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Abstract. Kernel functions have become an extremely popular tool inhime learning, with an attractive theory
as well. This theory views a kernel as implicitly mappingalpbints into a possibly very high dimensional space,
and describes a kernel function as being good for a givenileguproblem if data is separable by a large margin in
that implicit space. However, while quite elegant, thisotlyedoes not necessarily correspond to the intuition of a
good kernel as a good measure of similarity, and the undweylgiargin in the implicit space usually is not apparent
in “natural” representations of the data. Therefore, it rhaydifficult for a domain expert to use the theory to help
design an appropriate kernel for the learning task at haratebVer, the requirement of positive semi-definiteness
may rule out the most natural pairwise similarity functidosthe given problem domain.

In this work we develop an alternative, more general thedriearning with similarity functions (i.e., sufficient
conditions for a similarity function to allow one to learn lyehat does not require reference to implicit spaces,
and does not require the function to be positive semi-defif@t even symmetric). Instead, our theory talks in
terms of more direct properties of how the function behagea similarity measure. Our results also generalize the
standard theory in the sense that any good kernel functidenthe usual definition can be shown to also be a good
similarity function under our definition (though with sormass in the parameters). In this way, we provide the first
steps towards a theory of kernels and more general sinyilnitctions that describes the effectiveness of a given
function in terms of natural similarity-based properties.

1 Introduction

Kernel functions have become an extremely popular tool iohimee learning, with an attractive theory as well [1, 22,
20,9, 12, 26]. Akernelis a function that takes in two dataeots (which could be images, DNA sequences, or pointsin
R™) and outputs a number, with the property that the functiayimmetric and positive-semidefinite. That is, for any
kernel K, there must exist an (implicit) mapping such that for all inputs;, 2’ we haveK (z,2') = (¢(x), p(z')).

The kernel is then used inside a “kernelized” learning atgar such as SVM or kernel-perceptron in place of direct
access to the data.

The theory behind kernel functions is based on the fact tlaaynstandard algorithms for learning linear separators,
such as SVMs [26] and the Perceptron [8] algorithm, can baewiso that the only way they interact with their data
is via computing dot-products on pairs of examples. Thusepjacing each invocation @b (x), ¢(«’)) with a kernel
computationk (x, '), the algorithm behaves exactly as if we had explicitly perfed the mapping(z), even though
¢ may be a mapping into a very high-dimensional space. Furtbes, these algorithms have learning guarantees that
depend only on thenargin of the best separator, and not on the dimension of the spaghiah the data resides [2,
21]. Thus, kernel functions are often viewed as providingmaf the power of this implicit high-dimensional space,
without paying for it either computationally (because thenapping is only implicit) or in terms of sample size (if
data is indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitasi. When designing a kernel function for some
learning problem, the intuition employed typically does mvolve implicit high-dimensional spaces but rather that
good kernel would be one that serves as a good measure odstynfbr the given problem [20]. In-fact, many generic
kernels (e.g. Gaussian kernels), as well as very specificeker(e.g. Fisher kernels [11] and kernels for specific

* This paper combines results appearing in two conferencerpaM.F. Balcan and A. Blum, “On a Theory of Learning with
Similarity Functions,” Proc. 23rd International Confecenon Machine Learning, 2006 [4], and N. Srebro, “How Good is a
Kernel as a Similarity Function,” Proc. 20th Annual Confeze on Learning Theory, 2007 [24].



structures such as [27]), describe different notions ofilarity between objects, which do not correspond to any
intuitive or easily interpretable high-dimensional regggtation. So, in this sense the theory is not always heipful
providing intuition when selecting or designing a kernahdtion for a particular learning problem. Additionally, it
may be that the most natural similarity function for a giveolggem is not positive-semidefinite, and it could require
substantial work, possibly reducing the quality of the fiime, to coerce it into a “legal” form. Finally, it is a bit
unsatisfying for the explanation of the effectiveness ahealgorithm to depend on properties of an implicit high-
dimensional mapping that one may not even be able to catcutaparticular, the standard theory at first blush has a
“something for nothing” feel to it (all the power of the impii high-dimensional space without having to pay for it)
and perhaps there is a more prosaic explanation of whattgisnhakes a kernel useful for a given learning problem.
For these reasons, it would be helpful to have a theory thatimgerms of more tangible quantities.

In this paper, we develop a theory of learning with similafitnctions that addresses a number of these issues. In
particular, we define a notion of what it means for a pairwisection K’ (z, ') to be a “good similarity function” for
a given learning problem that (a) does not require the naifaan implicit space and allows for functions that are not
positive semi-definite, (b) we can show is sufficient to beduse learning, and (c) generalizes the standard theory in
that a good kernel in the usual sense (large margin in theiégihghspace) will also satisfy our definition of a good
similarity function, though with some loss in the paramstém this way, we provide the first theory that describes the
effectiveness of a given kernel (or more general simildtityction) in terms of natural similarity-based properties

Our Results: Our main contribution is the development of a theory for wihateans for a pairwise function to be
a “good similarity function” for a given learning problempag with theorems showing that our main definitions are
sufficient to be able to learn well and in addition generattze standard notion of a good kernel function, though
with some bounded degradation of learning guarantees. \§ym lwdth a definition (Definition 4) that is especially
intuitive and allows for learning via a very simple algorithbut is not broad enough to include all kernel functions
that induce large-margin separators. We then broaden t¢ttismto our main definition (Definition 8) that requires a
more involved algorithm to learn, but is now able to captuléuactions satisfying the usual notion of a good kernel
function. Specifically, we show that K is a similarity function satisfying Definition 8 then one calgorithmically
perform a simplegexplicit transformation of the data under which there is a low-erangé-margin separator. We
also consider variations on this definition (e.g., Defimit®) that produce better guarantees on the quality of the final
hypothesis when combined with existing learning algorghm

A similarity function K satisfying our definition, but that is not positive semi-dé#, is not necessarily guaranteed
to work well when used directly in standard learning alduris such as SVM or the Perceptron algorithinstead,
what we show is that such a similarity function can be emploiyethe following two-stage algorithm. First, re-
represent that data by performing what might be called arpigoal similarity map”: selecting a subset of data points
as landmarks, and then representing each data point usgngirtilarities to those landmarks. Then, use standard
methods to find a large-margin linear separator in the newesp@ane property of this approach is that it allows for
the use of a broader class of learning algorithms since ore dot need the algorithm used in the second step to be
“kernalizable”. In fact, this work is motivated by work on e-representation method that algorithmically transforms
a kernel-based learning problem (with a valid positive-skafinite kernel) to an explicit low-dimensional learning
problem [5].

More generally, our framework provides a formal way to amalyproperties of a similarity function that make
it sufficient for learning, as well as what algorithms aretedifor a given property. While our work is motivated by
extending the standard large-margin notion of a good kdumettion, we expect one can use this framework to analyze
other, not necessarily comparable, properties that afecigut for learning as well. In fact, recent work along these
lines is given in [28].

2 Background and Notation

We consider a learning problem specified as follows. We arergaccess to labeled examp{esy) drawn from some
distribution P over X x {—1,1}, whereX is an abstract instance space. The objective of a learngagiiim is to

3 However, as we will see in Section 4.2, if the functiempositive semi-definite and if it is good in our sense, then amre show it
is good as a kernel as well.



produce a classification functign: X — {—1,1} whose error rat®r(, .y p[g(z) # y] is low. We will consider
learning algorithms that only access the pointdrough a pairwise similarity functiod (=, ') mapping pairs of
points to numbers in the range 1, 1]. Specifically,

Definition 1. A similarity functionover X is any pairwise functios : X x X — [—1,1]. We say thatX is a
symmetric similarity function i (z, ') = K(2/, ) for all =, z’.

Our goal is to describe “goodness” properties that are seffidor a similarity function to allow one to learn well
that ideally are intuitive and subsume the usual notion aftgkernel function. Note that as with the theory of kernel
functions [19], “goodness” is with respect to a given leagnproblemP, andnot with respect to a class of target
functions as in the PAC framework [25, 14].

A similarity function K is a valid kernel function if it is positive-semidefinitegi.there exists a functiop from
the instance spac® into some (implicit) Hilbert %-space” such thak'(x,2’) = (¢(x), ¢(z')). See, e.g., Smola
and Scholkopf [23] for a discussion on conditions for a mageing a kernel function. Throughout this work, and
without loss of generality, we will only consider kernelschuhat K (z,2) < 1 for all x € X (any kernelK can
be converted into this form by, for instance, definigz, 2’) = K (z,2')/\/K (z,2)K (', z)). We say thatk is
(¢,7v)-kernel goodor a given learning problen? if there exists a vectas in the ¢-space that has errerat marginy;
for simplicity we consider only separators through the rig@pecifically:

Definition 2. K is (¢, v)-kernel goodif there exists a vectas, ||3]] < 1 such that

Pr [y(¢(z),0) 2] 21—
(z,y)~P
We say thati is v-kernel goodf itis (¢, ~y)-kernel goodor ¢ = 0; i.e., it has zero error at margin
Given a kernel that ige, v)-kernel-good for some learning problef) a predictor with error rate at mostt+ eacc

can be learned (with high probability) from a samplé @f((e + eacc)/(y%gcg) examples (drawn independently from
the source distribution) by minimizing the number of margimiolations on the sample [17]. However, minimizing
the number of margin violations on the sample is a difficultimfzation problem [2, 3]. Instead, it is common to
minimize the so-calletlinge losgelative to a margin.

Definition 3. We say thaf( is (e, v)-kernel goodn hinge-lossf there exists a vectas, || 5|| < 1 such that
E(zy)~prll1 —y(B;0(x))/7]+] < e,

where[l — z]+ = max(1 — z,0) is the hinge loss.

Given a kernel that ige, v)-kernel-good in hinge-loss, a predictor with error rate asta + eacc can be efficiently
learned (with high probability) from a sample 6f(1/(v%c3.)) examples by minimizing the average hinge loss
relative to marginy on the sample [7].

Clearly, a general similarity function might not be a legatkel. For example, suppose we consider two documents
to have similarity 1 if they have either an author in commoa &eyword in common, and similarity O otherwise. Then
you could have three documems B, andC, such thatk' (A, B) = 1 becaused and B have an author in common,
K(B,C) = 1 becauseB andC have a keyword in common, but (A, C') = 0 becaused andC' have neither an
author nor a keyword in common (ardd(A, A) = K(B, B) = K(C,C) = 1). On the other hand, a kernel requires
that if 9(A) and¢(B) are of unit length and¢(A), ¢(B)) = 1, thenp(A) = ¢(B), so this could not happen K
was a valid kernel. Of course, one could modify such a fumctiobe positive semidefinite by, e.g., instead defining
similarity to be thenumberof authors and keywords in common, but perhaps that is noith&t natural similarity
measure for the task at hand. Alternatively, one could ma&esimilarity function positive semidefinite by blowing
up the diagonal, but this can significantly decrease the ddyin range” ofK” and yield a very small margin.

Deterministic Labels: For simplicity in presentation of our framework, for mosttbfs paper we will consider only
learning problems where the labglis a deterministic function of.. For such learning problems, we can uge;)
to denote the label of point, and we will usex ~ P as shorthand fofx, y(z)) ~ P. We will return to learning
problems where the labglmay be a probabilistic function af in Section 5.

4 The(7)(~) notations hide logarithmic factors in the arguments, artthénfailure probability.



3 Sufficient Conditions for Learning with Similarity Functi ons

We now provide a series of sufficient conditions for a sinifyaiunction to be useful for learning, leading to our main
notions given in Definitions 8 and 9.

3.1 Simple Sufficient Conditions

We begin with our first and simplest notion of “good similgrfunction” that is intuitive and yields an immediate
learning algorithm, but which is not broad enough to capaltgyood kernel functions. Nonetheless, it provides a
convenient starting point. This definition says tlkatis a good similarity function for a learning probleim if most
examplesr (at least al — ¢ probability mass) are on average at leashore similar to random examples of the
samelabel than they are to random examplé®f the opposite label. Formally,

Definition 4. K is astrongly (e, y)-good similarity function for a learning problemP if at least al — e probability
mass of examplessatisfy:

Eup[K (2, 2")[y(z) = y(2')] > BEpnp[K (2, 2)y(z) # y(2")] +7. (3.1

For example, suppose all positive examples have similatityast.2 with each other, and all negative examples have
similarity at least).2 with each other, but positive and negative examples hav#asities distributed uniformly at
random in[—1, 1]. Then, this would satisfy Definition 4 foy = 0.2 ande = 0. Note that with high probability this
would not be positive semidefinite.

Definition 4 captures an intuitive notion of what one mightwim a similarity function. In addition, if a similarity
function K satisfies Definition 4 then it suggests a simple, naturahlegralgorithm: draw a sufficiently large sét"
of positive examples and sét” of negative examples, and then output the prediction raedlassifies a new example
x as positive if it is on average more similar to pointsSin than to points inS—, and negative otherwise. Formally:

Theorem 1. If K is strongly(e, v)-good, then16/4?) In(2/§) positive example§* and (16/+?) In(2/J) negative
examplesS— are sufficient so that with probability 1 — §, the above algorithm produces a classifier with error at
moste + 9.

Proof. Let Good be the set of satisfyingE,.p[K (z,2')|y(z) = y(2')] > Ep~p[K(z,2')|y(z) # y(z')]+~. So,
by assumptionPr,.p[z € Good] > 1 — . Now, fix z € Good. SinceK (x,z’) € [—1, 1], by Hoeffding bounds we
have that over the random draw of the sampfe Pr (|E, cs+ (K (2,2')] — Ep op[K (2, 2)y(2') = 1]| > ~/2) <
2¢=21S"17*/16 and similarly forS—. By our choice of S| and|S~|, each of these probabilities is at méay2.

So, for any givenr € Good, there is at most &2 probability of error over the draw o+ and.S—. Since this is
true for anyxz € Good, it implies that theexpectedkrror of this procedure, over € Good, is at mosti2, which by
Markov’s inequality implies that there is at mosé @robability that the error rate ové&ood is more than). Adding
in the e probability mass of points not i@ood yields the theorem. O

Definition 4 requires that almost all of the points (at least-a e fraction) be on average more similar to random
points of the same label than to random points of the othed |#bweaker notion would be simply to require that two
random points of the same label be on average more similarttiha random points of different labels. For instance,
one could consider the following generalization of Defuniti4:

Definition 5. K is aweakly v-good similarity function for a learning problenm? if:
E;op[K(z,2')ly(x) = y(2')] 2 Bownp[K(z,2)|y(z) # y(@')] + . 3.2
®In particular, if the domain is large enough, then with higiofmbility there would exist negative exampieand positive

examplesB, C such thatK (A, B) is close to 1 (so they are nearly identical as vectak&)A, C) is close to—1 (so they are
nearly opposite as vectors), and yé{B, C') > 0.2 (their vectors form an acute angle).



While Definition 5 still captures a natural intuitive notiaf what one might want in a similarity function, it is
not powerful enough to implgtronglearning unless is quite large. For example, suppose the instance spage is
and that the similarity measut® we are considering is just the product of the first coordiggie., dot-product
but ignoring the second coordinate). Assume the distidouis half positive and half negative, and thiat% of the
positive examples are at positigh, 1) and25% are at position(—1,1), and75% of the negative examples are at
position(—1, —1) and25% are at positior(1, —1). ThenK is a weaklyy-good similarity function fory = 1/2, but
the best accuracy one can hope for usitigs 75% because that is the accuracy of the Bayes-optimal predioten
only the first coordinate.

We can however show that for any> 0, Definition 5 is enough to imply weak learning [18]. In pauiar, the
following simple algorithm is sufficient to weak learn. Rirdetermine if the distribution is noticeably skewed tosdgr
positive or negative examples: if so, weak-learning is irdia (output all-positive or all-negative respectively)
Otherwise, draw a sufficiently large sét™ of positive examples and st~ of negative examples. Then, for each
z, considery(z) = 3 [Epes+ [K(z,2')] — Epes- [K(z,2')]]. Finally, to classifyz, use the following probabilistic
prediction rule: classifyc as positive with probabilitywzﬂ and as negative with probabilit%‘Z—(m). (Notice that
A(z) € [-1, 1] and so our algorithm is well defined.) We can then prove thieviohg result:

Theorem 2. If K is a weaklyy-good similarity function, then with probability at least— §, the above algorithm
using setsS™, S~ of size®; In (%) yields a classifier with error at mosf — 3.

Proof. See Appendix A. O

Returning to Definition 4, Theorem 1 implies that/f is a strongly(e, v)-good similarity function for small
e and not-too-smally, then it can be used in a natural way for learning. Howevefiriimn 4 is not sufficient to
capture all good kernel functions. In particular, Figuré gives a simple example ii? where the standard kernel
K(z,2") = (x,2') has a large margin separator (margini@¢2) and yet does not satisfy Definition 4, even fo&= 0
ande = 0.49.

Fig. 3.1.Positives are split equally among upper-left and uppémtrijegatives are all in the lower-right. Far= 30° (soy = 1/2)
a large fraction of the positive examples (namely3h& in the upper-right) have a higher dot-product with negadaixemples(%)
than with a random positive exampdé -1+ %(—%) = %). However, if we assign the positives in the upper-left a \weigf 0,
those in the upper-right a weight of 1, and assign negativesight of%, then all examples have higher averaggghtedsimilarity
to those of the same label than to those of the opposite lapel gap ofi.

Notice, however, that if in Figure 3.1 we simply ignored tlosjtive examples in the upper-left when choosing
and down-weighted the negative examples a bit, then we waaifthe. This then motivates the following intermediate
notion of a similarity functionk” being good under a weighting functianover the input space that can downweight
certain portions of that space.

Definition 6. A similarity functionK together with a bounded weighting functianover X (specificallyw(x’) €
[0,1] for all 2/ € X) is astrongly (e, v)-good weighted similarity function for a learning problemp if at least a



1 — e probability mass of examplassatisfy:
Evplw(@)K(z,2')ly(z) = y(@)] = Bonplw(@) K (z,2")|y(2) # y(2')] + 7. 3.3)

We can view Definition 6 intuitively as saying that we only ué@ most examples be substantially more similar on
average taeasonablgoints of the same class thanreasonablgoints of the opposite class, where “reasonableness”
is a score 0, 1] given by the weighting functiow. A pair (K, w) satisfying Definition 6 can be used in exactly the
same way as a similarity functidi satisfying Definition 4, with the exact same proof used indreen 1 (except now
we vieww(y) K (z, 2") as the bounded random variable we plug into Hoeffding bounds

Unfortunately, Definition 6 requires the designer to camstboth X' andw, rather than jusf. We now weaken
the requirement to ask only that suchvaxist in Definition 7 below:

Definition 7 (Provisional). A similarity functionK is an (e, v)-good similarity function for a learning problemP
if there existsa bounded weighting functiom over X (w(z’) € [0,1] for all 2’ € X) such that at least d — ¢
probability mass of examplessatisfy:

Eynplw(@) K (z,2")[y(z) = y(2')] = By oplw(@) K (2, 2")|y(z) # y(a)] + 7. (3:4)

As mentioned above, the key difference is that whereas imidiefi 6 one needs the designer to construct both the
similarity function K andthe weighting functionu, in Definition 7 we only require that suchvaexist but it need not
be known a-priori. That is, we ask only that there exist adgugobability mass of “reasonable” points (a weighting
scheme) satisfying Definition 6, but the designer need noiin advance what that weighting scheme should be.
Definition 7, which was the main Definition analyzed by Balead Blum [4], can also be stated as requiring that,
for at leastl — ¢ of the examples, thelassification margin

Eornplw(z)y(a") K (z,2")[y(z) = y(2")] = Ewoplw(@)y(a) K (z,2")|y(z) # y(2)]
=y()Epnp(w(a)y(x") K (z,2") /P(y(z"))]

be atleast, whereP(y(«")) is the marginal probability undé?, i.e. the prior, of the label associated with We will

find it more convenient in the following to analyze insteadighd variant, dropping the factor/ P (y(z")) from the
classification margin (3.5)—see Definition 8 in the next 8e&ctFor a balanced distribution of positives and negatives
(each with50% probability mass), these two notions are identical, exéapa factor of two.

(3.5)

3.2 Main Conditions

We are now ready to present our main sufficient conditiondarting with similarity functions. This is essentially a
restatement of Definition 7, dropping the normalization g bel “priors” as discussed at the end of the preceding
Section.

Definition 8 (Main, Margin Violations). A similarity functionX is an(e, v)-good similarity function for a learning
problemP if there existsa bounded weighting function over X (w(2’) € [0, 1] for all 2/ € X)) such that at least a
1 — e probability mass of examplessatisfy:

E. ~ply(@)y(z )w(@) K (z,2')] = 7. (3.6)

We would like to establish that the above condition is indsefficient for learning. l.e. that given da, v)-good
similarity function K for some learning problen®, and a sufficiently large labeled sample drawn fréhmone can
obtain (with high probability) a predictor with error ratebérarily close toe. To do so, we will show how to use
an (e, v)-good similarity functionk’, and a samplé& drawn fromP, in order to construct (with high probability) an
explicit mappinge® : X — R9 for all points in X (not only points in the sampl§), such that the mapped data
(¢°(z),y(x)), wherex ~ P, is separated with error close ¢qdand in fact also large margin) in the low-dimensional
linear space&R? (Theorem 3 below). We thereby convert the learning probletm a standard problem of learning a
linear separator, and can use standard results on leatpalblinear separators to establish learnability of ougoral
learning problem, and even provide learning guarantees.



What we are doing is actually showing how to use a good siityiléwnction K (that is not necessarily a valid
kernel) and a samplé drawn fromP to construct a valid kernek®, given by K (z, 2') = (¢ (x), ¢%(2")), that is
kernel-good and can thus be used for learning (In Sectionghew that ifK is already a valid kernel, a transformation
is not necessary ds itself is kernel-good). We are therefore leveraging heesg$tablished theory of linear, or kernel,
learning in order to obtain learning guarantees for sintifaneasures that are not valid kernels.

Interestingly, in Section 4 we also show that any kernel thdternel-good is also a good similarity function
(though with some degradation of parameters). The sugdjestion of “goodness” (Definition 8) thus encompasses
the standard notion of kernel-goodness, and extends it@ison-positive-definite similarity functions.

Theorem 3. Let K be an(e, v)-good similarity function for a learning proble. For anyd > 0, letS = {Z1, &2, ..., 24}
be a sample of sizé = 8log(1/d)/+? drawn from P. Consider the mapping® : X — R? defined as follows:
#°.(x) = % i €{1,...,d}. With probability at least — ¢ over the random sampl€, the induced distribution
#°(P) in R? has a separator of error at mostt- § at margin at leasty/2.

Proof. Letw : X — [0,1] be the weighting function achieving (3.6) of Definition 8.r&aler the linear separator

B € R4, given bys; = M\/g(m) note that|| 5| < 1. We have, for any, y(x):

y(@)y(Zi)w(@:) K (v, %;) (3.7)

IS
[]=

y(@)(8, 6% (x)) =

=1

The right hand side of the (3.7) is an empirical average bf< y(z)y (2" )w(z') K (z,2’) < 1, and so by Hoeffding’s
inequality, for anyz, and with probability at least — §2 over the choice of, we have:

d ~ ~ ~ / / / 210g(él2)
> y@)y(@)w(@) K (2, 5:) > Evnply(@)y(a)w(@) K (2, 2")] — | =5 (3.8)
=1

SHS

Since the above holds for anywith probability at least — 62 over the choice of, it also holds with probability at
leastl — 6% over the choice of and.S. We can write this as:

Egpa Llirp (violation)} < 2 (3.9)

where “violation” refers to violating (3.8). Applying Madv’s inequality we get that with probability at leakt- ¢
over the choice of, at most) fraction of points violate (3.8). Recalling Definition 8,rabst an additional fraction
of the points violate (3.6). But for the remainifg- ¢ — ¢ fraction of the points, for which both (3.8) and (3.6) hold,

we havey(z)(3, ¢%(z)) > v —\/ 21#55%) = v/2, where to get the last inequality we uge- 8log(1/6)/7%. O

In order to learn a predictor with error rate at mest cacc We can seb = eaee/2, draw a sample of sizé =
(4/7)? In(4/ eace) and construcy® as in Theorem 3. We can now draw a new, fresh, sample, map tfiatiransformed
space using®, and then learn a linear separator in the new space. The muhlendmarks is dominated by the
O((e + eacdd/€2d) = O((€+ €acd)/(v%€2.)) sample complexity of the linear learning, yielding the saoneer
sample complexity as in the kernel-case for achieving eaxtonoste + eacc @((e + eacc)/(72egcc)).

Unfortunately, the above sample complexity refers to legytoy finding a linear separator minimizing the error
over the training sample. This minimization problem is Nd#€h[2], and even NP-hard to approximate [3]. In certain
special cases, such as if the induced distributionP) happens to be log-concave, efficient learning algorithms ex
ist [13]. However, as discussed earlier, in the more typieak, one minimizes thénge-lossnstead of the number of
errors. We therefore consider also a modification of our d@&limthat captures the notion of good similarity functions
for the SVM and Perceptron algorithms as follows:

Definition 9 (Main, Hinge Loss). A similarity functionk is an (e, v)-good similarity function in hinge lossfor a
learning problemP if there exists a weighting functian(x’) € [0, 1] for all 2/ € X such that

E. |[1-y@)g@)/)+ | < (3.10)

7



whereg(z) = E,/~ply(2)w(z')K (z,2')] is the similarity-based prediction made using), and recall that[1 —
z]+ = max(0, 1 — z) is the hinge-loss.

In other words, we are asking: on average, by how much, irswfity, would a random example fail to satisfy
the desiredy separation between the weighted similarity to examplessadwn label and the weighted similarity to
examples of the other label.

Similarly to Theorem 3, we have:

Theorem 4. Let K be an(e, v)-good similarity function in hinge loss for a learning preloh P. For anye; > 0 and
0<d<vyer/dletS = {71, 7a,...,7q4} be asample of sizé = 16 log(1/6)/(e17)? drawn fromP. With probability
at leastl — ¢ over the random samplg, the induced distributior® (P) in R?, for ¢° as defined in Theorem 3, has
a separator achieving hinge-loss at mest ¢; at margin~y.

Proof. Letw : X — [0, 1] be the weighting function achieving an expected hinge l6sg¢ moste at marginy, and
denoteg(x) = E,vply(z’)w(z’) K (x, 2’)]. Defining 8 as in Theorem 3 and following the same arguments we have
that with probability at least — § over the choice of, at mosts fraction of the pointse violate 3.8. We will only
consider such samplés For those points that do not violate (3.8) we have:

1 210g(5i2)

[ —y(@)(8,¢%(@))/+ < [L - y(@)g(@)/ 1+ 2\ < L= y(@)g@) A+ + /2 (3.11)
For points that do violate (3.8), we will just bound the hirlggs by the maximum possible hinge-loss:
[ = y(@)(8,¢%(2))/7)+ < 1+ max|y(@) 8] [[¢°@)[[| /y <1+1/v <2/ (3.12)

Combining these two cases we can bound the expected hisgatonarginy:

Exnr[[l = y(@)(B,¢°(2))/7]+] < Eonplll — y(z)g(x)/¥]+] + €1/2 + Pr(violation) - (2/7)
< Eunp[[l —y(x)g(@)/7]4] +€1/2+ 25/~
< Exwrll —y(2)g(x)/7]4] + €1, (3.13)

where the last inequality follows from < €;/4. O

Following the same approach as that suggested followingEme 3, and noticing that the dimensionalityof
the linear space created k' is polynomial in1/v, 1/¢; andlog(1/6), if a similarity functionK is a (e, ~)-good
similarity function in hinge loss, one can apply Theorem d tiren use an SVM solver in thie’-space to obtain (with
probability at least — 0) a predictor with error rate + ¢; using@(l/(y%gc ) examples, and time polynomial in
1/7,1/¢; andlog(1/9).

3.3 Extensions

Combining Multiple Similarity Functions: Suppose that rather than having a single similarity fumctise were
instead givem functionsK, ..., K,, and our hope is that some convex combination of them wiisgaDefinition

8. Is this sufficient to be able to learn well? (Note that a @nsombination of similarity functions is guaranteed to
have rangé—1, 1] and so be a legal similarity function.) The following gerimation of Theorem 3 shows that this is
indeed the case, though the margin parameter drops by a fac{g.. This result can be viewed as analogous to the
idea of learning a kernel matrix studied by [15] except tlagther than explicitly learning the best convex combingtion
we are simply folding the learning process into the secoadesbf the algorithm.

Theorem 5. Suppose<, ..., K, are similarity functions such that some (unknown) convewlination of them is
(¢,7)-good. If one draws a sef = {71, %2,...,24} from P containingd = 8log(1/d)/v? examples, then with

probability at leastl — 6, the mappings® : X — R"? defined ag® (z) = L\/fll),
pS(I) = (Ki(z,&1), ..., Ki(x,Zq), oo, Kp(2,%1), .., Kn (2, 94))

has the property that the induced distributiof(P) in R"? has a separator of error at most+ § at margin at least

v/ (24/n).



Proof. Let K = a1 K1 +. ..+ «,, K, be an(e, v)-good convex-combination of thi€;. By Theorem 3, had we instead

performed the mappingi® : X — R defined agh® (z) = ng),

Iﬁs(x) = (K(m,fl), . .,K(‘T,"Ed))

then with probabilityl — ¢, the induced distributioa@S(P) in R would have a separator of error at mest ¢ at
margin at leasty/2. Let 5 be the vector corresponding to such a separator in that spaee let us converp into a
vector inR" by replacing each coordinatg with then values(as 3;, - . ., ., 3; ). Call the resulting vectos. Notice

that by design, for any we have<5, ¢S(x)> = \%<ﬁ, <;35(a:)>. FurthermoreHBH < HﬁH < 1 (the worst case is

when exactly one of the; is equal to 1 and the rest are 0). Thus, the vegtonder distributions® ( P) has the similar
properties as the vectorunders® (P); so, using the proof of Theorem 3 we obtain that that the ieduwistribution
#° (P) in R™ has a separator of error at mest § at margin at least/(2v/n). O

Note that the above argument actually shows something @rbitger than Theorem 5. In particular, if we define
a = (aq,...,a,) to be the mixture vector for the optiméaf, then we can replace the margin boupt(2+/n) with
~v/(2 ||| v/n). For example, iftx is the uniform mixture, then we just get the bound in Theoreofi 3/2.

Multi-class Classification: We can naturally extend all our results to multi-class défeesgion. Assume for concrete-
ness that there arepossible labels, and denote the space of possible lab&lsby(1, - - - | r}; thus, by amulti-class
learning problemwve mean a distributio®® over labeled examples:, y(x)), wherex € X andy(z) € Y.

For this multi-class setting, Definition 7 seems most natoraxtend. Specifically:

Definition 10 (main, multi-class). A similarity functionK is an (¢, ~y)-good similarity function for a multi-class
learning problemP if there exists a bounded weighting functiorover X (w(z’) € [0,1] for all 2’ € X) such that at
least al — e probability mass of examplassatisfy:

E.wplw(@)K(z,2')|y(z) = y(o)] = Barpw(@) K (z,27)|y(x) = i] + 7 foralli € Y,i # y(x)

We can then extend the argument in Theorem 3 and learn usindatd adaptations of linear-separator algorithms to
the multiclass case (e.g., see [8]).

4 Relationship Between Kernels and Similarity Measures

As discussed earlier, the similarity-based theory of legyiis more general than the traditional kernel-based theor
since a good similarity function need not be a valid kernekwidver, for a similarity functiori that is a valid kernel,

it is interesting to understand the relationship betweenl¢arning results guaranteed by the two theories. Similar
learning guarantees and sample complexity bounds can l@ebtif K is either an(e, «v)-good similarity function,

or a valid kernel ande, v)-kernel-good. In fact, as we saw in Section 3.2, the sintjlavased guarantees are obtained
by transforming (using a sample) the problem of learnindhvaih (¢, v)-good similarity function to learning with

a kernel with essentially the same goodness parameters.igmade more explicit in Section 4.1. Understanding
the relationship between the learning guarantees then don to understanding the relationship between the two
notions of goodness.

In this Section we study the relationship between a kernedtion being good in the similarity sense and good in
the kernel sense. We show that a valid kernel function thgo@d for one notion, is in fact good also for the other
notion. The qualitative notions of being “good” are therefequivalent for valid kernels, and so in this sense the more
general similarity-based notion subsumes the familian&kebased notion.

However, as we will see, the similarity-based margin of édegrnel might be lower than the kernel-based margin,
yielding a possible increase in the sample complexity gutaes if a kernel is used as a similarity measure. Since we
will show that for a valid kernel, the kernel-based margiméver smaller than the similarity-based margin, we see
that the similarity-based notion, despite being more galnis strictly less powerful quantitatively on those sianity



functions for which the kernel theory applies. We provideégat bound on this possible deterioration of the margin
when switching to the similarity-based notion.

Specifically, we show that if a valid kernel function is goodine similarity sense, it is also good in the standard
kernel sense, both for the margin violation error rate amdtfe hinge loss:

Theorem 6 (A kernel good as a similarity function is also goods a kernel).If K is a valid kernel function, and
is (¢, v)-good similarity for some learning problem, then it is algp~)-kernel-good for the learning problem. X is
(e,7v)-good similarity in hinge loss, then it is alge, v)-kernel-good in hinge loss.

We also show the converse—If a kernel function is good in #radél sense, it is also good in the similarity sense,
though with some degradation of the margin:

Theorem 7 (A good kernel is also a good similarity function—NMrgin violations). If K is (e, v)-kernel-good for
some learning problem (with deterministic labels), theisiflso (ey + €1, 3(1 — €o)e1y*)-good similarity for the
learning problem, for any; > 0.

Note that in any useful situationy < % and so the guaranteed margin is at Ie?eit'y? A similar guarantee holds
also for the hinge loss:

Theorem 8 (A good kernel is also a good similarity function—Hhhge loss).If K is (o, y)-kernel-good in hinge
loss for learning problem (with deterministic labels), thieis also(ey + €1, 2¢;v?)-good similarity in hinge loss for
the learning problem, for ang; > 0.

These results establish that treating a kernel as a sityifannction would still enable learning, although with
a somewhat increased sample complexity. Unfortunatetydtiterioration of the margin in the above results, which
yields an increase in the sample complexity guaranteesasgaidable:

Theorem 9 (Tightness, Margin Violations).For any0 < v < \/g and any0 < € < % there exists a learning
problem and a kernel functioR, which is(0, )-kernel-good for the learning problem, but which is ofdy, 4¢,~?)-
good similarity. That is, it is note;, 7’)-good similarity for anyy’ > 4e;+2.

Theorem 10 (Tightness, Hinge Loss)For any0 < v < \/g and any0 < € < % there exists a learning prob-

lem and a kernel functiok’, which is (0, v)-kernel-good in hinge loss for the learning problem, butakhis only
(€1, 32¢1v?)-good similarity in hinge loss.

To prove Theorem 6 we will show, for any weight function, apkoit low-norm linear predictofs (in the implied
Hilbert space), with equivalent behavior (Section 4.2)pfave Theorems 7 and 8, we will consider a kernel function
that is(eo, v)-kernel-good and show that it is also good as a similaritycfiom. We will first treat goodness in hinge-
loss and prove Theorem 8 (Section 4.3), which can be viewedrasre general result. This will be done using the
representation of the optimal SVM solution in terms of thaldoptimal solution. Then, in Section 4.4, we prove
Theorem 7 in terms of the margin violation error rate, by gdine hinge-loss as a bound on the error rate. To prove
Theorems 9 and 10, we present an explicit learning probleirkamel (Section 4.5).

4.1 Transforming a Good Similarity Function to a Good Kernel

Before proving the above Theorems, we briefly return to th@piray of Theorem 3 and explicitly present it as a
mapping between a good similarity function and a good kernel

Corollary 1 (A good similarity function can be transformed to a good kernel).If K is an (e, y)-good similarity
function for some learning probled, then for any0 < 6 < 1, given a sample of size(8/+2) log(1/4) drawn from
P, we can construct, with probability at leakt- § over the draw of5, a valid kernelK® that is (e + 4, y/2)-kernel
good forP.

If K is a (¢,7)-good similarity function in hinge-loss for some learninglgem P, then for anye; > 0 and
0 < & < ve1/4, given a sample aof size161og(1/5)/(e1y)? drawn from P, we can construct, with probability at
leastl —  over the draw of5, a valid kernelKS that is (e + €, v)-kernel good forP.

10



Proof. Let K%(z,2") = (¢ (x), ¢°(2')) whereg? is the transformation of Theorems 3 and 4.

From this statement, it is clear that kernel-based learguyantees apply also to learning with a good similarity
function, essentially with the same parameters.

It is important to understand that the result of Corollanslof a very different nature than the results of Theo-
rems 6— 10. The claim here is not that a good similarity fuorcis a good kernel — it can’t be if it is not positives
semi-definite. But, given a good similarity function we camate a good kernel. This transformatiordistribution-
dependentand can be calculated using a sample

4.2 Proof of Theorem 6

Consider a similarity functiork that is a valid kernel, i.eK (z,2’) = (¢(x), ¢(2’)) for some mapping of x to a
Hilbert spaceH. For any input distribution and any valid weightingx) of the inputs (i.e0 < w(x) < 1), we will
construct a linear predictg?,, € H, with ||5,,]] < 1, such that similarity-based predictions usingre the same as
the linear predictions made with,,

Define the following linear predictags,, € H:

Buw = Euxr[y(z")w(z")p(2")]. (4.1)

The predictors,, has norm at most:
18wl = [[Bar[y(e )w()e( ]| < max [ly(a)w(a)¢()]| < max[¢(a’)]| = max /K(2,2') < 1 (4.2)

where the second inequality follows frojma(z')], |y(2")| < 1.
The predictions made hy,, are:

(B, d(2)) = (Ea[y(2")w(z")o(2")], ¢(x)) = Eur[y(a")w(2){d(2"), ¢(2))] = Ew[y(a")w(a") K (2,2")] (4.3)

That is, using3,, is the same as using similarity-based prediction within particular, if the margin violation rate,
as well as the hinge loss, with respect to any ma#giis the same for predictions made using eitlveor 5,,. This is
enough to establish Theorem 6:Af is (¢, v)-good (perhaps for to the hinge-loss), there exists somd wadighting
w the yields margin violation error rate (resp. hinge losshaste with respect to margin, and sa3,, yields the same
margin violation (resp. hinge loss) with respect to the samaegin, establishind is (e, v)-kernel-good (resp. for the
hinge loss).

4.3 Proof of Theorem 8: Guarantee on the Hinge Loss

Recall that we are considering only learning problems whiggdabely is a deterministic function of. For simplicity
of presentation, we first consider finite discrete distiidns, where:

Pr(zi,yi) = pi (4.4)

fori=1...n,with} "  p, = 1andz; # z; fori # j.

Let K be any kernel function that i&,v)-kernel good in hinge loss.Let be the implied feature mapping
and denoteb; = ¢(x;). Consider the following weighted-SVM quadratic optimipat problem with regularization
parameter:

1 -
minimize o |5 + C;piu —yi (0, 9i)]+ (4.5)
The dual of this problem, with dual variables, is:
. 1
maximize o — = Yy K (x4, )
zi: 2 ZJ: (4.6)
subjectto 0 < «; < Cp;

11



There is no duality gap, and furthermore the primal optimgintan be expressed in terms of the dual optimum
B =3, o yix;.

SinceK is (¢g, v)-kernel-good in hinge-loss, there exists a predidtéy| = 1 with average-hinge loss, relative
to marginy. The primal optimuni* of (4.5), being the optimum solution, then satisfies:

2
+CY pill - yz‘<%50, ¢i>]+

—%JrCE[[ <%Bo,¢>(:v)>]+} 212+C€o (4.7)

111
Ak Ol o0l gH;@)

Since both terms on the left hand side are non-negative, efthem is bounded by the right hand side, and in
particular:

Csz —yilB", i)+ < i + Ceg (4.8)
Dividing by C we get a bound on the average hinge-loss of the predittarelative to a margin of one:
El[1 — y(6*, 6(x))]+] < ﬁ + e (4.9)
We now use the fact that" can be written ag* = >, afy;¢; with 0 < o < Cp;. Using the weights
wi = w(z;) = o7 /(Cp;) <1 (4.10)
we have for every, y:
YEu y[w(@')y' K (z,2")] = y Zpiw(xi)yiK(% ;) (4.11)
=y Zpiof-‘yiK(I i)/ (Cpi)
—yza yi{di, d(2))/C =y(B", ¢(x))/C
Multiplying by C and using (4.9):
Eaoyl[1 = CyEor yfw(a)y' K(z,2")] ]+ ] = Eay[[1 - y(B, 6(2)) |4 ] < Flﬁ + €0 (4.12)

This holds for anyC, and describes the average hinge-loss relative to margih To get an average hinge-loss of
€0 + €1, we setC' = 1/(2¢;4?) and get:

Euy[[1— YEw y[w(z)y' K (2,2)]/267%) ]+ ] < e+ (4.13)
This establishes thdt is (o + €1, 2¢192)-good similarity in hinge-loss.
Non-discrete distributions The same arguments apply also in the general (not necgsd@mctete) case, except that
this time, instead of a fairly standard (weighted) SVM pmh| we must deal with a variational optimization problem,
where the optimization variable is a random variable (a fiamcfrom the sample space to the reals). We will present

the dualization in detail.
We consider the primal objective

minimize & |61° + CEy o1~ y(5, )] (4.14)

12



where the expectation is w.r.t. the distributiBh with ¢ = ¢(x) here and throughout the rest of this section. We will
rewrite this objective using explicit slack, in the form ofamdom variablé&, which will be a variational optimization
variable:

minimize% 1812 + CE[¢]
subject to Pr(1 —y(B,¢) —£<0) =1 (4.15)
Pr(E>0) =1

In the rest of this section all our constraints will impligitoe required to hold with probability one. We will now
introduce the dual variational optimization variaklealso a random variable over the same sample space, and write
the problem as a saddle problem:

i, max, - |6 + CEIE] + Ela(1 — y(5,6) — &)
subjectto € >0 a>0

(4.16)

Note that this choice of Lagrangian is a bit different thamtiore standard Lagrangian leading to (4.6). Convexity and
the existence of a feasible point in the dual interior allmsgo change the order of maximization and minimization
without changing the value of the problem, even in the irdindse [10]. Rearranging terms we obtaining the equivalent
problem:

max, ming,c 5 141> ~ (Elayd). 5) + E[E(C — 0)] + Ela]
subjectto £ >0, a>0

(4.17)

Similarly to the finite case, we see that the minimum of theimization problem is obtained wheh= E[ay¢] and
that it is finite wheny < C' almost surely, yielding the dual:

maximizeE[a] — %E[aya/yK(I, ') (4.18)

subjectto 0 <a < C

where(z,y, «) and (2, y’, ') are two independent draws from the same distribution. Tiregroptimum can be
expressed a8* = E[a*y¢], wherea* is the dual optimum. We can now apply the same arguments ds7ij(@.8) to
get (4.9). Using the weight mapping

w(z) =E[a*|z]/C <1 (4.19)

we have for every, y:

YEar y[w(a)y' K (2,2")] = y(Ewr o [oy'2'], ) /C = y (B, §(2))/ C. (4.20)

From here we can already get (4.12) and settihg: 1/(2¢1v%) we get (4.13), which establishes Theorem 8 for any
learning problem (with deterministic labels).

4.4 Proof of Theorem 7: Guarantee on Margin Violations

We will now turn to guarantees on similarity-goodness wibgect to the margin violation error-rate. We base these on
the results for goodness in hinge loss, using the hinge Bsasxund on the margin violation error-rate. In particular,
a violation of marginy/2 implies a hinge-loss at margin of at Ieast%. Therefore, twice the average hinge-loss at
margin+y is an upper bound on the margin violation error rate at maygih

The kernel-separable case, ieg.= 0, is simpler, and we consider it first. Having no margin viaas implies
zero hinge loss. And so if a kerné&l is (0, v)-kernel-good, it is als@0, v)-kernel-good in hinge loss, and by Theorem
8 itis (e1/2,2(e1/2)7?)-good similarity in hinge loss. Now, for any > 0, by bounding the margiéew2 error-rate
by thee;y? average hinge losgy is (e, %ew?)—good similarity, establishing Theorem 7 for the cage- 0.
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We now return to the non-separable case, and consider alkiritieat is (¢, v)-kernel-good, with some non-
zero error-rate. Since we cannot bound the hinge loss in terms of the marigiiations, we will instead consider a
modified distribution where the margin-violations are rema.

Let 5* be the linear classifier achievirgg margin violation error-rate with respect to margjni.e. such that
Pr(y(s*,z) > v) > 1 — . We will consider a distribution which is conditioned gK5*, z) > ~. We denote this
event aoK(z) (recall thaty is a deterministic function aof). The kernelK is obviously(0, v)-kernel-good, and so
by the arguments above al&q, %ew?)—good similarity, on the conditional distribution. Letbe the weight mapping
achieving

Pr(yEq y [uw(a' )y K (2, ") oK (2')] < 11]oK(x)) < e (4.21)

wherey; = Je1?, and setw(z) = 0 whenok(z) does not hold. We have:
Pr(yEq . [w(e))y K (z,2')] < (1 - o))
< Pr(notoK(x) ) + Pr( Ok (@) )Pr( yEuryfw(e)y K (x.a')] < (1 = co)n1 | OK(x) )
= o+ (1—eo)Pr(y(1—eo)Eur y [w(a")y' K (2, 2")|0K ()] < (1—eo)n|OK(2))
= o+ (1= ) Pr(yEu [w(a')y' K (@,2)| 0K (x)] < 11[OK(z))
<e+(1—e)er <e+e (4.22)
establishing thak is (ey + €1, v1)-good similarity for the original (unconditioned) distution, thus yielding Theo-

rem7.

4.5 Tightness

We now turn to proving of Theorems 9 and 10. This is done byaarisg a specific distributiof? and kernel in which
the guarantees hold tightly.
Consider the standard Euclidean inner-product and aligioin on four labeled points iR?3, given by:

1
= (77, V1 —=292), y1 =1, =g e

Y= 1_272)7 y2:17 p2 =€

Y
» Vs 1- 272)7 Ys = _17 p3 =

Y= V1=292), ys=—1, ps=

for some (small) < v < \/g and (small) probability) < ¢ < % The four points are all on the unit sphere (i.e.

[lz;]| = 1 and soK (z;,z;) = (x;,2z;) < 1), and are clearly separated py= (1,0,0) with a margin ofy. The
standard inner-product kernel is therefdbe~y)-kernel-good on this distribution.

x1 = (
xo = (
x3 = (=7
x4 = (—

= D

Proof of Theorem 9: Tightness for Margin-Violations We will show that when this kernel (the standard inner
product kernel irR?) is used as a similarity function, the best margin that caotigained on all four points, i.e. on at
leastl — e probability mass of examples, $§872.

Consider the classification margin on paintwith weightsw (denotew; = w(x;)):

Elw(z)yK (2, v)]
1

= (5 —wi(y* =" + (1 = 29%)) + ewa(29” + (1 = 29%))

—ews(~27 + (1= 27%) = (5 = ua (72 +72 + (1 = 247)

= <(% —€)(w1 —wq) + e(wa — wg)) (1 —29%) + 2¢e(wp + w3)y? (4.23)
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If the first term is positive, we can consider the symmetricaation

—Elw(z)yK (z3,2)] = — ((% —€) (w1 —wy) + €(ws — w3)) (1—29%) + 2¢(wg + w3 )y?

in which the first term is negated. One of the above marging thesefore be at most
2¢(wy + ws)y? < dey? (4.24)

This establishes Theorem 9.

4.6 Proof of Theorem 10: Tightness for the Hinge Loss
In the above example, suppose we would like to get an aveiiage-oss relative to margiy, of at moste; :
Evoyl[1 = yEuy fw(@)y K (@,a))/m ] < @ (4.25)
Following the arguments above, equation (4.24) can be wskeodund the hinge-loss on at least one of the paintsr
x3, which, multiplied by the probability of the point, is a bound on the average hinge loss:
Euyl[1 = yEw y[w(z')y K (a,2")]/m ]+ ] > e(1 — 4ey?/m) (4.26)
and so to get an an average hinge-loss of at moat must have:

4evy?

1—e€/e
For any target hinge-loss, consider a distribution witlh = 2¢1, in which case we get that the maximum margin

attaining average hinge-lossis v, = 16¢,72, even though we can get a hinge loss of zero at maygising a kernel.
This establishes Theorem 10.

M < (4.27)

Note: One might object that the example used in Theorems 9 and 1bitsatificial, sinceK has marginO(+?) in
the similarity sense just because- 4y < K (z;,z;) < 1. Normalizing K to [—1, 1] we would obtain a similarity
function that has margi®(1). However, this “problem” can be simply fixed by adding the syetric points on the
lower semi-sphere:

(V7 —V1=292), ys = 1, p5=l—e
=07 -V1I-29%), we=1 ps=c¢
(=77, —V1=29%), wyr=-1, pr=ce
(== —V1-29%), ys=-1, ps= i —¢

and by changing, = % —eandpy = % — €. The classification margins arp andzs are now (compare with (4.23)):

x5
T6
x7
s

Elw(z)yK (z2, )] = ((i —€)(w1 —wy — ws + wg) + €(we — w3 — we + w7)> (1—2+?)

+ 2¢(wy + w3 + we + wr)y?

—Elw(z)yK (x3,x)] = — <(% —€)(wy —wy — w5 + ws) + e(wy — w3 — we + w7)) (1 —2+%)

+ 2¢(wy + w3 + we + wr)y?

One of the above classification margins must therefore b@at2a(w, +ws +ws +w7)y? < 8ey2. Thus, even though
the similarity is “normalized” and0, )-kernel-good, it is only(e, 8¢+?)-good as a similarity function. Proceeding as
in the proof of Theorem 10 establishes the modified exam@éssonly(e, 64ey2)-good in hinge losS.

& We thank the anonymous referee for suggesting this strenith of the lower bound.
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5 Probabilistic Labels

So far, we have considered only learning problems whereathel} is a deterministic function of. Here, we discuss
the necessary modifications to extend our theory also toyle@ning problems, where the same paintight be
associated with both positive and negative labels withtpegprobabilities.

Although the learning guarantees of Section 3 are valid fdsooisy learning problems, a kernel that is kernel-
good for a noisy learning problem might not be good as a siitylfunction for this learning problem. To amend this,
the definition of a good similarity function must be correttallowing the weights to depend not only on the paint
but also on the labe]:

Definition 11 (Main, Margin Violations, Corrected for Noisy Problems).A similarity functionk is an (e, v)-good
similarity function for a learning problemP if there existsa bounded weighting functiom over X x {—1,+1}
(w(2’,y’) € [0,1]forall 2’ € X,y" € {—1,+1}) such that at least & — e probability mass of examplesy satisfy:

Eo yplyyw(a’, y' ) K (z,2")] > 7. (5.1)

It is easy to verify that Theorem 3 can be extended also tathigcted definition. The same mappifigcan be used,
with 5; = g,w(Z;,7;), whereg; is the training label of example Definition 9 and Theorem 4 can be extended in a
similar way.

With these modified definitions, Theorems 7 and 8 extend alsoisy learning problems. In the proof of Theorem
8, two of the points;, z; might be identical, but have different labels= 1,y; = —1 associated with them. This
might lead to two different weights;, w; for the same point. But sinee is now allowed to depend also on the label,
this does not pose a problem. In the non-discrete case,dhissponds to defining the weight as:

w(z,y) = Ela™|z,y]/ C. (5.2)

6 Conclusions

The main contribution of this work is to develop a theory airi@ing with similarity functions—namely, of when a
similarity function is good for a given learning problem—atlis more general and in terms of more tangible quantities
than the standard theory of kernel functions. We provide finiien that we show is both sufficient for learning
and satisfied by the usual large-margin notion of a good kekhereover, the similarity properties we consider do
not require reference to implicit high-dimensional spagesdo they require that the similarity function be positive
semi-definite. In this way, we provide the first rigorous exgtion showing why a kernel function that is good in the
large-margin sense can also formally be viewed as a gootbsityifunction, thereby giving formal justification to the
standard intuition about kernels.

It would be interesting to analyze alternative sufficienhditions for learning via pairwise functions. Although
in this work we established guarantees for learning with adgsimilarity function by transforming the problem to
learning a linear separator, we would like to emphasize thiattransformation was used as a convenient tool. For
other notions of “goodness” of pairwise functions, it migvell be more convenient to establish learnability without
reference to linear separation.

From a practical perspective, the results of Section 4 ssigdat if X is in fact a valid kernel, we are probably
better off using it as a kernel, e.g. in an SVM or Perceptrgoaihm, rather than going through the transformation of
Section 3.2. However, faced with a non-positive-semidefisimilarity function (coming from domain experts), the
transformation of Theorem 3 might well be useful. In facadiand Noble have used an algorithm similar to the one
we propose in the context of protein classification [16].tRermore, a direct implication of Theorem 6 is that we can
indeed think (in the design process) of the usefulness ofraekéunction in terms of more intuitive, direct properties
of the data in the original representation, without neeceferrto implicit spaces.

Finally, our algorithms (much like those of [5]) suggest &umal way to use kernels or other similarity functions
in learning problems for which one also wishes to use thevad#atures of the examples. For instance, consider
the problem of classifying a stream of documents arriving aha time. Rather than running a kernelized learning
algorithm, one can simply take the native features (say t@svin the document) and augment them with additional
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features representing the similarity of the current exanwgith each of a pre-selected set of initial documents. One
can then feed the augmented example into a standard unizedhehline learning algorithm. It would be interesting
to explore this idea further.

Subsequent Work: Inspired by our work, Wang et. al [28] have recently analydédterent, alternative sufficient
conditions for learning via pairwise functions. In pariay Wang et. al [28] analyze unbounded dissimilarity fuocs
which are invariant to order preserving transformationiseyl provide conditions that they prove are sufficient for
learning, though they may not include all good kernel fuorsi.

On a different line of inquiry, Balcan et. al [6] use our apgeh for analyzing similarity functions in the context
of clustering(i.e. learning from purelynlabeleddata). Specifically, Balcan et. al [6] asks what (strongeopprties
would be sufficient to allow one to produce an accurate hyggthwithout any label information at all. Balcan et.
al [6] show that if one relaxes the objective (for exampléwas the algorithm to produce a hierarchical clustering
such that some pruning is close to the correct answer), therwan define a number of interesting graph-theoretic and
game-theoretic properties of similarity functions that aufficient to cluster well.
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A Weakly Good Similarity Functions

We show here that for any > 0, Definition 5 is enough to imply weak learning. In particyl@ist, determine if the
distribution is noticeably skewed towards positive or riegeexamples: if so, weak-learning is immediate (outplit al
positive or all-negative respectively). Otherwise, drasuéficiently large se5™ of positive examples and sét of
negative examples. Then, for eachconsidery(z) = 1 [E,/cs+ [K(z,2")] — Epcs- [K(z,2)]]. Finally, to classify
x, use the following probabilistic prediction rule: clagsif as positive with probabililywzﬂ and as negative with

probability%(””). (Notice thaty(z) € [—1, 1] and so our algorithm is well defined.) We can then prove tHevohg
result:
Theorem 2If K is a weaklyy-good similarity function, then with probability at lealst- , the above algorithm using

setsS*, S~ of size 5 In (%5) yields a classifier with error at mogt— 2.

Proof. First, we assume the algorithm initially draws a sufficigitdlrge sample such that if the distribution is skewed
with probability mass greater thagH- a on positives or negatives fer = J5, then with probability at least — §,/2
the algorithm notices the bias and weak-learns immedidgely if the distribution is less skewed thént % with
probabilityl — 6/2 it does not incorrectly halt in this step). In the followirtgen, we may assume the distributin
is less thar{% + «)-skewed, and let us defif® to be P reweighted to have probability mass exadt§2 on positive
and negative examples. Thus, Definition 5 is satisfiedfowith margin at least — 4a.

For eachr definey(z) astE. [K (z,2')|y(2) = 1] — $E. [K(z,2')|y(z’) = —1] and notice that Definition 5
implies thatE,. . p/ [y(x)y(x)] > v/2 — 2a. Consider now the probabilistic prediction functiguefined ag(z) = 1

with probability”+(m) andg(z) = —1 with probability1’+(”). We clearly have that for a fixed,

~y(@)(y(z) — ()
Izr(g(év) #y(r)) = 5 ,

which then implies thaPr,. p 4(g(z) # y(z)) < & — 17 — . Now notice that in our algorithm we do not usér)

but an estimate of if(z), and so the last step of the proof is to argue that this is goodigh. To see this, notice
first thatd is large enough so that for any fixedwe havePrg+ s- (|v(z) — 3(z)| > 3 — 2a) < g—g This implies

Proopr (Prg+ s- ([v(z) —3(x)] > T —2a)) < L, so

e (5 (o702 3 -20) = ) <

This further implies that with probability at least— /2 we haveE,.p: [y(z)y(z)] > (1 - %)+ — 2% > Z—Z.

Finally using a reasoning similar to the one above (conoerttie probabilistic prediction function based ofx)),

we obtain that with probability at least- ¢ /2 the error of the probabilistic classifier basedy(n) is at most% — %

, L . . 1 Ty _ 1 3y
on P’, which implies the error oveP is at most; — 55 + @ = 5 — 755- O
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