
Approximation Algorithms for Orienteering and
Discounted-Reward TSP∗

Avrim Blum† Shuchi Chawla‡ David R. Karger§ Terran Lane¶ Adam Meyerson‖

Maria Minkoff∗∗

Abstract

In this paper, we give the first constant-factor approximation algorithm for the rooted ORIENTEER-
ING problem, as well as a new problem that we call the DISCOUNTED-REWARD-TSP, motivated by
robot navigation. In both problems, we are given a graph withlengths on edges and rewards on nodes,
and a start nodes. In the ORIENTEERING problem, the goal is to find a path starting ats that maxi-
mizes the reward collected, subject to a hard limit on the total length of the path. In the DISCOUNTED-
REWARD-TSP, instead of a length limit we are given a discount factorγ, and the goal is to maximize
total discounted reward collected, where reward for a node reached at timet is discounted byγt. This
problem is motivated by an approximation to a planning problem in the Markov decision process (MDP)
framework under the commonly employed infinite horizon discounted reward optimality criterion. The
approximation arises from a need to deal with exponentiallylarge state spaces that emerge when trying
to model one-time events and non-repeatable rewards (such as for package deliveries). We also con-
sider tree and multiple-path variants of these problems andprovide approximations for those as well.
Although the unrooted ORIENTEERING problem, where there is no fixed start nodes, has been known
to be approximable using algorithms for related problems such ask-TSP (in which the amount of reward
to be collected is fixed and the total length is approximatelyminimized), ours is the first to approxi-
mate the rooted question, solving an open problem [3, 1]. We complement our approximation result for
ORIENTEERINGby showing that the problem is APX-hard.

∗This work first appeared at the 44th Symposium on Foundationsof Computer Science (FOCS 2003), Cambridge, MA.
†Computer Science Department, Carnegie Mellon University.Research supported by NSF Grants CCR-0105488, IIS-0121678,

and CCR-0122581. email:avrim@cs.cmu.edu
‡Computer Science Department, Stanford University. This work was done while the author was a graduate student at Carnegie

Mellon University. email:shuchi@cs.cmu.edu
§MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). email:karger@theory.csail.mit.edu
¶Department of Computer Science, University of New Mexico. email: terran@cs.unm.edu
‖Computer Science Department, University of California, Los Angeles. This work was done while the author was visiting

Carnegie Mellon University. email:awm@cs.ucla.edu
∗∗Max-Planck-Institut fr Informatik. This work was done while the author was a graduate student at MIT. email:

mariam@theory.csail.mit.edu

1

1 Introduction

Consider a robot with a map of its environment, that needs to visit a number of sites to drop off packages,
collect samples, search for a lost item, etc. One classic model of such a scenario is the TRAVELING SALES-
MAN PROBLEM, in which we ask for the tour that visits all the sites and whose length is as short as possible.
However, what if this robot cannot visit everything? For example, it might have a limited supply of bat-
tery power. In that case, a natural question to ask is for the tour that visits the maximum total reward of
sites (where reward might correspond to the value of a package being delivered or the probability that some
lost item we are searching for is located there), subject to aconstraint that the total length is at most some
given boundB. This is called the (rooted) ORIENTEERING problem (“rooted”, because we are fixing the
starting location of the robot). Interestingly, while there have been a number of algorithms that given a de-
sired reward can approximately minimize the distance traveled (which yield approximations to the unrooted
ORIENTEERING problem), approximating the reward for the case of afixedstarting location andfixedhard
length limit has been an open problem.

Alternatively, suppose that battery power is not the limiting consideration, but we simply want to give
the robot a penalty for taking too long to visit high-value sites. For example, if we are searching for a
lost item, and at each time step there is some possibility theitem will be taken (or, if we are searching
for a trapped individual in a dangerous environment, and at each time step there is some probability the
individual might die), then we would want to discount the reward for a site reached at timet by γt, where
γ is a known discount factor. We call this the DISCOUNTED-REWARD-TSP. This problem is motivated by
an approximation to a planning problem in theMarkov decision process(MDP) framework [25, 24] under
the commonly employedinfinite horizon discounted rewardoptimality criterion. The approximation arises
from a need to deal with exponentially large state spaces that emerge when trying to model one-time events
and non-repeatable rewards (such as for package deliveries).

In this paper, we provide the first constant-factor approximations to both the (rooted) ORIENTEERING

and the DISCOUNTED-REWARD-TSP problems, and well as a number of variants that we discuss below.
We also prove that ORIENTEERING is APX-hard, or NP-hard to approximate within an arbitrarily small
constant factor.

1.1 Motivation and background

Robot navigation and path planning problems can be modeled in many ways. In the Theoretical Computer
Science and Optimization communities, these are typicallymodeled as kinds of Prize-Collecting Traveling
Salesman Problems [18, 4, 16, 3]. In the Artificial Intelligence community, problems of this sort are often
modeled as Markov decision processes [6, 7, 20, 24, 25]. Below we give some background and motivation
for our work from each perspective.

1.1.1 Markov decision processes and time-dependent rewards

A Markov decision process (MDP) consists of a state spaceS, a set of actionsA, a probabilistic transition
functionT , and a reward functionR. For this work, it is sufficient to consider discrete, finiteS andA. At
any given time step, an agent (such as a robot) acting in an MDPwill be located at some states ∈ S, where it
can choose an actiona ∈ A. The agent is subsequently relocated to a new states′ drawn from the transition
probability distributionT (s′|s, a) ≡ Pr[qt+1 = s′|qt = s, a], whereqt is a random variable indicating
the agent’s state at time stept. The transition function captures both the agent’s stochastic dynamics (e.g.,
unreliable actuators) and structure and characteristics of the environment such as walls, pits, friction of the

2

surface, etc. Associated with each state is a real-valued reward, given by the functionR(s), which the agent
receives upon entering states.1 For example, a package-delivery robot might get a reward every time it
correctly delivers a package.

The goal of planning in an MDP framework is to formulate a policy, ψ : S → A, that guides the agent
to optimal long-term aggregate reward. In order to encourage the agent to perform the tasks that we want,
and to do so in a timely manner, a commonly employed aggregatereward objective function is theinfinite
horizon discounted reward[20, 24, 25]. Specifically, for a givendiscount factorγ ∈ (0, 1), the value of
reward collected at timet is discounted by a factorγt. Thus the total discounted reward, which we aim to
maximize, isRtot =

∑∞
t=0R(st)γ

t. Because the agent’s actions are stochastic, in practice wemust settle
for optimizing the expected value of this quantity,V ψ(s) = Eψ[Rtot|q0 = s], where the expectation is
taken with respect to all possible trajectories through thestate space rooted at states, weighted by their
probability of occurring under policyψ. Note that because a fixed(s, a) pair yields a fixed probability
distribution over next states, the combination of an MDP with a fixed policy produces a Markov chain over
S. The expectation, therefore, is simply the expected discounted reward accumulated by a random walk on
the corresponding Markov chain. This optimality criterionguides the agent to accumulate as much reward
as possible as early as possible, and produces what in practice turns out to be good behavior.

One can also motivate exponential discounting by imaginingthat, at each time step, there is some fixed
probability the game will end (the robot loses power, a catastrophic failure occurs, the objectives change,
etc.). The quantityV ψ(s) then gives the expected (undiscounted) reward collected bythe robot before the
game ends. Exponential discounting also has the nice mathematical property that it istime-independent,
meaning that an optimal strategy isstationaryand can be completely described by the mapping from states
to actions given byψ.2 The overall goal of planning, then, is to locateψ∗, the policy that maximizesV ψ(s),
the expected infinte horizon discounted reward. A fundamental theorem of MDP planning states that for this
optimality criterion, there is guaranteed to be a stationary ψ∗ that dominates all other policies at all states:
V ψ∗

(s) ≥ V ψ(s) for all s ∈ S and allψ [24].
There are well-known algorithms for solving MDPs in time polynomial in the cardinality of the state

space [6, 24, 25]. However, one drawback of the MDP model is that the agent receivesR(s) every time that
states is visited. Thus, in order to model a package-delivery or search-and-rescue robot, one would need a
state representing not only the current location of the robot, but also a record of all packages (victims) it has
already delivered (rescued). For example, one could writeS = L×2d, whereL is a set of discrete locations
that the robot could occupy, and the list ofd bits tracks whether the agent has achieved each ofd sub-goals
(packages or rescues). Then the reward function can beR(〈l, b1, . . . , bd〉) = 1 iff l is a location containing
sub-goali andbi = 0, orR(s) = 0 otherwise. When the robot reaches the location containing sub-goali, bi
is set to 1 and remains so thereafter. This formulation yields an exponential increase in the size of the state
space over the raw cardinality ofL and prevents a direct, exact solution of the MDP. Instead it would be
preferable to directly model the case of rewards that are given only thefirst time a state is visited [21, 22].

As a first step towards tackling this general problem, we abandon the stochastic element and restrict
the model to deterministic, reversible actions. This modelis a reasonable approximation to many robot-
navigation style MDP domains, in which we can formulate sub-policies for navigating between pairs of
locations in the environment. Often, such sub-policies, ormacros, can be “nearly deterministic” (failing
with probability ≤ ǫ) because they average out the stochasticity of atomic actions over many steps [22].

1It is also possible to model rewards associated with actionsor transitions by writing more general reward functions such as
R(s, a) or R(s, a, s′), but such extensions do not fundamentally change the natureof the MDP. Any such functions can be rewritten
into a model of the form we give here with an appropriate modification to the state and action sets.

2Under other objective functions, an optimal policy could require dependence on the number of steps remaining in the gameor
other functions of the history of states encountered to date.

3

We can to a good approximation, therefore, treat such a domain as a deterministic planning problem over
the set of sub-goal locations (nodes) and location-to-location macros (arcs). This leads us to study the
DISCOUNTED-REWARD TRAVELING SALESMAN PROBLEM, in which we assume we have an undirected
weighted graph (edge weights represent the time to traversea given edge), with a reward valueπv on each
vertexv, and our goal is to find a path visiting each vertexv at timetv so as to maximize

∑

πvγ
tv .

1.1.2 PC-TSP and Orienteering problems

A different way to model the goal of collecting as much rewardas possible as early as possible is to impose
a hard deadline on the time the robot may spend delivering itspackages. The robot gets a reward equal to
the value of the package on a delivery, but only if the delivery is made before a deadlineD. If the deadline is
exceeded, he gets no reward. This problem has been studied previously as the ORIENTEERING[18] or Bank
Robber’s [3] Problem.

ORIENTEERING belongs to the family of the Prize-Collecting Traveling Salesman problems (PC-TSP).
Given a set of cities with non-negative “prize” values associated with them and a table of pairwise distances,
a salesman needs to pick a subset of the cities to visit so as tominimize the total distance traveled while
maximizing the total amount of prize collected. Note that there is a tradeoff between the cost of a tour
and how much prize it spans. The original version of the PC-TSP introduced by Balas [4] deals with
these two conflicting objectives by combining them: one seeks a tour that minimizes thesumof the total
distance traveled and the penalties (prizes) on cities skipped, while collecting at least a given quota amount
of prize. Goemans and Williamson subsequently focused on a special case of this problem in which the
quota requirement is dropped, and provided a primal-dual 2-approximation algorithm for it [17].

An alternative approach to the bicriterion optimization isto optimize just one of the objectives while
enforcing a fixed bound on the other. For example, in a quota-driven version of the PC-TSP, calledk-TSP,
every node has a prize of one unit and the goal is to minimize the total length of the tour, while visiting at
leastk nodes. Similarly, ORIENTEERING can be viewed as a budget-driven version of the PC-TSP, since
we are maximizing total amount of prize collected, while keeping the distance traveled below a certain
threshold.3

There are several constant-factor approximations known for the k-TSP problem [2, 14, 8, 3], the best
being a recent2-approximation due to Garg [15]. Most of these results are based on a classic primal-dual
algorithm for PC-TSP due to Goemans and Williamson [17] (mentioned above).

The algorithms fork-TSP extend easily to theunrootedversion of the ORIENTEERINGproblem in which
we do not fix the starting location [3, 15]. In particular, given a tour (cycle) of valueΠ whose length iscD
for somec > 1, we can just break the cycle intoc pieces of length at mostD, and then take the best one,
whose total value will be at leastΠ/c. Noting that an optimal cycle of length2D must span at least as much
reward as an optimal path of lengthD (since one could just traverse the path forward and then back), we
get a2c-approximation guarantee on the amount of reward containedin a segment we pick. However, this
does not work for the rooted problem because the “best piece”in the above reduction might be far from the
start. In contrast to this simple result, there is no previously knownO(1)-approximation algorithm for the
rooted ORIENTEERING Problem in general graphs. Arkin et al. [1] give a constant-factor approximation to
the rooted ORIENTEERING problem for the special case of points in the plane.

3Strictly speaking, a budget-driven version of the PC-TSP would require a tour, e.g. a path that ends at the start node, whereas
the ORIENTEERINGproblem is content with a path that ends at an arbitrary node.We consider both versions of the problem.

4

1.2 Summary of results

In this paper, we give the first constant factor approximation algorithms for both the above problems. A key
contribution of our work is the introduction of themin-excessobjective. The excess of a path is defined to be
the difference between the length of a prize-collectings-t path and the length of the shortest path between
the two end points. Informally, any path must spend a minimumamount of time equal to the shortest distance
betweens andt, just to get to the destinationt; the excess of the path is the extra time spent by it to gather
reward along the way. We consider the following MIN-EXCESS-PATH problem: given a weighted graph
with rewards, end-pointss andt, and a reward quotak, find a minimum-excess path froms to t collecting
reward at leastk.

Approximating the excess of a path turns out to be a crucial component in our algorithms for ORIEN-
TEERING and DISCOUNTED-REWARD-TSP. Note that an approximation for the excess is a strictlybetter
guarantee than what is implied by an approximation algorithm for thek-TSP; the latter would return a path
that has length at most a constant multiple times thetotal optimal length froms to t.

Our algorithm for approximating MIN-EXCESS-PATH uses as subroutine an approximation to a variant
of thek-TSP, the min-costs-t path problem (k-PATH problem in [9]). In particular, anαCP -approximation
to thek-PATH, when used as a subroutine in our algorithm, implies anαEP = 3

2αCP − 1
2 approximation

for the MIN-EXCESS-PATH problem. The best currently known approximation for thek-PATH problem is a
(2 + δ)-approximation (for any fixedδ > 0), that follows from a(2 + δ)-approximation to thek-TSP due
to Chaudhuri et al. [9]4. Then via our reduction, this implies a(2.5 + δ)-approximation to excess, for any
fixed δ > 0. We also present an improved analysis of our algorithm basedon the Chaudhuri et al.k-TSP
algorithm obtaining a2 + δ approximation for the MIN-EXCESS-PATH problem.

An αEP -approximation to MIN-EXCESS-PATH further implies a1+ ⌈αEP ⌉ approximation for ORIEN-
TEERING, and a roughlye(αEP + 1) approximation for DISCOUNTED-REWARD-TSP. Our final approxi-
mation factors for the latter two problems are4 and6.75 + δ respectively.

Finally, using the APX-hardness of TSP on bounded metrics [13], we prove that MIN-EXCESS-PATH

and ORIENTEERING are APX-hard.

1.3 Subsequent work

Following the initial publication of our work, Bansal et al.[5] obtained a 3-approximation for a stronger
version of ORIENTEERING called “point-to-point ORIENTEERING”, in which the starting locations as well
as the terminal locationt are fixed. They also consider the Vehicle Routing Problem with Time-Windows, a
generalization of ORIENTEERING in which each reward has a time-window (“release time” and “deadline”)
associated with it, and reward is earned only if the locationis visited within the corresponding time-window.
Bansal et al. obtain anO(log2 n) approximation for this problem, as well as anO(log n)-approximation
when all the release times are zero.

Organization. The rest of this paper is organized as follows. We begin with some definitions in Section 2.
Then we give an algorithm for MIN-EXCESS-PATH in Section 3, followed by algorithms for DISCOUNTED-
REWARD-TSPand ORIENTEERING in sections 4 and 5 respectively. In Section 6 we extend some of the
algorithms to tree and multiple-path versions of the problems. We present some hardness of approximation
results in Section 7 and conclude in Section 8.

4Garg’s2-approximation algorithm for thek-TSP, although better that Chaudhuri et al.’s(2 + δ)-approximation, only implies a
5-approximation to thek-PATH problem.

5

2 Notation and definitions

Our work encompasses a variety of problems. In this section we introduce the notation to be used throughout
the paper, provide formal problem statements and describe auniform naming scheme for them.

LetG = (V,E) be a weighted undirected graph, with a distance function on edges,d : E → ℜ+, and a
prizeor rewardfunction on nodes,π : V → ℜ+. Letπv = π(v) be the reward on nodev. Let s ∈ V denote
a special node called thestart or root.

For a pathP visiting u beforev, let dP (u, v) denote the length alongP from u to v. Let d(u, v)
denote the length of theshortestpath from nodeu to nodev. For ease of notation, letdv = d(s, v) and
dP (v) = dP (s, v). For a set of nodesV ′ ⊆ V , let Π(V ′) =

∑

v∈V ′ πv. For a set of edgesE′ ⊆ E, let
d(E′) =

∑

e∈E′ d(e).
Our problems aim to construct a certain subgraph—a path, tree, or cycle, possibly with additional con-

straints. Most of the problems attempt a trade-off between two objective functions: thecost (distance) of
the path (or tree, or cycle), and thetotal prizespanned by it. From the point of view of exact algorithms,
we need simply to specify the cost we are willing to tolerate and the prize we wish to span. Most variants
of this problem, however, areNP-hard, so we focus on approximation algorithms. We must thenspecify
our willingness to approximate the two distinct objectives. We refer to amin-costproblem when our goal is
to approximatelyminimize the cost of our objective subject to a fixed lower bound on prize (thus, prize is a
feasibility constraint while our approximated objective is cost). Conversely, we refer to amax-prizeproblem
when our goal is toapproximatelymaximize the prize collected subject to a fixed upper bound oncost (thus,
cost is a feasibility constraint while our approximated objective is prize). For example, the min-cost tree
problem is the traditionalk-MST: it requires spanningk prize and aims to minimize the cost of doing so.
Both the rooted and unrooted min-cost tree problems have constant-factor approximations[19, 2, 14, 8, 3].
The max-prize path problem, which aims to find a path of lengthat mostD from the start nodes that visits
a maximum amount of prize, is the ORIENTEERING problem.

The main subroutine in our algorithms requires also introducing a variation on approximate cost. Define
theexcessof a pathP from s to t to bedP (s, t) − d(s, t), that is, the difference between that path’s length
and the distance betweens and t in the graph. Obviously, the minimum-excess path of total prize Π is
also the minimum-costpath of total prizeΠ; however, a path of a constant factor times minimum cost may
have more than a constant-factor times the minimum excess. We therefore consider separately theminimum
excess pathproblem. Note that an(s, t) path approximating the optimum excessǫ by a factorα will have
lengthd(s, t)+αǫ ≤ α(d(s, t)+ǫ) and therefore approximates the minimum cost path by a factorα as well.
Achieving a good approximation to this MIN-EXCESS-PATH problem will turn out to be a key ingredient in
our approximation algorithms.

Finally, as discussed earlier, we consider a different means of combining length and cost motivated by
applications of Markov decision processes. We introduce adiscount factorγ < 1. Given a pathP rooted
at s, let thediscounted rewardcollected at nodev by pathP be defined asρPv = πvγ

dP (s,v). That is, the
prize gets discounted exponentially by the amount of time ittakes for the path to reach nodev. Themax-
discounted-rewardproblem is to find a pathP rooted ats, that maximizesρP =

∑

v∈P ρ
P
v . We call this the

DISCOUNTED-REWARD-TSP. Note that the length of the path is not specifically bounded in this problem,
though of course shorter paths produce less discounting.

2.1 Reductions and approximation factors

We present a constant-factor approximation algorithm for the max-prize path (rooted ORIENTEERING) prob-
lem, solving an open problem of [3, 1], as well as the DISCOUNTED-REWARD-TSP. Central to our results

6

Problem Best approx. Source/Reduction Hardness of
approximation

min-costs-t path (k-PATH) αCP = 2 + δ [9] 220/219
min-excess path αEP = 2.5 + δ 3

2(αCP) − 1
2 220/219

(M IN-EXCESS-PATH) αEP = 2 + δ algorithm based on [9]
max discounted-prize path αDP = 6.75 + δ (1 + αEP)(1 + 1/αEP)αEP ?

(DISCOUNTED-REWARD-TSP)
max-prize path (ORIENTEERING) αPP = 4 1 + ⌈αEP ⌉ 1481/1480
max-prize tree αPT = 8 2αPP ?
max-prize cycle αPC = 8 2αPP 1481/1480
max-prize multiple-path αkPP = 5 αPP + 1 1481/1480

Figure 1: Approximation factors and reductions for our problems.

is a constant-factor approximation for the MIN-EXCESS-PATH problem defined above, which uses an al-
gorithm for the min-costs-t path problem as a subroutine. We also give constant-factor approximations to
several related problems, including the max-prize tree problem—the “dual” to thek-MST (min-cost tree)
problem—and max-prize cycle. Specific constants are given in Figure 1. For the MIN-EXCESS-PATH prob-
lem, we derive a tighter analysis and an improved approximation of 2 + δ in Section 3.2, based on the
min-costs-t path algorithm of [9]. This improvement gives a better approximation factor of6.75+ δ for the
DISCOUNTED-REWARD-TSP problem.

Our approximation algorithms reflect a series of reductionsfrom one approximation problem to another.
Improvements in the approximations for various problems will propagate through. We state approximation
factors in the formαXY whereXY denotes the problem being approximated; the first letter denotes the
objective (cost, prize, excess, or discounted prize denoted byC, P , E, andD respectively), and the second
the structure (path, cycle, or tree denoted byP , C, orT respectively).

2.2 Preliminaries

To support dynamic programming in the max-prize variants, we assume that all prizes are integers in the
range{1, . . . , n2}—this allows us to “guess” the reward collected by the optimal solution by trying out all
integer values less thann3. We can make this assumption by scaling the values down such that the maximum
value is exactlyn2 (this guarantees that the optimal solution gets at leastn2 reward). We then round each
value down to its nearest integer, losing an additive amountof at mostn, which is a negligible multiplicative
factor. This negligible factor does mean that an approximation algorithm for a max-prize problem with
guaranteec on polynomially bounded inputs has (weaker) guarantee “arbitrarily close toc” on arbitrary
inputs. For the MIN-EXCESS-PATH problem, we do not make this bounded-value assumption. Thisimplies
that the running time of our algorithm is linear in the total value in the graph (the minimum value at any
location being 1). Note however that in our algorithms for the max-prize problems, we may use a bicriteria
version of MIN-EXCESS-PATH in which we approximate the value obtained to within a(1+O(1/n)) factor
and excess to within anαEP factor. We may then use the bounded value assumption, and ourrunning time
is again bounded by a polynomial inn.

7

3 Min-Excess Path

Let P ∗ be the shortest path froms to t with Π(P ∗) ≥ k. Let ǫ(P ∗) = d(P ∗) − d(s, t). Our algorithm
returns a pathP with Π(P) ≥ k and lengthd(P) = d(s, t) + αEP ǫ(P

∗), whereαEP = 3
2αCP − 1

2 . Thus
we obtain a(2.5 + δ)-approximation to MIN-EXCESS-PATH using an algorithm of Chaudhuri et al. [9] for
min-costs-t path (MCP) withαCP = 2 + δ.

We begin with a brief description of the min-cost path algorithm and approximation. In their paper
Chaudhuri et al. provide a subroutine for constructing a tree containing nodess andt that spans at leastk
vertices5 and has cost at most(1 + 1

2δ) times the cost of the shortests-t path withk vertices, for any fixed
constantδ. To construct ans-t path from the tree obtained by the algorithm of Chaudhuri et al., we can
double all the edges, except those along the tree path froms to t. This gives us a partial “Euler tour” of the
tree that starts ats and ends att. Clearly, the cost of such a path is at most(2 + δ) times the cost of the
shortests-t path spanning prizek, for any fixed constantδ.

Now we return to the harder MIN-EXCESS-PATH problem. The idea for our algorithm for MIN-
EXCESS-PATH is as follows. Suppose that the optimum solution path encounters all its vertices in increasing
order of distance froms. We call such a pathmonotonic. We can find this optimum monotonic path via a
simple dynamic program: for each possible prize valuep and for each vertexi in increasing order of distance
from s, we compute the minimum excess path that starts at vertexs, ends ati, and collects prize at leastp.

We solve the general case by breaking the optimum path intosegmentsthat are either monotonic (so can
be found optimally as just described) or “wiggly” (generating a large amount of excess). We show that the
total length of the wiggly portions is comparable to the excess of the optimum path; our solution uses the
optimum monotonic paths and approximates the length of the wiggly portions by a constant factor, yielding
an overall increase proportional to the excess.

Consider the optimal pathP ∗ from s to t. We divide it into segments in the following manner. For any
reald, definef(d) as the number of edges onP ∗ with one endpoint at distance less thand from s and the
other endpoint at distance at leastd from s. Note thatf(d) ≥ 1 for all 0 ≤ t ≤ dt (it may also be nonzero for
somed ≥ dt). Note also thatf is piecewise constant, changing only at distances equal to vertex distances.
We break the real line into intervals according tof : the type one intervalsare the maximal intervals on
whichf(d) = 1; the type 2 intervals are the maximal intervals on whichf(d) ≥ 2. These intervals partition
the real line (out to the maximum distance reached by the optimum solution) and alternate between types
1 and 2. Let the interval boundaries be labeled0 = b1 < b2 · · · bm, wherebm is the maximum distance of
any vertex on the path, so that theith interval is(bi, bi+1). Note that eachbi is the distance label for some
vertex. LetVi be the set of vertices whose distance froms falls in theith interval. Note that the optimum
path traverses each setVi exactly once—once it leaves someVi it does not return. One of any two adjacent
intervals is of type 1; if the path left this interval and returned to it thenf(d) would exceed 1 within the
interval. Thus, the vertices ofP ∗ in setVi form a contiguoussegmentof the optimum path that we label as
Si = P ∗ ∩ Vi.

A segment partition is shown in Figure 2.
Note that for eachi, there may be (at most) 1 edge crossing fromVi to Vi+1. To simplify the next two

lemmas, let us split that edge into two with a vertex at distance bi from s, so that every edge is completely
contained in one of the segments (this can be done since one endpoint of the edge has distance exceedingbi
and the other endpoint has distance less thanbi).

Lemma 3.1. A segmentSi of type 1 has length at leastbi+1 − bi. A segmentSi of type 2 has length at least

5The algorithm can be transformed easily to obtain a tree spanning a given targetprize value—to each nodev with a prizeπv,
we attachπv − 1 leaves, and run the algorithm on this new graph.

8

V21V Vn

s

t

type 1 type 1type 2 type 2 type 1 type 2

b b b b2 n1 i

Figure 2: Segment partition of a path in graphG

3(bi+1 − bi), unless it is the segment containingt in which case it has length at least3(dt − bi).

Proof. The length of segmentSi is lower bounded by the integral off(d) over theith interval. In a type 1
interval the result is immediate. For a type 2 interval, notethatf(d) ≥ 1 actually implies thatf(d) ≥ 3 by
a parity argument—if the path crosses distanced twice only, it must end up at distance less thand.

Corollary 3.2. The total length of type-2 segments is at most3ǫ(P ∗)/2.

Proof. Let ℓi denote the length of segmenti. We know that the length ofP ∗ is dt + ǫ(P ∗) =
∑

ℓi. At the
same time, we can write

dt ≤ bm =

m−1
∑

i=1

(bi+1 − bi) ≤
∑

i type1

ℓi +
∑

i type2

ℓi/3

It follows that

ǫ(P ∗) =
∑

ℓi − dt ≥
∑

i type2

2ℓi/3

Multiplying both sides by3/2 completes the proof.

Having completed this analysis, we note that the corollary remains true even if we do not introduce
extra vertices on edges crossing interval boundaries. The crossing edges are no longer counted as parts of
segments, but this only decreases the total length of type 2 segments.

3.1 A dynamic program

Our algorithm computes, for each interval that might be an interval of the optimum solution, a segment
corresponding to the optimum solution in that interval. It then uses a dynamic program to paste these
fragments together using (and paying for) edges that cross between segments. The segments we compute
are defined by 4 vertices: the closest-to-s and farthest-from-s vertices,c andf , in the interval (which define
the start- and end-points of the interval: our computation is limited to vertices within that interval), and the

9

first and last vertices,x andy, on the segment within that interval. They are also defined bythe amount
p of prize we are required to collect within the segment. Thereare thereforeO(Πn4) distinct segments to
compute, whereΠ is the total prize in the graph. For each segment we find an optimum solution for a type
1 and a type 2 interval. For a type-1 interval the optimum pathis monotonic; we can therefore compute (in
linear time) an optimum (shortest) monotonic path fromx to y that collects prizep. If the interval is of type
2, the optimum path need not be monotonic. Instead, we use theMCP routine to approximate to within a
constant factor the minimum length of a path that starts atx, finishes aty, stays within the boundaries of the
interval defined byc andf , and collects prize at leastp.

Given the optimum type 1 and near-optimum type-2 segment determined for each set of 4 vertices
and prize value, we can find the optimal way to paste some subset of them together monotonically using a
dynamic program. Note that the segments corresponding to the optimum path are considered in this dynamic
program, so our solution will be at least as good as the one we get by using the segments corresponding to the
ones on the optimum path (i.e., using the optimum type-1 segments and using the approximately optimum
type-2 segments). We need only show that this solution is good.

We focus on the segments corresponding to the optimum pathP ∗. Consider the segmentsSi of length
ℓi on the optimum path. IfSi is of type 1, our algorithm will find a (monotonic) segment with the same
endpoints collecting the same amount of prize of no greater length. IfSi is of type 2, our algorithm (through
its use of subroutine MCP) will find a path with the same endpoints collecting the same prize over length at
mostαCP ℓi. LetL1 denote the total length of the optimum type 1 segments, together with the lengths of the
edges used to connect between segments. LetL2 denote the total length of the optimum type 2 segments.
Recall thatL1 +L2 = dt + ǫ(P ∗) and that (by Corollary 3.2)L2 ≤ 3

2ǫ(P
∗). By concatenating the optimum

type-1 segments and the approximately optimum type-2 segments, the dynamic program can (and therefore
will) find a path collecting the same total prize asP ∗ of total length at most

L1 + αCPL2 = L1 + L2 + (αCP − 1)L2

≤ dt + ǫ(P ∗) + (αCP − 1)

(

3

2
ǫ(P ∗)

)

= dt +

(

3

2
αCP −

1

2

)

ǫ(P ∗).

In other words, we approximate the minimum excess to within afactor of 3
2αCP − 1

2 .

3.2 An improved approximation for Min-Excess

Our approximation guarantee for MIN-EXCESS-PATH derived above is based on treating thek-PATH sub-
routine as a “black-box”. In this section we show how to slightly improve our approximation guarantee for
the MIN-EXCESS-PATH problem by exploiting the details of the min-cost path algorithm derived from the
work of Chaudhuri et al. [9].

Recall that Chaudhuri et al. provide an algorithm for constructing a tree containing two nodess andt
that spans at leastk reward and has cost at most(1 + 1

2δ) times the cost of the optimalk-pathP ∗ from s to
t. Doubling the edges of this tree, we obtain an approximationto thek-PATH problem withαCP = (2 + δ).

In fact, if the optimal pathP ∗ has lengthℓ = d(s, t) + ǫ∗, then the tree has length at most(1 +
1
2δ)(d(s, t) + ǫ∗). We convert this tree into a path froms to t by doubling all edges, except for the ones on
the tree path froms to t. Noting that the total cost of “non-doubled” edges is at least d(s, t), we get a path
from s to t of length at most(2 + δ)(d(s, t) + ǫ∗) − d(s, t) = (1 + δ)(d(s, t) + ǫ∗) + ǫ∗ = (1 + δ)ℓ + ǫ∗.

10

This stronger guarantee gives us an improved guarantee on the performance of the MIN-EXCESS-PATH

algorithm described above.
In particular, suppose that we apply thek-PATH algorithm to a segment of type-2 with end pointsu and

v, and having an optimum min-excess path with lengthℓ = d(u, v)+ ǫ. Then we get a path fromu to v with
the same value and length at most(1 + δ)ℓ+ ǫ, for any fixed small constantδ.

Now we can apply Corollary 3.2 to obtain an approximation in terms of the excess. However, note that
the ǫ in the above expression is the excess of the path between the nodesu andv, and is not the same as
the difference of the excess of the pathP ∗ at v and its excess atu. In order to obtain a bound in terms
of the latter, letǫu denote the excess ofP ∗ from s to u, and ǫv the excess ofP ∗ from s to v. Then,
ℓ = (dv + ǫv)− (du + ǫu) ≤ d(u, v) + ǫv − ǫu. Therefore,ǫ ≤ ǫv − ǫu, and the Chaudhuri et al. algorithm
returns a path of length at most(1 + δ)ℓ+ ǫv − ǫu.

The dynamic program finds a path collecting the same total value asP ∗ and of total length at most

L1 + (1 + δ)L2 +
∑

type 2 segments

(ǫv − ǫu) ≤ L1 + (1 + δ)L2 + ǫ(P ∗)

= dt + 2ǫ(P ∗) + δL2

≤ dt + 2ǫ(P ∗) +
3δ

2
ǫ(P ∗)

where the last statement follows from Corollary 3.2. Therefore, we get an approximation ratio of2 + δ′ for
the MIN-EXCESS-PATH problem, for any small constantδ′.

4 Maximum Discounted-Prize Path

In this section we present an approximation algorithm for the DISCOUNTED-REWARD-TSP problem which
builds upon our MIN-EXCESS-PATH algorithm. Recall that we aim to optimizeρ(P) =

∑

γd
P
v πv. Assume

without loss of generality that the discount factor isγ = 1/2—we simply rescale each lengthℓ to ℓ′ such
thatγℓ = (1

2)ℓ
′
, i.e.,ℓ′ = ℓ log2(1/γ).

We first establish a property of an optimal solution that we make use of in our algorithm. Define the
scaled prizeπ′ of a nodev to be the (discounted) reward that a path gets at nodev if it follows a shortest path
from the root tov. That is,π′v = πvγ

dv . Let Π′(P) =
∑

v∈P π
′
v. Note that for any pathP , the discounted

reward obtained byP is at mostΠ′(P).
Now consider an optimal solutionP ∗. Fix a parameterǫ that we will set later. Lett be the last node on

the pathP ∗ for whichdP
∗

t − dt ≤ ǫ, i.e., the excess of pathP ∗ at t is at mostǫ. Consider the portion ofP ∗

from roots to t. Call this pathP ∗
t .

Lemma 4.1. LetP ∗
t be the part ofP ∗ from s to t. Then,ρ(P ∗

t) ≥ ρ(P ∗)(1 − 1
2ǫ).

Proof. Assume otherwise. Suppose we shortcutP ∗ by taking a shortest path froms to the next node visited
by P ∗ aftert. This new path collects (discounted) rewards from the vertices ofP ∗ − P ∗

t , which form more
than a 1

2ǫ fraction of the total discounted reward by assumption. The shortcutting procedure decreases the
distance on each of these vertices by at leastǫ, meaning these rewards are “undiscounted” by a factor of at
least2ǫ over what they would be in pathP ∗. Thus, the total reward on this path exceeds the optimum, a
contradiction.

It follows that we can approximateρ(P ∗) by approximatingρ(P ∗
t). Based on the above observation, we

give the algorithm of Figure 3 for finding an approximately optimal solution. Note that “guesst” and “guess
k” are implemented by exhausting all polynomially many possibilities.

11

Algorithm forDISCOUNTED-REWARD-TSP

1. Re-scale all edge lengths so thatγ = 1/2.

2. Replace the prize value of each node with the prize discounted by the shortest path to that node:
π′v = γdvπv. Call this modified graphG′.

3. Guesst—the last node on optimal pathP ∗ with excess less thanǫ.

4. Guessk—the value ofΠ′(P ∗
t).

5. Apply our MIN-EXCESS-PATH approximation algorithm to find a pathP collecting scaled prizek
with small excess.

6. Return this path as the solution.

Figure 3: Approximation for Maximum Discounted-Prize Path(DISCOUNTED-REWARD-TSP)

Our analysis below proceeds in terms ofα = αEP , the approximation factor for our MIN-EXCESS-
PATH algorithm.

Lemma 4.2. Our approximation algorithm finds a pathP that collects discounted rewardρ(P) ≥ Π′(P ∗
t)/2αǫ.

Proof. The prefixP ∗
t of the optimum path shows that it is possible to collect scaled prizek = Π′(P ∗

t) on
a path with excessǫ. Thus, our approximation algorithm finds a path collecting the same scaled prize with
excess at mostαǫ. In particular, the excess of any vertexv in P is at mostαǫ. Thus, the discounted reward
collected atv is at least

ρ(v) ≥ πv

(

1

2

)dv+αǫ

= πv

(

1

2

)dv
(

1

2

)αǫ

= π′v

(

1

2

)αǫ

Summing over allv ∈ P and observingΠ′(P) ≥ Π′(P ∗) ≥ Π′(P ∗
t) completes the proof.

Combining Lemma 4.2 and Lemma 4.1, we get the following:

Theorem 4.3. The solution returned by the above algorithm hasρ(P) ≥ (1 − 1
2ǫ)ρ(P ∗)/2αǫ.

Proof.

ρ(P) ≥ Π′(P ∗)/2αǫ by Lemma 4.2

≥ ρ(P ∗
t)/2αǫ by definition ofπ′

≥

(

1 −
1

2ǫ

)

ρ(P ∗)/2αǫ by Lemma 4.1

We can now setǫ as we like. Writingx = 2−ǫ we optimize our approximation factor by maximizing
(1 − x)xα to deducex = α/(α + 1). Plugging in thisx yields an approximation ratio of(1 + αEP)(1 +
1/αEP)αEP .

12

5 Orienteering

In this section we present an algorithm for computing an approximately maximum-prize path of length
at mostD that starts at a specified vertexs. We will use the algorithm for MIN-EXCESS-PATH given in
Section 3 as a subroutine. Our algorithm for the Max-Prize problem is given in Figure 4. As before “guess
k” is implemented by performing a binary search.

Algorithm for Max-Prize Path (ORIENTEERING)

1. Guessk, the amount of prize collected by an optimum ORIENTEERINGsolution. Letα = ⌈αEP ⌉+1.

2. For each vertexv, compute the min-excess path froms to v collecting prizek/α.

3. There exists av such that the min-excess path returned has length at mostD; return the corresponding
path.

Figure 4: Algorithm for Max-Prize Path (ORIENTEERING)

We analyze this algorithm by showing that any optimum ORIENTEERINGsolution contains a low-excess
path which, in turn, is an approximately optimum ORIENTEERING solution. More precisely, we prove that
for some vertexv, there exists a path froms to v with excess at mostD−dv

αEP
that collects prize at leastΠ

∗

αPP

whereαEP is the approximation ratio for MIN-EXCESS-PATH, αPP is the desired approximation ratio for
Max-Prize Path, andΠ∗ is the prize of the optimum Max-Prize Path. Assuming this path exists, our min-
excess path computation on this vertexv will find a path with total length at mostdv + αEP

D−dv

αEP
= D and

prize at leastΠ
∗

αPP
, providing anαPP -approximation for ORIENTEERING.

Let t be the last vertex on the optimum ORIENTEERING path. We first consider the case wheret is the
vertex at maximum distance froms on the optimum path.

Lemma 5.1. If there is a path froms to t of length at mostD that collects prizeΠ, such thatt is the furthest
point froms along this path, then there is a path froms to some nodev with excess at mostD−dv

r
and prize

at leastΠ
r

(for any integerr ≥ 1).

Proof. For each pointa along the original pathP , let ǫ(a) = dPa − da; in other words,ǫ(a) is the excess in
the length of the path toa over the shortest-path distance. We haveǫ(t) ≤ D − dt. Consider mapping the
points on the path to a line from0 to ǫ(t) according to their excess (we observe that excess only increases
as we traverse pathP). Divide this line intor intervals with lengthǫ(t)

r
. Some such interval must contain at

leastΠ
r

prize, since otherwise the entire interval from0 to ǫ(t) would not be able to collect prizeΠ. Suppose
such an interval starts with nodea and ends with nodev. We consider a path froms to v that takes the
shortests-a path, then follows pathP from a to v. This path collects the prize of the interval froma to v in
the original path, which is a prize of at leastΠ

r
as desired. The total length of this path isda + dP (a, v) =

da + dPv − dPa = dv + ǫ(v) − ǫ(a) ≤ dv + ǫ(t)
r

. The excess of this path isǫ(t)
r

≤ D−dt

r
≤ D−dv

r
.

Of course, in general the optimum ORIENTEERINGpath might have some intermediate node that is
farther froms than the terminal nodet. We will generalize the above lemma to account for this case.

Lemma 5.2. If there is a path froms to t of length at mostD that collects prizeΠ, then there is a path from
s to some nodev with excess at mostD−dv

r
and prize at least Π

r+1 (for any integerr ≥ 1).

13

Proof. Let f be the furthest point froms along the given pathP . We are interested in the case wheref 6= t.
We can break pathP into two pieces; first a path froms to f and then a path fromf to t. Using the symmetry
of our metric, we can produce a second path froms to f by using the shortest path froms to t and then
following the portion of our original path fromf to t in reverse. We now have two paths froms to f , each of
which has length at mostD. The total length of these paths is bounded byD+ dt. We will call our pathsA
andB, and let their lengths bedf+δA anddf+δB respectively. Note thatδA+δB ≤ D+dt−2df < D−df .

We now map pathA to the interval from0 to δA according to the excess at each point, much as in
Lemma 5.1. We consider dividing this interval into pieces oflength δA+δB

r
(the last sub-interval may have

shorter length ifδA does not divide evenly). We perform the same process on pathB. We have created a
total of r + 1 intervals (this relies on the assumption thatr is integral, allowing us to bound the sum of the
ceilings of the number of intervals for each path). We conclude that some such interval has prize at least
Π
r+1 . We suppose without loss of generality that this interval spans a portion of pathA from a to v. We now
consider a path that travels froms to a via the shortest path and then froma to v following pathA. The
length of this path is bounded bydv + δA+δB

r
for an excess of at mostD−df

r
≤ D−dv

r
as desired.

Making use of Lemma 5.2, we can prove that our algorithm for ORIENTEERING obtains a constant
approximation. Making use of Chaudhuri et al.’s approximation for min-costs-t path [9] along with our
result on MIN-EXCESS-PATH from Section 3, we have a4-approximation for ORIENTEERING.

Theorem 5.3. Our algorithm is an(⌈αEP ⌉ + 1)-approximation for the max-prize path (ORIENTEERING)
problem, whereαEP is the approximation factor forM IN-EXCESS-PATH.

Proof. Lemma 5.2 implies that there exists a path froms to somev with excessD−dv

⌈αEP ⌉ obtaining prize
Π∗

⌈αEP ⌉+1 . Such a path has lengthdv + D−dv

⌈αEP ⌉ , implying that the approximation algorithm for MIN-EXCESS-
PATH will find a path froms to v with length at mostdv + (D − dv) = D and at least the same prize.
The algorithm described will eventually try the proper values ofk andv and find such a path in polynomial
time.

6 Extensions

6.1 Max-Prize Tree and Max-Prize Cycle

In this section, we consider the tree and cycle variants of the ORIENTEERING problem. In Max-Prize Tree,
given a graphG with root r, prize functionΠ and lengthsd, we are required to output a treeT rooted
at r with d(T) ≤ D and maximum possible rewardΠ(T). This problem is also called the Budget Prize-
Collecting Steiner Tree problem [19]. Although the unrooted version of the problem can be approximated
to within a factor of5 + ǫ via a 3-approximation fork-MST [19], the version of the problem in which a tree
is required to contain a specified vertex has remained open until recently.

Let the optimal solution for this problem be a treeT ∗. Double the edges of this tree to obtain an Euler
tour of length at most2D. Now, divide this tour into two paths, each starting from theroot r and having
length at mostD. Among them, letP ′ be the path that has greater reward. Now consider the Max-Prize
Path problem on the same graph with distance limitD. Clearly the optimal solutionP ∗ to this problem
hasΠ(P ∗) ≥ Π(P ′) ≥ Π(T ∗)

2 . Thus, we can use theαPP -approximation for ORIENTEERING to get a
2αPP -approximation toT ∗.

Finally we note that we can use our algorithm for the ORIENTEERING problem to approximate Max-
Prize Cycle. Namely, we can find an approximately maximum-prize cycle of length at mostD that contains

14

a specified vertexs. To this end we apply our algorithm to an instance of the ORIENTEERING problem with
the starting nodes and the length constraintD/2. To obtain a cycle from the resulting path we connect its
endpoints by a shortest path. Clearly, the length of the resulting cycle is at mostD. Now, notice that an
optimal max-prize cycle of lengthD can span at most twice the amount of prize that an optimal max-prize
path of lengthD/2. Thus, usingαPP -approximation to ORIENTEERING we get2αPP -approximation to the
Max-Prize Cycle problem.

6.2 Multiple-path ORIENTEERING

In this section we consider a variant of the ORIENTEERING in which we are allowed to construct up tok
paths, each having length at mostD.

We approximate this problem by applying the algorithm in Section 4 successivelyk times, to construct
thek paths. At thei-th step, we set the prizes of all points visited in the firsti−1 paths to 0, and constructed
the i-th path on the new graph, using the ORIENTEERING algorithm in Section 5. Using a set-cover like
argument, we get the following approximation guarantees for the cases when all paths have the same starting
point and when different paths have different starts6.

Theorem 6.1. If all the paths have a common start node, the above algorithmgives a1/(1 − e−αPP)
approximation to Multiple-PathORIENTEERING. If the paths have different start nodes, the above algorithm
gives aαPP + 1 approximation to Multiple-PathORIENTEERING.

Proof. Consider first the case when all the paths have the same starting point. Let the difference in the
reward collected by the optimal solution and the reward collected by our solution up to stagei beΠi. At the
beginning, this is the total reward of the optimal solution.At stepi, at least one of the paths in the optimal
solution collects reward, not collected by the algorithm bystagei, of value at least1

k
Πi. Then, using the

approximation guarantee of the algorithm for ORIENTEERING, our solution collects at least a1
kαPP

fraction

of this reward. That is,Πi+1 ≤ (1− 1
kαPP

)Πi. By the end ofk rounds, the total reward collected by optimal

solution, but not collected by us, is at most(1 − 1
kαPP

)kΠ(P ∗) ≤ e−αPP Π(P ∗), and the result follows.
Next consider the case when different paths have different starting locations. LetOi be the set of

points visited by thei-th path in the optimal solution, andAi be the corresponding set of points visited
by our algorithm. Let∆i be the set of points that are visited by thei-th path in the optimal solution and
some other path in our solution. LetO = ∪iOi, A = ∪iAi and ∆ = ∪i∆i. Now, in thei-th stage,
there is a valid path starting at thei-th source, that visits all points inOi \ ∆i. Thus we haveΠ(Ai) ≥

1
αPP

(Π(Oi) − Π(∆i)). Summing overi, we getαPPΠ(A) ≥ (Π(O) − Π(∆)). But Π(∆) ≤ Π(A). Thus

Π(A) ≥ 1
αPP +1Π(O).

7 Hardness of approximation

All the problems discussed in this paper are NP-hard, as theyare generalizations of the Traveling Salesman
Problem. In this section we show that the MIN-EXCESS-PATH problem and ORIENTEERING are APX-hard,
that is, it is NP-hard to approximate these problems to within an arbitrary constant factor.

The hardness of approximating the MIN-EXCESS-PATH problem follows from the APX-hardness of
TSP [23]. In particular, we can reduce the TSP to an instance of M IN-EXCESS-PATH on the same graph,

6Subsequent to the initial publication of our work, Chekuri and Kumar [11] independently employed a similar analysis forother
“maximum-coverage” problems.

15

with any one vertex as the start and the end point, and a rewardquota ofn. Then anα-approximation to
M IN-EXCESS-PATH on this instance is also anα-approximation to the TSP. We therefore get the following
theorem:

Theorem 7.1. TheM IN-EXCESS-PATH problem is NP-hard to approximate to within a factor of220
219 .

Theorem 7.2. ORIENTEERING is NP-hard to approximate to within a factor of1481
1480 .

Proof. We reduce the TSP on{1, 2}-metrics to ORIENTEERING. In particular, letG = (V,E) be a complete
graph onn nodes, with edges lengths in the set{1, 2}. Engebretsen and Karpinski [13] show that the TSP
is NP-hard to approximate within a factor of1 + α = 741

740 on such graphs.
Our reduction is as follows. Let the length of the optimal TSPsolution beL = n+ δn. (We simply try

all values ofL betweenn and2n.) Suppose that there is an algorithm that approximates ORIENTEERING

within a factor of1 + β, whereβ ≤ α
2

1
1480 . We apply this algorithm to the graphG with distance limitL.

Note that the optimal solution (which is the optimal TSP path) collectsn − 1 nodes within distanceL (all
nodes except the start, assuming a reward of 0 on the start node). Therefore, the solution returned by our
algorithm collects 1

1+β (n− 1) nodes. We augment this solution to a tour containing all the nodes, by using

(1 − 1
1+β)(n − 1) + 1 edges of length at most2. Therefore, the length of our solution is at most

L+ 2(1 − 1
1+β)(n − 1) + 2 = L+ 2β

1+β (n− 1) + 2

< L+ 2βn
= L+ αn ≤ (1 + α)L

where the second inequality follows from assuming thatn > 1
β2 .

Therefore, we get a(1 + α)-approximation to TSP onG, contradicting the fact that TSP is NP-hard to
approximate to within a(1 + α) factor on{1, 2}-metrics.

Using a similar argument as for ORIENTEERING, we get a1481
1480 hardness of approximation for the max-

prize cycle problem as well.

8 Conclusions

In this paper we give constant factor algorithms for the ORIENTEERINGproblem, DISCOUNTED-REWARD-
TSP, and some of their variants. We also prove that it is NP-hard to obtain a PTAS for the ORIENTEERING

and MIN-EXCESS-PATH problems. An interesting open problem is to obtain better approximations, or even
a PTAS, for these problems when the underlying metric is planar. Another interesting open problem is to
consider the directed versions of the problems, although webelieve that it may be hard to approximate these
to within constant or even logarithmic factors. Some recentprogress has been made in this direction by
Chekuri and Pal [12] who developed quasi-polynomial time log-approximation algorithms for ORIENTEER-
ING and several related problems on directed graphs.

Even more ambitiously, returning to the MDP motivation for this work, one would like to generalize
these results to probabilistic transition functions. However, this has the additional complication that the
optimum solution may not even have a short description (it isno longer just a path). Still, perhaps some sort
of non-trivial approximation bound, or a result holding in important special cases, can be found. The Ph.D.
thesis of the second author [10] contains preliminary results in this direction.

16

References

[1] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan. Resource-constrained geometric network optimiza-
tion. In Symposium on Computational Geometry, pages 307–316, 1998.

[2] S. Arora and G. Karakostas. A2 + ǫ approximation algorithm for the k -MST problem. InSymposium
on Discrete Algorithms, pages 754–759, 2000.

[3] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guarantees for minimum-
weightk-trees and prize-collecting salesmen.Siam J. Computing, 28(1):254–262, 1999.

[4] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621–636, 1989.

[5] Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation Algorithms for
Deadline-TSP and Vehicle Routing with Time-Windows. InProceedings of the 36th Annual ACM
Symposium on Theory of Computing, 2004.

[6] D. P. Bertsekas.Dynamic Programming and Optimal Control. Athena Scientific, 1995.

[7] D. P. Bertsekas and J. N. Tsitsiklis.Neural Dynamic Programming. Athena Scientific, 1996.

[8] A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algorithm for thek-MST problem.
JCSS, 58:101–108, 1999.

[9] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. InProceed-
ings of the 44th Annual Symposium on Foundations of ComputerScience, Cambridge, Massachusetts,
2003.

[10] S. Chawla. Graph Algorithms for Planning and Partitioning. Ph.D. thesis, Carnegie Mellon University,
2005.

[11] C. Chekuri and A. Kumar. Maximum coverage problem with group budget constraints and applica-
tions. InProceedings of the International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), 2004.

[12] C. Chekuri and M. P’al. A Recursive Greedy Algorithm forWalks in Directed Graphs. InProceedings
of the 46th Annual Symposium on Foundations of Computer Science, pages 245–253, 2005.

[13] Lars Engebretsen and Marek Karpinski. Approximation hardness of TSP with bounded metrics. In
Proceedings of the 28th International Colloquium on Automata, Languages and Programming,, pages
201–212. Springer-Verlag, 2001.

[14] N. Garg. A 3-approximation for the minimum tree spanning k vertices. InProceedings of the 37th
Annual Symposium on Foundations of Computer Science, pages 302–309, October 1996.

[15] N. Garg. Saving an epsilon: a 2-approximation for the k-MST problem in graphs. InProceedings of
the 34th Annual ACM Symposium on Theory of Computing, pages 396–402, 2005.

[16] M. Goemans and D. Williamson. A general approximation technique for constrained forest problems.
In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 307–315,
1992.

17

[17] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained forest prob-
lems.SIAM J. Comput., 24:296–317, 1995.

[18] B.L. Golden, L. Levy, and R. Vohra. The orienteering problem.Naval Research Logistics, 34:307–318,
1987.

[19] D. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner Tree Problem: theory and
practice. InProceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
760–769, 2000.

[20] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.Journal of
Artificial Intelligence Research, 4, 1996.

[21] T. Lane and L. P. Kaelbling. Approaches to macro decompositions of large Markov decision process
planning problems. InProceedings of the 2001 SPIE Conference on Mobile Robotics, Newton, MA,
2001. SPIE.

[22] T. Lane and L. P. Kaelbling. Nearly deterministic abstractions of Markov decision processes. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence, Edmonton, 2002.

[23] Christos Papadimitriou and Santosh Vempala. On the approximability of the traveling salesman prob-
lem. InProceedings of the 32nd Annual ACM Symposium on Theory of Computing, 2000.

[24] M. L. Puterman.Markov Decision Processes. Wiley, 1994.

[25] R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. MIT Press, 1998.

18

