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Abstract. Kernel functions have become an extremely popular tool in machine learning, with an attractive theory
as well. This theory views a kernel as implicitly mapping data points into a possibly very high dimensional space,
and describes a kernel function as being good for a given learning problem if data is separable by a large margin in
that implicit space. However, while quite elegant, this theory does not necessarily correspond to the intuition of a
good kernel as a good measure of similarity, and the underlying margin in the implicit space usually is not apparent
in “natural” representations of the data. Therefore, it maybe difficult for a domain expert to use the theory to help
design an appropriate kernel for the learning task at hand. Moreover, the requirement of positive semi-definiteness
may rule out the most natural pairwise similarity functionsfor the given problem domain.
In this work we develop an alternative, more general theory of learning with similarity functions (i.e., sufficient
conditions for a similarity function to allow one to learn well) that does not require reference to implicit spaces,
and does not require the function to be positive semi-definite (or even symmetric). Instead, our theory talks in
terms of more direct properties of how the function behaves as a similarity measure. Our results also generalize the
standard theory in the sense that any good kernel function under the usual definition can be shown to also be a good
similarity function under our definition (though with some loss in the parameters). In this way, we provide the first
steps towards a theory of kernels and more general similarity functions that describes the effectiveness of a given
function in terms of natural similarity-based properties.

1 Introduction

Kernel functions have become an extremely popular tool in machine learning, with an attractive theory as well [1, 22,
20, 9, 12, 26]. A kernel is a function that takes in two data objects (which could be images, DNA sequences, or points in
Rn) and outputs a number, with the property that the function issymmetric and positive-semidefinite. That is, for any
kernelK, there must exist an (implicit) mappingφ, such that for all inputsx, x′ we haveK(x, x′) = 〈φ(x), φ(x′)〉.
The kernel is then used inside a “kernelized” learning algorithm such as SVM or kernel-perceptron in place of direct
access to the data.

The theory behind kernel functions is based on the fact that many standard algorithms for learning linear separators,
such as SVMs [26] and the Perceptron [8] algorithm, can be written so that the only way they interact with their data
is via computing dot-products on pairs of examples. Thus, byreplacing each invocation of〈φ(x), φ(x′)〉 with a kernel
computationK(x, x′), the algorithm behaves exactly as if we had explicitly performed the mappingφ(x), even though
φ may be a mapping into a very high-dimensional space. Furthermore, these algorithms have learning guarantees that
depend only on themarginof the best separator, and not on the dimension of the space inwhich the data resides [2,
21]. Thus, kernel functions are often viewed as providing much of the power of this implicit high-dimensional space,
without paying for it either computationally (because theφ mapping is only implicit) or in terms of sample size (if
data is indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitations. When designing a kernel function for some
learning problem, the intuition employed typically does not involve implicit high-dimensional spaces but rather thata
good kernel would be one that serves as a good measure of similarity for the given problem [20]. In-fact, many generic
kernels (e.g. Gaussian kernels), as well as very specific kernels (e.g. Fisher kernels [11] and kernels for specific
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Kernel as a Similarity Function,” Proc. 20th Annual Conference on Learning Theory, 2007 [24].



structures such as [27]), describe different notions of similarity between objects, which do not correspond to any
intuitive or easily interpretable high-dimensional representation. So, in this sense the theory is not always helpfulin
providing intuition when selecting or designing a kernel function for a particular learning problem. Additionally, it
may be that the most natural similarity function for a given problem is not positive-semidefinite, and it could require
substantial work, possibly reducing the quality of the function, to coerce it into a “legal” form. Finally, it is a bit
unsatisfying for the explanation of the effectiveness of some algorithm to depend on properties of an implicit high-
dimensional mapping that one may not even be able to calculate. In particular, the standard theory at first blush has a
“something for nothing” feel to it (all the power of the implicit high-dimensional space without having to pay for it)
and perhaps there is a more prosaic explanation of what it is that makes a kernel useful for a given learning problem.
For these reasons, it would be helpful to have a theory that was in terms of more tangible quantities.

In this paper, we develop a theory of learning with similarity functions that addresses a number of these issues. In
particular, we define a notion of what it means for a pairwise functionK(x, x′) to be a “good similarity function” for
a given learning problem that (a) does not require the notionof an implicit space and allows for functions that are not
positive semi-definite, (b) we can show is sufficient to be used for learning, and (c) generalizes the standard theory in
that a good kernel in the usual sense (large margin in the implicit φ-space) will also satisfy our definition of a good
similarity function, though with some loss in the parameters. In this way, we provide the first theory that describes the
effectiveness of a given kernel (or more general similarityfunction) in terms of natural similarity-based properties.

Our Results: Our main contribution is the development of a theory for whatit means for a pairwise function to be
a “good similarity function” for a given learning problem, along with theorems showing that our main definitions are
sufficient to be able to learn well and in addition generalizethe standard notion of a good kernel function, though
with some bounded degradation of learning guarantees. We begin with a definition (Definition 4) that is especially
intuitive and allows for learning via a very simple algorithm, but is not broad enough to include all kernel functions
that induce large-margin separators. We then broaden this notion to our main definition (Definition 8) that requires a
more involved algorithm to learn, but is now able to capture all functions satisfying the usual notion of a good kernel
function. Specifically, we show that ifK is a similarity function satisfying Definition 8 then one canalgorithmically
perform a simple,explicit transformation of the data under which there is a low-error large-margin separator. We
also consider variations on this definition (e.g., Definition 9) that produce better guarantees on the quality of the final
hypothesis when combined with existing learning algorithms.

A similarity functionK satisfying our definition, but that is not positive semi-definite, is not necessarily guaranteed
to work well when used directly in standard learning algorithms such as SVM or the Perceptron algorithm3. Instead,
what we show is that such a similarity function can be employed in the following two-stage algorithm. First, re-
represent that data by performing what might be called an “empirical similarity map”: selecting a subset of data points
as landmarks, and then representing each data point using the similarities to those landmarks. Then, use standard
methods to find a large-margin linear separator in the new space. One property of this approach is that it allows for
the use of a broader class of learning algorithms since one does not need the algorithm used in the second step to be
“kernalizable”. In fact, this work is motivated by work on a re-representation method that algorithmically transforms
a kernel-based learning problem (with a valid positive-semidefinite kernel) to an explicit low-dimensional learning
problem [5].

More generally, our framework provides a formal way to analyze properties of a similarity function that make
it sufficient for learning, as well as what algorithms are suited for a given property. While our work is motivated by
extending the standard large-margin notion of a good kernelfunction, we expect one can use this framework to analyze
other, not necessarily comparable, properties that are sufficient for learning as well. In fact, recent work along these
lines is given in [28].

2 Background and Notation

We consider a learning problem specified as follows. We are given access to labeled examples(x, y) drawn from some
distributionP overX × {−1, 1}, whereX is an abstract instance space. The objective of a learning algorithm is to

3 However, as we will see in Section 4.2, if the functionis positive semi-definite and if it is good in our sense, then we can show it
is good as a kernel as well.
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produce a classification functiong : X → {−1, 1} whose error ratePr(x,y)∼P [g(x) 6= y] is low. We will consider
learning algorithms that only access the pointsx through a pairwise similarity functionK(x, x′) mapping pairs of
points to numbers in the range[−1, 1]. Specifically,

Definition 1. A similarity functionover X is any pairwise functionK : X × X → [−1, 1]. We say thatK is a
symmetric similarity function ifK(x, x′) = K(x′, x) for all x, x′.

Our goal is to describe “goodness” properties that are sufficient for a similarity function to allow one to learn well
that ideally are intuitive and subsume the usual notion of good kernel function. Note that as with the theory of kernel
functions [19], “goodness” is with respect to a given learning problemP , andnot with respect to a class of target
functions as in the PAC framework [25, 14].

A similarity functionK is a valid kernel function if it is positive-semidefinite, i.e. there exists a functionφ from
the instance spaceX into some (implicit) Hilbert “φ-space” such thatK(x, x′) = 〈φ(x), φ(x′)〉. See, e.g., Smola
and Schölkopf [23] for a discussion on conditions for a mapping being a kernel function. Throughout this work, and
without loss of generality, we will only consider kernels such thatK(x, x) ≤ 1 for all x ∈ X (any kernelK can
be converted into this form by, for instance, definingK̃(x, x′) = K(x, x′)/

√

K(x, x)K(x′, x′)). We say thatK is
(ǫ, γ)-kernel goodfor a given learning problemP if there exists a vectorβ in theφ-space that has errorǫ at marginγ;
for simplicity we consider only separators through the origin. Specifically:

Definition 2. K is (ǫ, γ)-kernel goodif there exists a vectorβ, ‖β‖ ≤ 1 such that

Pr
(x,y)∼P

[y〈φ(x), β〉 ≥ γ] ≥ 1 − ǫ.

We say thatK is γ-kernel goodif it is (ǫ, γ)-kernel goodfor ǫ = 0; i.e., it has zero error at marginγ.
Given a kernel that is(ǫ, γ)-kernel-good for some learning problemP , a predictor with error rate at mostǫ + ǫacc

can be learned (with high probability) from a sample of4 Õ
(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

examples (drawn independently from
the source distribution) by minimizing the number of marginγ violations on the sample [17]. However, minimizing
the number of margin violations on the sample is a difficult optimization problem [2, 3]. Instead, it is common to
minimize the so-calledhinge lossrelative to a margin.

Definition 3. We say thatK is (ǫ, γ)-kernel goodin hinge-lossif there exists a vectorβ, ‖β‖ ≤ 1 such that

E(x,y)∼P [[1 − y〈β, φ(x)〉/γ]+] ≤ ǫ,

where[1 − z]+ = max(1 − z, 0) is the hinge loss.

Given a kernel that is(ǫ, γ)-kernel-good in hinge-loss, a predictor with error rate at mostǫ + ǫacc can be efficiently
learned (with high probability) from a sample ofO

(

1/(γ2ǫ2acc)
)

examples by minimizing the average hinge loss
relative to marginγ on the sample [7].

Clearly, a general similarity function might not be a legal kernel. For example, suppose we consider two documents
to have similarity 1 if they have either an author in common ora keyword in common, and similarity 0 otherwise. Then
you could have three documentsA, B, andC, such thatK(A, B) = 1 becauseA andB have an author in common,
K(B, C) = 1 becauseB andC have a keyword in common, butK(A, C) = 0 becauseA andC have neither an
author nor a keyword in common (andK(A, A) = K(B, B) = K(C, C) = 1). On the other hand, a kernel requires
that if φ(A) andφ(B) are of unit length and〈φ(A), φ(B)〉 = 1, thenφ(A) = φ(B), so this could not happen ifK
was a valid kernel. Of course, one could modify such a function to be positive semidefinite by, e.g., instead defining
similarity to be thenumberof authors and keywords in common, but perhaps that is not themost natural similarity
measure for the task at hand. Alternatively, one could make the similarity function positive semidefinite by blowing
up the diagonal, but this can significantly decrease the “dynamic range” ofK and yield a very small margin.

Deterministic Labels: For simplicity in presentation of our framework, for most ofthis paper we will consider only
learning problems where the labely is a deterministic function ofx. For such learning problems, we can usey(x)
to denote the label of pointx, and we will usex ∼ P as shorthand for(x, y(x)) ∼ P . We will return to learning
problems where the labely may be a probabilistic function ofx in Section 5.

4 TheÕ(·) notations hide logarithmic factors in the arguments, and inthe failure probability.
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3 Sufficient Conditions for Learning with Similarity Functi ons

We now provide a series of sufficient conditions for a similarity function to be useful for learning, leading to our main
notions given in Definitions 8 and 9.

3.1 Simple Sufficient Conditions

We begin with our first and simplest notion of “good similarity function” that is intuitive and yields an immediate
learning algorithm, but which is not broad enough to captureall good kernel functions. Nonetheless, it provides a
convenient starting point. This definition says thatK is a good similarity function for a learning problemP if most
examplesx (at least a1 − ǫ probability mass) are on average at leastγ more similar to random examplesx′ of the
samelabel than they are to random examplesx′ of the opposite label. Formally,

Definition 4. K is astrongly (ǫ, γ)-good similarity function for a learning problemP if at least a1− ǫ probability
mass of examplesx satisfy:

Ex′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [K(x, x′)|y(x) 6= y(x′)] + γ. (3.1)

For example, suppose all positive examples have similarityat least0.2 with each other, and all negative examples have
similarity at least0.2 with each other, but positive and negative examples have similarities distributed uniformly at
random in[−1, 1]. Then, this would satisfy Definition 4 forγ = 0.2 andǫ = 0. Note that with high probability this
would not be positive semidefinite.5

Definition 4 captures an intuitive notion of what one might want in a similarity function. In addition, if a similarity
functionK satisfies Definition 4 then it suggests a simple, natural learning algorithm: draw a sufficiently large setS+

of positive examples and setS− of negative examples, and then output the prediction rule that classifies a new example
x as positive if it is on average more similar to points inS+ than to points inS−, and negative otherwise. Formally:

Theorem 1. If K is strongly(ǫ, γ)-good, then(16/γ2) ln(2/δ) positive examplesS+ and(16/γ2) ln(2/δ) negative
examplesS− are sufficient so that with probability≥ 1 − δ, the above algorithm produces a classifier with error at
mostǫ + δ.

Proof. Let Good be the set ofx satisfyingEx′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [K(x, x′)|y(x) 6= y(x′)]+γ. So,
by assumption,Prx∼P [x ∈ Good] ≥ 1 − ǫ. Now, fix x ∈ Good. SinceK(x, x′) ∈ [−1, 1], by Hoeffding bounds we
have that over the random draw of the sampleS+, Pr

(∣

∣Ex′∈S+ [K(x, x′)] − Ex′∼P [K(x, x′)|y(x′) = 1]
∣

∣ ≥ γ/2
)

≤
2e−2|S+|γ2/16, and similarly forS−. By our choice of|S+| and|S−|, each of these probabilities is at mostδ2/2.

So, for any givenx ∈ Good, there is at most aδ2 probability of error over the draw ofS+ andS−. Since this is
true for anyx ∈ Good, it implies that theexpectederror of this procedure, overx ∈ Good, is at mostδ2, which by
Markov’s inequality implies that there is at most aδ probability that the error rate overGood is more thanδ. Adding
in theǫ probability mass of points not inGood yields the theorem. ⊓⊔

Definition 4 requires that almost all of the points (at least a1 − ǫ fraction) be on average more similar to random
points of the same label than to random points of the other label. A weaker notion would be simply to require that two
random points of the same label be on average more similar than two random points of different labels. For instance,
one could consider the following generalization of Definition 4:

Definition 5. K is a weakly γ-good similarity function for a learning problemP if:

Ex,x′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex,x′∼P [K(x, x′)|y(x) 6= y(x′)] + γ. (3.2)

5 In particular, if the domain is large enough, then with high probability there would exist negative exampleA and positive
examplesB, C such thatK(A, B) is close to 1 (so they are nearly identical as vectors),K(A, C) is close to−1 (so they are
nearly opposite as vectors), and yetK(B, C) ≥ 0.2 (their vectors form an acute angle).
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While Definition 5 still captures a natural intuitive notionof what one might want in a similarity function, it is
not powerful enough to implystrong learning unlessγ is quite large. For example, suppose the instance space isR2

and that the similarity measureK we are considering is just the product of the first coordinates (i.e., dot-product
but ignoring the second coordinate). Assume the distribution is half positive and half negative, and that75% of the
positive examples are at position(1, 1) and25% are at position(−1, 1), and75% of the negative examples are at
position(−1,−1) and25% are at position(1,−1). ThenK is a weaklyγ-good similarity function forγ = 1/2, but
the best accuracy one can hope for usingK is 75% because that is the accuracy of the Bayes-optimal predictorgiven
only the first coordinate.

We can however show that for anyγ > 0, Definition 5 is enough to imply weak learning [18]. In particular, the
following simple algorithm is sufficient to weak learn. First, determine if the distribution is noticeably skewed towards
positive or negative examples: if so, weak-learning is immediate (output all-positive or all-negative respectively).
Otherwise, draw a sufficiently large setS+ of positive examples and setS− of negative examples. Then, for each
x, consider̃γ(x) = 1

2 [Ex′∈S+ [K(x, x′)] − Ex′∈S− [K(x, x′)]]. Finally, to classifyx, use the following probabilistic

prediction rule: classifyx as positive with probability1+γ̃(x)
2 and as negative with probability1−γ̃(x)

2 . (Notice that
γ̃(x) ∈ [−1, 1] and so our algorithm is well defined.) We can then prove the following result:

Theorem 2. If K is a weaklyγ-good similarity function, then with probability at least1 − δ, the above algorithm
using setsS+, S− of size64

γ2 ln ( 64
γδ ) yields a classifier with error at most12 − 3γ

128 .

Proof. See Appendix A. ⊓⊔

Returning to Definition 4, Theorem 1 implies that ifK is a strongly(ǫ, γ)-good similarity function for small
ǫ and not-too-smallγ, then it can be used in a natural way for learning. However, Definition 4 is not sufficient to
capture all good kernel functions. In particular, Figure 3.1 gives a simple example inR2 where the standard kernel
K(x, x′) = 〈x, x′〉 has a large margin separator (margin of1/2) and yet does not satisfy Definition 4, even forγ = 0
andǫ = 0.49.

γ

γ

+ +

_

αα
α

Fig. 3.1.Positives are split equally among upper-left and upper-right. Negatives are all in the lower-right. Forα = 30o (soγ = 1/2)
a large fraction of the positive examples (namely the50% in the upper-right) have a higher dot-product with negativeexamples( 1

2
)

than with a random positive example( 1

2
· 1 + 1

2
(− 1

2
) = 1

4
). However, if we assign the positives in the upper-left a weight of 0,

those in the upper-right a weight of 1, and assign negatives aweight of 1

2
, then all examples have higher averageweightedsimilarity

to those of the same label than to those of the opposite label,by a gap of1
4
.

Notice, however, that if in Figure 3.1 we simply ignored the positive examples in the upper-left when choosingx′,
and down-weighted the negative examples a bit, then we wouldbe fine. This then motivates the following intermediate
notion of a similarity functionK being good under a weighting functionw over the input space that can downweight
certain portions of that space.

Definition 6. A similarity functionK together with a bounded weighting functionw overX (specifically,w(x′) ∈
[0, 1] for all x′ ∈ X) is a strongly (ǫ, γ)-good weighted similarity function for a learning problemP if at least a
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1 − ǫ probability mass of examplesx satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) 6= y(x′)] + γ. (3.3)

We can view Definition 6 intuitively as saying that we only require most examples be substantially more similar on
average toreasonablepoints of the same class than toreasonablepoints of the opposite class, where “reasonableness”
is a score in[0, 1] given by the weighting functionw. A pair (K, w) satisfying Definition 6 can be used in exactly the
same way as a similarity functionK satisfying Definition 4, with the exact same proof used in Theorem 1 (except now
we vieww(y)K(x, x′) as the bounded random variable we plug into Hoeffding bounds).

Unfortunately, Definition 6 requires the designer to construct bothK andw, rather than justK. We now weaken
the requirement to ask only that such aw exist, in Definition 7 below:

Definition 7 (Provisional). A similarity functionK is an(ǫ, γ)-good similarity function for a learning problemP
if there existsa bounded weighting functionw over X (w(x′) ∈ [0, 1] for all x′ ∈ X) such that at least a1 − ǫ
probability mass of examplesx satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) 6= y(x′)] + γ. (3.4)

As mentioned above, the key difference is that whereas in Definition 6 one needs the designer to construct both the
similarity functionK andthe weighting functionw, in Definition 7 we only require that such aw exist, but it need not
be known a-priori. That is, we ask only that there exist a large probability mass of “reasonable” points (a weighting
scheme) satisfying Definition 6, but the designer need not know in advance what that weighting scheme should be.

Definition 7, which was the main Definition analyzed by Balcanand Blum [4], can also be stated as requiring that,
for at least1 − ǫ of the examples, theclassification margin

Ex′∼P [w(x′)y(x′)K(x, x′)|y(x) = y(x′)] − Ex′∼P [w(x′)y(x′)K(x, x′)|y(x) 6= y(x′)]

= y(x)Ex′∼P [w(x′)y(x′)K(x, x′)/P (y(x′))]
(3.5)

be at leastγ, whereP (y(x′)) is the marginal probability underP , i.e. the prior, of the label associated withx′. We will
find it more convenient in the following to analyze instead a slight variant, dropping the factor1/P (y(x′)) from the
classification margin (3.5)—see Definition 8 in the next Section. For a balanced distribution of positives and negatives
(each with50% probability mass), these two notions are identical, exceptfor a factor of two.

3.2 Main Conditions

We are now ready to present our main sufficient condition for learning with similarity functions. This is essentially a
restatement of Definition 7, dropping the normalization by the label “priors” as discussed at the end of the preceding
Section.

Definition 8 (Main, Margin Violations). A similarity functionK is an(ǫ, γ)-good similarity function for a learning
problemP if thereexistsa bounded weighting functionw overX (w(x′) ∈ [0, 1] for all x′ ∈ X) such that at least a
1 − ǫ probability mass of examplesx satisfy:

Ex′∼P [y(x)y(x′)w(x′)K(x, x′)] ≥ γ. (3.6)

We would like to establish that the above condition is indeedsufficient for learning. I.e. that given an(ǫ, γ)-good
similarity functionK for some learning problemP , and a sufficiently large labeled sample drawn fromP , one can
obtain (with high probability) a predictor with error rate arbitrarily close toǫ. To do so, we will show how to use
an(ǫ, γ)-good similarity functionK, and a sampleS drawn fromP , in order to construct (with high probability) an
explicit mappingφS : X → R

d for all points inX (not only points in the sampleS), such that the mapped data
(φS(x), y(x)), wherex ∼ P , is separated with error close toǫ (and in fact also large margin) in the low-dimensional
linear spaceRd (Theorem 3 below). We thereby convert the learning problem into a standard problem of learning a
linear separator, and can use standard results on learnability of linear separators to establish learnability of our original
learning problem, and even provide learning guarantees.
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What we are doing is actually showing how to use a good similarity function K (that is not necessarily a valid
kernel) and a sampleS drawn fromP to construct a valid kernel̃KS , given byK̃S(x, x′) =

〈

φS(x), φS(x′)
〉

, that is
kernel-good and can thus be used for learning (In Section 4 weshow that ifK is already a valid kernel, a transformation
is not necessary asK itself is kernel-good). We are therefore leveraging here the established theory of linear, or kernel,
learning in order to obtain learning guarantees for similarity measures that are not valid kernels.

Interestingly, in Section 4 we also show that any kernel thatis kernel-good is also a good similarity function
(though with some degradation of parameters). The suggested notion of “goodness” (Definition 8) thus encompasses
the standard notion of kernel-goodness, and extends it alsoto non-positive-definite similarity functions.

Theorem 3. LetK be an(ǫ, γ)-good similarity function for a learning problemP . For anyδ > 0, letS = {x̃1, x̃2, . . . , x̃d}
be a sample of sized = 8 log(1/δ)/γ2 drawn fromP . Consider the mappingφS : X → R

d defined as follows:
φS

i(x) = K(x,x̃i)√
d

, i ∈ {1, . . . , d}. With probability at least1 − δ over the random sampleS, the induced distribution

φS(P ) in Rd has a separator of error at mostǫ + δ at margin at leastγ/2.

Proof. Let w : X → [0, 1] be the weighting function achieving (3.6) of Definition 8. Consider the linear separator
β ∈ R

d, given byβi = y(x̃i)w(x̃i)√
d

; note that‖β‖ ≤ 1. We have, for anyx, y(x):

y(x)
〈

β, φS(x)
〉

=
1

d

d
∑

i=1

y(x)y(x̃i)w(x̃i)K(x, x̃i) (3.7)

The right hand side of the (3.7) is an empirical average of−1 ≤ y(x)y(x′)w(x′)K(x, x′) ≤ 1, and so by Hoeffding’s
inequality, for anyx, and with probability at least1 − δ2 over the choice ofS, we have:

1

d

d
∑

i=1

y(x)y(x̃i)w(x̃i)K(x, x̃i) ≥ Ex′∼P [y(x)y(x′)w(x′)K(x, x′)] −

√

2 log( 1
δ2 )

d
(3.8)

Since the above holds for anyx with probability at least1 − δ2 over the choice ofS, it also holds with probability at
least1 − δ2 over the choice ofx andS. We can write this as:

ES∼P d

[

Pr
x∼P

( violation)
]

≤ δ2 (3.9)

where “violation” refers to violating (3.8). Applying Markov’s inequality we get that with probability at least1 − δ
over the choice ofS, at mostδ fraction of points violate (3.8). Recalling Definition 8, atmost an additionalǫ fraction
of the points violate (3.6). But for the remaining1 − ǫ − δ fraction of the points, for which both (3.8) and (3.6) hold,

we have:y(x)
〈

β, φS(x)
〉

≥ γ −
√

2 log( 1

δ2 )

d = γ/2, where to get the last inequality we used = 8 log(1/δ)/γ2. ⊓⊔

In order to learn a predictor with error rate at mostǫ + ǫacc we can setδ = ǫacc/2, draw a sample of sized =
(4/γ)2 ln(4/ǫacc) and constructφS as in Theorem 3. We can now draw a new, fresh, sample, map it into the transformed
space usingφS , and then learn a linear separator in the new space. The number of landmarks is dominated by the
Õ

(

(ǫ + ǫacc)d/ǫ2acc)
)

= Õ
(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

sample complexity of the linear learning, yielding the sameorder
sample complexity as in the kernel-case for achieving errorat mostǫ + ǫacc: Õ

(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

.
Unfortunately, the above sample complexity refers to learning by finding a linear separator minimizing the error

over the training sample. This minimization problem is NP-hard [2], and even NP-hard to approximate [3]. In certain
special cases, such as if the induced distributionφS(P ) happens to be log-concave, efficient learning algorithms ex-
ist [13]. However, as discussed earlier, in the more typicalcase, one minimizes thehinge-lossinstead of the number of
errors. We therefore consider also a modification of our definition that captures the notion of good similarity functions
for the SVM and Perceptron algorithms as follows:

Definition 9 (Main, Hinge Loss).A similarity functionK is an(ǫ, γ)-good similarity function in hinge loss for a
learning problemP if there exists a weighting functionw(x′) ∈ [0, 1] for all x′ ∈ X such that

Ex

[

[1 − y(x)g(x)/γ]+

]

≤ ǫ, (3.10)
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whereg(x) = Ex′∼P [y(x′)w(x′)K(x, x′)] is the similarity-based prediction made usingw(), and recall that[1 −
z]+ = max(0, 1 − z) is the hinge-loss.

In other words, we are asking: on average, by how much, in units of γ, would a random examplex fail to satisfy
the desiredγ separation between the weighted similarity to examples of its own label and the weighted similarity to
examples of the other label.

Similarly to Theorem 3, we have:

Theorem 4. LetK be an(ǫ, γ)-good similarity function in hinge loss for a learning problemP . For anyǫ1 > 0 and
0 < δ < γǫ1/4 let S = {x̃1, x̃2, . . . , x̃d} be a sample of sized = 16 log(1/δ)/(ǫ1γ)2 drawn fromP . With probability
at least1 − δ over the random sampleS, the induced distributionφS(P ) in Rd, for φS as defined in Theorem 3, has
a separator achieving hinge-loss at mostǫ + ǫ1 at marginγ.

Proof. Let w : X → [0, 1] be the weighting function achieving an expected hinge loss of at mostǫ at marginγ, and
denoteg(x) = Ex′∼P [y(x′)w(x′)K(x, x′)]. Definingβ as in Theorem 3 and following the same arguments we have
that with probability at least1 − δ over the choice ofS, at mostδ fraction of the pointsx violate 3.8. We will only
consider such samplesS. For those points that do not violate (3.8) we have:

[1 − y(x)
〈

β, φS(x)
〉

/γ]+ ≤ [1 − y(x)g(x)/γ]+
1

γ

√

2 log( 1
δ2 )

d
≤ [1 − y(x)g(x)/γ]+ + ǫ1/2 (3.11)

For points that do violate (3.8), we will just bound the hingeloss by the maximum possible hinge-loss:

[1 − y(x)
〈

β, φS(x)
〉

/γ]+ ≤ 1 + max
x

∣

∣y(x) ‖β‖
∥

∥φS(x)
∥

∥

∣

∣ /γ ≤ 1 + 1/γ ≤ 2/γ (3.12)

Combining these two cases we can bound the expected hinge-loss at marginγ:

Ex∼P

[

[1 − y(x)
〈

β, φS(x)
〉

/γ]+
]

≤ Ex∼P [[1 − y(x)g(x)/γ]+] + ǫ1/2 + Pr(violation) · (2/γ)

≤ Ex∼P [[1 − y(x)g(x)/γ]+] + ǫ1/2 + 2δ/γ

≤ Ex∼P [[1 − y(x)g(x)/γ]+] + ǫ1, (3.13)

where the last inequality follows fromδ < ǫ1γ/4. ⊓⊔
Following the same approach as that suggested following Theorem 3, and noticing that the dimensionalityd of

the linear space created byφS is polynomial in1/γ, 1/ǫ1 andlog(1/δ), if a similarity functionK is a (ǫ, γ)-good
similarity function in hinge loss, one can apply Theorem 4 and then use an SVM solver in theφS-space to obtain (with
probability at least1 − δ) a predictor with error rateǫ + ǫ1 usingÕ

(

1/(γ2ǫ2acc)
)

examples, and time polynomial in
1/γ,1/ǫ1 andlog(1/δ).

3.3 Extensions

Combining Multiple Similarity Functions: Suppose that rather than having a single similarity function, we were
instead givenn functionsK1, . . . , Kn, and our hope is that some convex combination of them will satisfy Definition
8. Is this sufficient to be able to learn well? (Note that a convex combination of similarity functions is guaranteed to
have range[−1, 1] and so be a legal similarity function.) The following generalization of Theorem 3 shows that this is
indeed the case, though the margin parameter drops by a factor of

√
n. This result can be viewed as analogous to the

idea of learning a kernel matrix studied by [15] except that rather than explicitly learning the best convex combination,
we are simply folding the learning process into the second stage of the algorithm.

Theorem 5. SupposeK1, . . . , Kn are similarity functions such that some (unknown) convex combination of them is
(ǫ, γ)-good. If one draws a setS = {x̃1, x̃2, . . . , x̃d} from P containingd = 8 log(1/δ)/γ2 examples, then with

probability at least1 − δ, the mappingφS : X → Rnd defined asφS(x) = ρS(x)√
nd

,

ρS(x) = (K1(x, x̃1), . . . , K1(x, x̃d), ..., Kn(x, x̃1), . . . , Kn(x, yd))

has the property that the induced distributionφS(P ) in Rnd has a separator of error at mostǫ + δ at margin at least
γ/(2

√
n).
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Proof. Let K = α1K1 + . . .+αnKn be an(ǫ, γ)-good convex-combination of theKi. By Theorem 3, had we instead

performed the mapping:̂φS : X → Rd defined aŝφS(x) = ρ̂S(x)√
d

,

ρ̂S(x) = (K(x, x̃1), . . . , K(x, x̃d))

then with probability1 − δ, the induced distribution̂φS(P ) in Rd would have a separator of error at mostǫ + δ at
margin at leastγ/2. Let β̂ be the vector corresponding to such a separator in that space. Now, let us convert̂β into a
vector inRnd by replacing each coordinatêβj with then values(α1β̂j , . . . , αnβ̂j). Call the resulting vector̃β. Notice

that by design, for anyx we have
〈

β̃, φS(x)
〉

= 1√
n

〈

β̂, φ̂S(x)
〉

. Furthermore,
∥

∥

∥
β̃
∥

∥

∥
≤

∥

∥

∥
β̂
∥

∥

∥
≤ 1 (the worst case is

when exactly one of theαi is equal to 1 and the rest are 0). Thus, the vectorβ̃ under distributionφS(P ) has the similar
properties as the vector̂β underφ̂S(P ); so, using the proof of Theorem 3 we obtain that that the induced distribution
φS(P ) in Rnd has a separator of error at mostǫ + δ at margin at leastγ/(2

√
n). ⊓⊔

Note that the above argument actually shows something a bit stronger than Theorem 5. In particular, if we define
α = (α1, . . . , αn) to be the mixture vector for the optimalK, then we can replace the margin boundγ/(2

√
n) with

γ/(2 ‖α‖√n). For example, ifα is the uniform mixture, then we just get the bound in Theorem 3of γ/2.

Multi-class Classification: We can naturally extend all our results to multi-class classification. Assume for concrete-
ness that there arer possible labels, and denote the space of possible labels byY = {1, · · · , r}; thus, by amulti-class
learning problemwe mean a distributionP over labeled examples(x, y(x)), wherex ∈ X andy(x) ∈ Y .

For this multi-class setting, Definition 7 seems most natural to extend. Specifically:

Definition 10 (main, multi-class).A similarity functionK is an (ǫ, γ)-good similarity function for a multi-class
learning problemP if there exists a bounded weighting functionw overX (w(x′) ∈ [0, 1] for all x′ ∈ X) such that at
least a1 − ǫ probability mass of examplesx satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) = i] + γ for all i ∈ Y, i 6= y(x)

We can then extend the argument in Theorem 3 and learn using standard adaptations of linear-separator algorithms to
the multiclass case (e.g., see [8]).

4 Relationship Between Kernels and Similarity Measures

As discussed earlier, the similarity-based theory of learning is more general than the traditional kernel-based theory,
since a good similarity function need not be a valid kernel. However, for a similarity functionK that is a valid kernel,
it is interesting to understand the relationship between the learning results guaranteed by the two theories. Similar
learning guarantees and sample complexity bounds can be obtained ifK is either an(ǫ, γ)-good similarity function,
or a valid kernel and(ǫ, γ)-kernel-good. In fact, as we saw in Section 3.2, the similarity-based guarantees are obtained
by transforming (using a sample) the problem of learning with an (ǫ, γ)-good similarity function to learning with
a kernel with essentially the same goodness parameters. This is made more explicit in Section 4.1. Understanding
the relationship between the learning guarantees then boils down to understanding the relationship between the two
notions of goodness.

In this Section we study the relationship between a kernel function being good in the similarity sense and good in
the kernel sense. We show that a valid kernel function that isgood for one notion, is in fact good also for the other
notion. The qualitative notions of being “good” are therefore equivalent for valid kernels, and so in this sense the more
general similarity-based notion subsumes the familiar kernel-based notion.

However, as we will see, the similarity-based margin of a valid kernel might be lower than the kernel-based margin,
yielding a possible increase in the sample complexity guarantees if a kernel is used as a similarity measure. Since we
will show that for a valid kernel, the kernel-based margin isnever smaller than the similarity-based margin, we see
that the similarity-based notion, despite being more general, is strictly less powerful quantitatively on those similarity
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functions for which the kernel theory applies. We provide a tight bound on this possible deterioration of the margin
when switching to the similarity-based notion.

Specifically, we show that if a valid kernel function is good in the similarity sense, it is also good in the standard
kernel sense, both for the margin violation error rate and for the hinge loss:

Theorem 6 (A kernel good as a similarity function is also goodas a kernel).If K is a valid kernel function, and
is (ǫ, γ)-good similarity for some learning problem, then it is also(ǫ, γ)-kernel-good for the learning problem. IfK is
(ǫ, γ)-good similarity in hinge loss, then it is also(ǫ, γ)-kernel-good in hinge loss.

We also show the converse—If a kernel function is good in the kernel sense, it is also good in the similarity sense,
though with some degradation of the margin:

Theorem 7 (A good kernel is also a good similarity function—Margin violations). If K is (ǫ0, γ)-kernel-good for
some learning problem (with deterministic labels), then itis also (ǫ0 + ǫ1,

1
2 (1 − ǫ0)ǫ1γ

2)-good similarity for the
learning problem, for anyǫ1 > 0.

Note that in any useful situationǫ0 < 1
2 , and so the guaranteed margin is at least1

4ǫ1γ
2. A similar guarantee holds

also for the hinge loss:

Theorem 8 (A good kernel is also a good similarity function—Hinge loss).If K is (ǫ0, γ)-kernel-good in hinge
loss for learning problem (with deterministic labels), then it is also(ǫ0 + ǫ1, 2ǫ1γ

2)-good similarity in hinge loss for
the learning problem, for anyǫ1 > 0.

These results establish that treating a kernel as a similarity function would still enable learning, although with
a somewhat increased sample complexity. Unfortunately, the deterioration of the margin in the above results, which
yields an increase in the sample complexity guarantees, is unavoidable:

Theorem 9 (Tightness, Margin Violations).For any0 < γ <
√

1
2 and any0 < ǫ1 < 1

2 , there exists a learning

problem and a kernel functionK, which is(0, γ)-kernel-good for the learning problem, but which is only(ǫ1, 4ǫ1γ
2)-

good similarity. That is, it is not(ǫ1, γ′)-good similarity for anyγ′ > 4ǫ1γ
2.

Theorem 10 (Tightness, Hinge Loss).For any0 < γ <
√

1
2 and any0 < ǫ1 < 1

2 , there exists a learning prob-

lem and a kernel functionK, which is(0, γ)-kernel-good in hinge loss for the learning problem, but which is only
(ǫ1, 32ǫ1γ

2)-good similarity in hinge loss.

To prove Theorem 6 we will show, for any weight function, an explicit low-norm linear predictorβ (in the implied
Hilbert space), with equivalent behavior (Section 4.2). Toprove Theorems 7 and 8, we will consider a kernel function
that is(ǫ0, γ)-kernel-good and show that it is also good as a similarity function. We will first treat goodness in hinge-
loss and prove Theorem 8 (Section 4.3), which can be viewed asa more general result. This will be done using the
representation of the optimal SVM solution in terms of the dual optimal solution. Then, in Section 4.4, we prove
Theorem 7 in terms of the margin violation error rate, by using the hinge-loss as a bound on the error rate. To prove
Theorems 9 and 10, we present an explicit learning problem and kernel (Section 4.5).

4.1 Transforming a Good Similarity Function to a Good Kernel

Before proving the above Theorems, we briefly return to the mapping of Theorem 3 and explicitly present it as a
mapping between a good similarity function and a good kernel:

Corollary 1 (A good similarity function can be transformed to a good kernel).If K is an (ǫ, γ)-good similarity
function for some learning problemP , then for any0 < δ < 1, given a sample ofS size(8/γ2) log(1/δ) drawn from
P , we can construct, with probability at least1 − δ over the draw ofS, a valid kernelK̃S that is(ǫ + δ, γ/2)-kernel
good forP .

If K is a (ǫ, γ)-good similarity function in hinge-loss for some learning problemP , then for anyǫ1 > 0 and
0 < δ < γǫ1/4, given a sample ofS size16 log(1/δ)/(ǫ1γ)2 drawn fromP , we can construct, with probability at
least1 − δ over the draw ofS, a valid kernelK̃S that is(ǫ + ǫ1, γ)-kernel good forP .
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Proof. Let K̃S(x, x′) =
〈

φS(x), φS(x′)
〉

whereφS is the transformation of Theorems 3 and 4.

From this statement, it is clear that kernel-based learningguarantees apply also to learning with a good similarity
function, essentially with the same parameters.

It is important to understand that the result of Corollary 1 is of a very different nature than the results of Theo-
rems 6– 10. The claim here is not that a good similarity function is a good kernel — it can’t be if it is not positives
semi-definite. But, given a good similarity function we can create a good kernel. This transformation isdistribution-
dependent, and can be calculated using a sampleS.

4.2 Proof of Theorem 6

Consider a similarity functionK that is a valid kernel, i.e.K(x, x′) = 〈φ(x), φ(x′)〉 for some mappingφ of x to a
Hilbert spaceH. For any input distribution and any valid weightingw(x) of the inputs (i.e.0 ≤ w(x) ≤ 1), we will
construct a linear predictorβw ∈ H, with ‖βw‖ ≤ 1, such that similarity-based predictions usingw are the same as
the linear predictions made withβw

Define the following linear predictorβw ∈ H:

βw = Ex′ [y(x′)w(x′)φ(x′)]. (4.1)

The predictorβw has norm at most:

‖βw‖ = ‖Ex′ [y(x′)w(x′)φ(x′)]‖ ≤ max
x′

‖y(x′)w(x′)φ(x′)‖ ≤ max ‖φ(x′)‖ = max
√

K(x′, x′) ≤ 1 (4.2)

where the second inequality follows from|w(x′)|, |y(x′)| ≤ 1.
The predictions made byβw are:

〈βw, φ(x)〉 = 〈Ex′ [y(x′)w(x′)φ(x′)], φ(x)〉 = Ex′ [y(x′)w(x′)〈φ(x′), φ(x)〉] = Ex′ [y(x′)w(x′)K(x, x′)] (4.3)

That is, usingβw is the same as using similarity-based prediction withw. In particular, if the margin violation rate,
as well as the hinge loss, with respect to any marginγ, is the same for predictions made using eitherw or βw. This is
enough to establish Theorem 6: IfK is (ǫ, γ)-good (perhaps for to the hinge-loss), there exists some valid weighting
w the yields margin violation error rate (resp. hinge loss) atmostǫ with respect to marginγ, and soβw yields the same
margin violation (resp. hinge loss) with respect to the samemargin, establishingK is (ǫ, γ)-kernel-good (resp. for the
hinge loss).

4.3 Proof of Theorem 8: Guarantee on the Hinge Loss

Recall that we are considering only learning problems wherethe labely is a deterministic function ofx. For simplicity
of presentation, we first consider finite discrete distributions, where:

Pr(xi, yi ) = pi (4.4)

for i = 1 . . . n, with
∑n

i=1 pi = 1 andxi 6= xj for i 6= j.
Let K be any kernel function that is(ǫ0, γ)-kernel good in hinge loss.Letφ be the implied feature mapping

and denoteφi = φ(xi). Consider the following weighted-SVM quadratic optimization problem with regularization
parameterC:

minimize
1

2
‖β‖2

+ C

n
∑

i=1

pi[1 − yi〈β, φi〉]+ (4.5)

The dual of this problem, with dual variablesαi, is:

maximize
∑

i

αi −
1

2

∑

ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(4.6)
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There is no duality gap, and furthermore the primal optimumβ∗ can be expressed in terms of the dual optimumα∗:
β∗ =

∑

i α∗
i yixi.

SinceK is (ǫ0, γ)-kernel-good in hinge-loss, there exists a predictor‖β0‖ = 1 with average-hinge lossǫ0 relative
to marginγ. The primal optimumβ∗ of (4.5), being the optimum solution, then satisfies:

1

2
‖β∗‖2

+ C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤ 1

2

∥

∥

∥

∥

1

γ
β0

∥

∥

∥

∥

2

+ C
∑

i

pi[1 − yi

〈

1

γ
β0, φi

〉

]+

=
1

2γ2
+ CE

[

[1 − y

〈

1

γ
β0, φ(x)

〉

]+

]

=
1

2γ2
+ Cǫ0 (4.7)

Since both terms on the left hand side are non-negative, eachof them is bounded by the right hand side, and in
particular:

C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤ 1

2γ2
+ Cǫ0 (4.8)

Dividing by C we get a bound on the average hinge-loss of the predictorβ∗, relative to a margin of one:

E[[1 − y〈β∗, φ(x)〉]+] ≤ 1

2Cγ2
+ ǫ0 (4.9)

We now use the fact thatβ∗ can be written asβ∗ =
∑

i α∗
i yiφi with 0 ≤ α∗

i ≤ Cpi. Using the weights

wi = w(xi) = α∗
i /(Cpi) ≤ 1 (4.10)

we have for everyx, y:

yEx′,y′ [w(x′)y′K(x, x′)] = y
∑

i

piw(xi)yiK(x, xi) (4.11)

= y
∑

i

piα
∗
i yiK(x, xi)/(Cpi)

= y
∑

i

α∗
i yi〈φi, φ(x)〉/C = y〈β∗, φ(x)〉/C

Multiplying by C and using (4.9):

Ex,y[ [ 1 − CyEx′,y′ [w(x′)y′K(x, x′)] ]+ ] = Ex,y[ [ 1 − y〈β∗, φ(x)〉 ]+ ] ≤ 1

2Cγ2
+ ǫ0 (4.12)

This holds for anyC, and describes the average hinge-loss relative to margin1/C. To get an average hinge-loss of
ǫ0 + ǫ1, we setC = 1/(2ǫ1γ

2) and get:

Ex,y

[

[ 1 − yEx′,y′ [w(x′)y′K(x, x′)]/(2ǫ1γ
2) ]+

]

≤ ǫ0 + ǫ1 (4.13)

This establishes thatK is (ǫ0 + ǫ1, 2ǫ1γ
2)-good similarity in hinge-loss.

Non-discrete distributions The same arguments apply also in the general (not necessarily discrete) case, except that
this time, instead of a fairly standard (weighted) SVM problem, we must deal with a variational optimization problem,
where the optimization variable is a random variable (a function from the sample space to the reals). We will present
the dualization in detail.

We consider the primal objective

minimize
1

2
‖β‖2 + CEy,φ[[1 − y〈β, φ〉]+] (4.14)
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where the expectation is w.r.t. the distributionP , with φ = φ(x) here and throughout the rest of this section. We will
rewrite this objective using explicit slack, in the form of arandom variableξ, which will be a variational optimization
variable:

minimize
1

2
‖β‖2

+ CE[ξ]

subject to Pr( 1 − y〈β, φ〉 − ξ ≤ 0 ) = 1

Pr( ξ ≥ 0 ) = 1

(4.15)

In the rest of this section all our constraints will implicitly be required to hold with probability one. We will now
introduce the dual variational optimization variableα, also a random variable over the same sample space, and write
the problem as a saddle problem:

minβ,ξ maxα
1

2
‖β‖2 + CE[ξ] + E[α(1 − y〈β, φ〉 − ξ)]

subject to ξ ≥ 0 α ≥ 0
(4.16)

Note that this choice of Lagrangian is a bit different than the more standard Lagrangian leading to (4.6). Convexity and
the existence of a feasible point in the dual interior allowsus to change the order of maximization and minimization
without changing the value of the problem, even in the infinite case [10]. Rearranging terms we obtaining the equivalent
problem:

maxα minβ,ξ
1

2
‖β‖2 − 〈E[αyφ], β〉 + E[ξ(C − α)] + E[α]

subject to ξ ≥ 0, α ≥ 0
(4.17)

Similarly to the finite case, we see that the minimum of the minimization problem is obtained whenβ = E[αyφ] and
that it is finite whenα ≤ C almost surely, yielding the dual:

maximizeE[α] − 1

2
E[αyα′yK(x, x′)]

subject to 0 ≤ α ≤ C
(4.18)

where(x, y, α) and(x′, y′, α′) are two independent draws from the same distribution. The primal optimum can be
expressed asβ∗ = E[α∗yφ], whereα∗ is the dual optimum. We can now apply the same arguments as in (4.7),(4.8) to
get (4.9). Using the weight mapping

w(x) = E[α∗|x] / C ≤ 1 (4.19)

we have for everyx, y:

yEx′,y′ [w(x′)y′K(x, x′)] = y〈Ex′,y′,α′ [α′y′x′], x〉/C = y〈β∗, φ(x)〉/C. (4.20)

From here we can already get (4.12) and settingC = 1/(2ǫ1γ
2) we get (4.13), which establishes Theorem 8 for any

learning problem (with deterministic labels).

4.4 Proof of Theorem 7: Guarantee on Margin Violations

We will now turn to guarantees on similarity-goodness with respect to the margin violation error-rate. We base these on
the results for goodness in hinge loss, using the hinge loss as a bound on the margin violation error-rate. In particular,
a violation of marginγ/2 implies a hinge-loss at marginγ of at least12 . Therefore, twice the average hinge-loss at
marginγ is an upper bound on the margin violation error rate at marginγ/2.

The kernel-separable case, i.e.ǫ0 = 0, is simpler, and we consider it first. Having no margin violations implies
zero hinge loss. And so if a kernelK is (0, γ)-kernel-good, it is also(0, γ)-kernel-good in hinge loss, and by Theorem
8 it is (ǫ1/2, 2(ǫ1/2)γ2)-good similarity in hinge loss. Now, for anyǫ1 > 0, by bounding the margin12ǫ1γ

2 error-rate
by theǫ1γ

2 average hinge loss,K is (ǫ1,
1
2ǫ1γ

2)-good similarity, establishing Theorem 7 for the caseǫ0 = 0.
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We now return to the non-separable case, and consider a kernel K that is (ǫ0, γ)-kernel-good, with some non-
zero error-rateǫ0. Since we cannot bound the hinge loss in terms of the margin-violations, we will instead consider a
modified distribution where the margin-violations are removed.

Let β∗ be the linear classifier achievingǫ0 margin violation error-rate with respect to marginγ, i.e. such that
Pr( y〈β∗, x〉 ≥ γ ) > 1 − ǫ0. We will consider a distribution which is conditioned ony〈β∗, x〉 ≥ γ. We denote this
event asOK(x) (recall thaty is a deterministic function ofx). The kernelK is obviously(0, γ)-kernel-good, and so
by the arguments above also(ǫ1,

1
2ǫ1γ

2)-good similarity, on the conditional distribution. Letw be the weight mapping
achieving

Pr
x,y

( yEx′,y′ [w(x′)y′K(x, x′)|OK(x′)] < γ1|OK(x) ) ≤ ǫ1, (4.21)

whereγ1 = 1
2 ǫ1γ

2, and setw(x) = 0 whenOK(x) does not hold. We have:

Pr
x,y

( yEx′,y′ [w(x′)y′K(x, x′)] < (1 − ǫ0)γ1 )

≤ Pr( not OK(x) ) + Pr( OK(x) )Pr
x,y

( yEx′,y′ [w(x′)y′K(x, x′)] < (1 − ǫ0)γ1 | OK(x) )

= ǫ0 + (1−ǫ0)Pr
x,y

( y(1−ǫ0)Ex′,y′ [w(x′)y′K(x, x′)|OK(x)] < (1−ǫ0)γ1|OK(x) )

= ǫ0 + (1 − ǫ0)Pr
x,y

( yEx′,y′ [w(x′)y′K(x, x′)|OK(x)] < γ1|OK(x) )

≤ ǫ0 + (1 − ǫ0)ǫ1 ≤ ǫ0 + ǫ1 (4.22)

establishing thatK is (ǫ0 + ǫ1, γ1)-good similarity for the original (unconditioned) distribution, thus yielding Theo-
rem 7.

4.5 Tightness

We now turn to proving of Theorems 9 and 10. This is done by presenting a specific distributionP and kernel in which
the guarantees hold tightly.

Consider the standard Euclidean inner-product and a distribution on four labeled points inR3, given by:

x1 = (γ, γ,
√

1 − 2γ2), y1 = 1, p1 =
1

2
− ǫ

x2 = (γ,−γ,
√

1 − 2γ2), y2 = 1, p2 = ǫ

x3 = (−γ, γ,
√

1 − 2γ2), y3 = −1, p3 = ǫ

x4 = (−γ,−γ,
√

1 − 2γ2), y4 = −1, p4 =
1

2
− ǫ

for some (small)0 < γ <
√

1
2 and (small) probability0 < ǫ < 1

2 . The four points are all on the unit sphere (i.e.

‖xi‖ = 1 and soK(xi, xj) = 〈xi, xj〉 ≤ 1), and are clearly separated byβ = (1, 0, 0) with a margin ofγ. The
standard inner-product kernel is therefore(0, γ)-kernel-good on this distribution.

Proof of Theorem 9: Tightness for Margin-Violations We will show that when this kernel (the standard inner
product kernel inR3) is used as a similarity function, the best margin that can beobtained on all four points, i.e. on at
least1 − ǫ probability mass of examples, is8ǫγ2.

Consider the classification margin on pointx2 with weightsw (denotewi = w(xi)):

E[w(x)yK(x2, x)]

= (
1

2
− ǫ)w1(γ

2 − γ2 + (1 − 2γ2)) + ǫw2(2γ2 + (1 − 2γ2))

−ǫw3(−2γ2 + (1 − 2γ2)) − (
1

2
− ǫ)w4(−γ2 + γ2 + (1 − 2γ2))

=

(

(
1

2
− ǫ)(w1 − w4) + ǫ(w2 − w3)

)

(1 − 2γ2) + 2ǫ(w2 + w3)γ
2 (4.23)
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If the first term is positive, we can consider the symmetric calculation

−E[w(x)yK(x3, x)] = −
(

(
1

2
− ǫ)(w1 − w4) + ǫ(w2 − w3)

)

(1 − 2γ2) + 2ǫ(w2 + w3)γ
2

in which the first term is negated. One of the above margins must therefore be at most

2ǫ(w2 + w3)γ
2 ≤ 4ǫγ2 (4.24)

This establishes Theorem 9.

4.6 Proof of Theorem 10: Tightness for the Hinge Loss

In the above example, suppose we would like to get an average hinge-loss relative to marginγ1 of at mostǫ1:

Ex,y[ [ 1 − yEx′,y′ [w(x′)y′K(x, x′)]/γ1 ]+ ] ≤ ǫ1 (4.25)

Following the arguments above, equation (4.24) can be used to bound the hinge-loss on at least one of the pointsx2 or
x3, which, multiplied by the probabilityǫ of the point, is a bound on the average hinge loss:

Ex,y[ [ 1 − yEx′,y′ [w(x′)y′K(x, x′)]/γ1 ]+ ] ≥ ǫ(1 − 4ǫγ2/γ1) (4.26)

and so to get an an average hinge-loss of at mostǫ1 we must have:

γ1 ≤ 4ǫγ2

1 − ǫ1/ǫ
(4.27)

For any target hinge-lossǫ1, consider a distribution withǫ = 2ǫ1, in which case we get that the maximum margin
attaining average hinge-lossǫ1 is γ1 = 16ǫ1γ

2, even though we can get a hinge loss of zero at marginγ using a kernel.
This establishes Theorem 10.

Note: One might object that the example used in Theorems 9 and 10 is abit artificial, sinceK has marginO(γ2) in
the similarity sense just because1 − 4γ2 ≤ K(xi, xj) ≤ 1. NormalizingK to [−1, 1] we would obtain a similarity
function that has marginO(1). However, this “problem” can be simply fixed by adding the symmetric points on the
lower semi-sphere:

x5 = (γ, γ,−
√

1 − 2γ2), y5 = 1, p5 =
1

4
− ǫ

x6 = (γ,−γ,−
√

1 − 2γ2), y6 = 1, p6 = ǫ

x7 = (−γ, γ,−
√

1 − 2γ2), y7 = −1, p7 = ǫ

x8 = (−γ,−γ,−
√

1 − 2γ2), y8 = −1, p8 =
1

4
− ǫ

and by changingp1 = 1
4 − ǫ andp4 = 1

4 − ǫ. The classification margins onx2 andx3 are now (compare with (4.23)):

E[w(x)yK(x2, x)] =

(

(
1

4
− ǫ)(w1 − w4 − w5 + w8) + ǫ(w2 − w3 − w6 + w7)

)

(1 − 2γ2)

+ 2ǫ(w2 + w3 + w6 + w7)γ
2

−E[w(x)yK(x3, x)] = −
(

(
1

4
− ǫ)(w1 − w4 − w5 + w8) + ǫ(w2 − w3 − w6 + w7)

)

(1 − 2γ2)

+ 2ǫ(w2 + w3 + w6 + w7)γ
2

One of the above classification margins must therefore be at most2ǫ(w2+w3+w6+w7)γ
2 ≤ 8ǫγ2. Thus, even though

the similarity is “normalized” and(0, γ)-kernel-good, it is only(ǫ, 8ǫγ2)-good as a similarity function. Proceeding as
in the proof of Theorem 10 establishes the modified example isalso only(ǫ, 64ǫγ2)-good in hinge loss.6

6 We thank the anonymous referee for suggesting this strengthening of the lower bound.

15



5 Probabilistic Labels

So far, we have considered only learning problems where the labely is a deterministic function ofx. Here, we discuss
the necessary modifications to extend our theory also to noisy learning problems, where the same pointx might be
associated with both positive and negative labels with positive probabilities.

Although the learning guarantees of Section 3 are valid alsofor noisy learning problems, a kernel that is kernel-
good for a noisy learning problem might not be good as a similarity function for this learning problem. To amend this,
the definition of a good similarity function must be corrected, allowing the weights to depend not only on the pointx
but also on the labely:

Definition 11 (Main, Margin Violations, Corrected for Noisy Problems).A similarity functionK is an(ǫ, γ)-good
similarity function for a learning problemP if there existsa bounded weighting functionw over X × {−1, +1}
(w(x′, y′) ∈ [0, 1] for all x′ ∈ X, y′ ∈ {−1, +1}) such that at least a1 − ǫ probability mass of examplesx, y satisfy:

Ex′,y′∼P [yy′w(x′, y′)K(x, x′)] ≥ γ. (5.1)

It is easy to verify that Theorem 3 can be extended also to thiscorrected definition. The same mappingφS can be used,
with βi = ỹiw(x̃i, ỹi), whereỹi is the training label of examplei. Definition 9 and Theorem 4 can be extended in a
similar way.

With these modified definitions, Theorems 7 and 8 extend also to noisy learning problems. In the proof of Theorem
8, two of the pointsxi, xj might be identical, but have different labelsyi = 1, yj = −1 associated with them. This
might lead to two different weightswi, wj for the same point. But sincew is now allowed to depend also on the label,
this does not pose a problem. In the non-discrete case, this corresponds to defining the weight as:

w(x, y) = E[α∗|x, y] / C. (5.2)

6 Conclusions

The main contribution of this work is to develop a theory of learning with similarity functions—namely, of when a
similarity function is good for a given learning problem—that is more general and in terms of more tangible quantities
than the standard theory of kernel functions. We provide a definition that we show is both sufficient for learning
and satisfied by the usual large-margin notion of a good kernel. Moreover, the similarity properties we consider do
not require reference to implicit high-dimensional spacesnor do they require that the similarity function be positive
semi-definite. In this way, we provide the first rigorous explanation showing why a kernel function that is good in the
large-margin sense can also formally be viewed as a good similarity function, thereby giving formal justification to the
standard intuition about kernels.

It would be interesting to analyze alternative sufficient conditions for learning via pairwise functions. Although
in this work we established guarantees for learning with a good similarity function by transforming the problem to
learning a linear separator, we would like to emphasize thatthis transformation was used as a convenient tool. For
other notions of “goodness” of pairwise functions, it mightwell be more convenient to establish learnability without
reference to linear separation.

From a practical perspective, the results of Section 4 suggest that ifK is in fact a valid kernel, we are probably
better off using it as a kernel, e.g. in an SVM or Perceptron algorithm, rather than going through the transformation of
Section 3.2. However, faced with a non-positive-semidefinite similarity function (coming from domain experts), the
transformation of Theorem 3 might well be useful. In fact, Liao and Noble have used an algorithm similar to the one
we propose in the context of protein classification [16]. Furthermore, a direct implication of Theorem 6 is that we can
indeed think (in the design process) of the usefulness of a kernel function in terms of more intuitive, direct properties
of the data in the original representation, without need to refer to implicit spaces.

Finally, our algorithms (much like those of [5]) suggest a natural way to use kernels or other similarity functions
in learning problems for which one also wishes to use the native features of the examples. For instance, consider
the problem of classifying a stream of documents arriving one at a time. Rather than running a kernelized learning
algorithm, one can simply take the native features (say the words in the document) and augment them with additional
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features representing the similarity of the current example with each of a pre-selected set of initial documents. One
can then feed the augmented example into a standard unkernelized online learning algorithm. It would be interesting
to explore this idea further.

Subsequent Work: Inspired by our work, Wang et. al [28] have recently analyzeddifferent, alternative sufficient
conditions for learning via pairwise functions. In particular, Wang et. al [28] analyze unbounded dissimilarity functions
which are invariant to order preserving transformations. They provide conditions that they prove are sufficient for
learning, though they may not include all good kernel functions.

On a different line of inquiry, Balcan et. al [6] use our approach for analyzing similarity functions in the context
of clustering(i.e. learning from purelyunlabeleddata). Specifically, Balcan et. al [6] asks what (stronger) properties
would be sufficient to allow one to produce an accurate hypothesis without any label information at all. Balcan et.
al [6] show that if one relaxes the objective (for example, allows the algorithm to produce a hierarchical clustering
such that some pruning is close to the correct answer), then one can define a number of interesting graph-theoretic and
game-theoretic properties of similarity functions that are sufficient to cluster well.

Acknowledgments:We would like to thank the anonymous referees for their insightful and helpful comments. This
work was supported in part by the National Science Foundation under grants CCF-0514922, CCR-0122581, and IIS-
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A Weakly Good Similarity Functions

We show here that for anyγ > 0, Definition 5 is enough to imply weak learning. In particular, first, determine if the
distribution is noticeably skewed towards positive or negative examples: if so, weak-learning is immediate (output all-
positive or all-negative respectively). Otherwise, draw asufficiently large setS+ of positive examples and setS− of
negative examples. Then, for eachx, consider̃γ(x) = 1

2 [Ex′∈S+ [K(x, x′)] − Ex′∈S− [K(x, x′)]]. Finally, to classify

x, use the following probabilistic prediction rule: classify x as positive with probability1+γ̃(x)
2 and as negative with

probability 1−γ̃(x)
2 . (Notice that̃γ(x) ∈ [−1, 1] and so our algorithm is well defined.) We can then prove the following

result:
Theorem 2If K is a weaklyγ-good similarity function, then with probability at least1− δ, the above algorithm using
setsS+, S− of size 64

γ2 ln ( 64
γδ ) yields a classifier with error at most1

2 − 3γ
128 .

Proof. First, we assume the algorithm initially draws a sufficiently large sample such that if the distribution is skewed
with probability mass greater than12 + α on positives or negatives forα = γ

32 , then with probability at least1 − δ/2

the algorithm notices the bias and weak-learns immediately(and if the distribution is less skewed than1
2 ± 3γ

128 , with
probability1 − δ/2 it does not incorrectly halt in this step). In the following,then, we may assume the distributionP
is less than(1

2 + α)-skewed, and let us defineP ′ to beP reweighted to have probability mass exactly1/2 on positive
and negative examples. Thus, Definition 5 is satisfied forP ′ with margin at leastγ − 4α.

For eachx defineγ(x) as 1
2Ex′ [K(x, x′)|y(x′) = 1] − 1

2Ex′ [K(x, x′)|y(x′) = −1] and notice that Definition 5
implies thatEx∼P ′ [y(x)γ(x)] ≥ γ/2− 2α. Consider now the probabilistic prediction functiong defined asg(x) = 1

with probability 1+γ(x)
2 andg(x) = −1 with probability 1−γ(x)

2 . We clearly have that for a fixedx,

Pr
g

(g(x) 6= y(x)) =
y(x)(y(x) − γ(x))

2
,

which then implies thatPrx∼P ′,g(g(x) 6= y(x)) ≤ 1
2 − 1

4γ − α. Now notice that in our algorithm we do not useγ(x)
but an estimate of it̃γ(x), and so the last step of the proof is to argue that this is good enough. To see this, notice
first thatd is large enough so that for any fixedx we havePrS+,S−

(

|γ(x) − γ̃(x)| ≥ γ
4 − 2α

)

≤ γδ
32 . This implies

Prx∼P ′

(

PrS+,S−

(

|γ(x) − γ̃(x)| ≥ γ
4 − 2α

))

≤ γδ
32 , so

Pr
S+,S−

(

Pr
x∼P

(

|γ(x) − γ̃(x)| ≥ γ

4
− 2α

)

≥ γ

16

)

≤ δ/2.

This further implies that with probability at least1 − δ/2 we haveEx∼P ′ [y(x)γ̃(x)] ≥
(

1 − γ
16

)

γ
4 − 2 γ

16 ≥ 7γ
64 .

Finally using a reasoning similar to the one above (concerning the probabilistic prediction function based onγ(x)),
we obtain that with probability at least1− δ/2 the error of the probabilistic classifier based onγ̃(x) is at most12 −

7γ
128

onP ′, which implies the error overP is at most12 − 7γ
128 + α = 1

2 − 3γ
128 . ⊓⊔
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