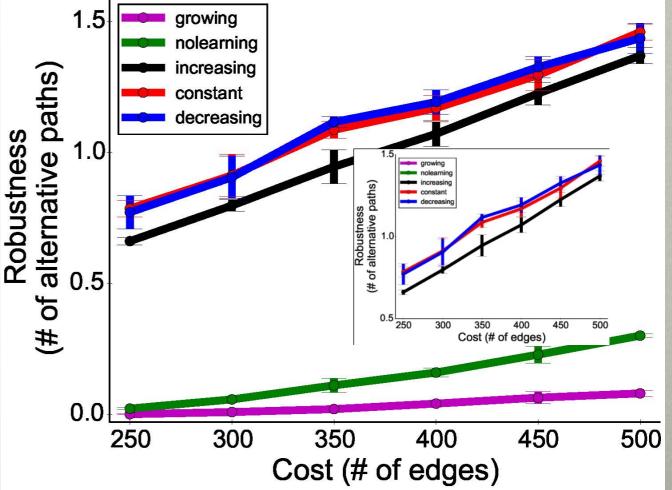
Slightly better fault tolerance

Application to routing airline passengers

- Use start / end city as source / target
- > 800,000 trips between 122 cities covering 3 months of domestic US travel.
- Assuming equal cost for each segment.







Conclusions

Reproduced a 60-year-old EM technique to selectively stain synapses coupled with high-throughput and fully automated analysis

* Feasible for large or small labs; no specialized transgenics required

Studied changes in synapse density + strength in the developing cortex * May enable screening of pharmacologically-induced or plasticity-related changes in synapse density and morphology in the brain

Semi-supervised learning can be used to build robust classifiers using unlabeled data, which is often plentiful in bioimaging problems.

