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Abstract

In this paper, we give the first constant-factor approxioratlgorithm for the rooted RENTEER-
ING problem, as well as a new problem that we call the@UNTED-REWARD-TSP, motivated by
robot navigation. In both problems, we are given a graph leitlgths on edges and rewards on nodes,
and a start node. In the CRIENTEERING problem, the goal is to find a path startingsathat maxi-
mizes the reward collected, subject to a hard limit on thal tehgth of the path. In the BCOUNTED-
REWARD-TSP, instead of a length limit we are given a discount fagtaand the goal is to maximize
total discounted reward collected, where reward for a nedetred at time is discounted byy®. This
problem is motivated by an approximation to a planning peobin the Markov decision process (MDP)
framework under the commonly employed infinite horizon distted reward optimality criterion. The
approximation arises from a need to deal with exponentiatlye state spaces that emerge when trying
to model one-time events and non-repeatable rewards (sufidr @package deliveries). We also con-
sider tree and multiple-path variants of these problemspandide approximations for those as well.
Although the unrooted ®ENTEERING problem, where there is no fixed start nogdas been known
to be approximable using algorithms for related probleneh ssk-TSP (in which the amount of reward
to be collected is fixed and the total length is approximaneigimized), ours is the first to approxi-
mate the rooted question, solving an open problem [3, 1]. dveptement our approximation result for
ORIENTEERING by showing that the problem is APX-hard.
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1 Introduction

Consider a robot with a map of its environment, that needssiba number of sites to drop off packages,
collect samples, search for a lost item, etc. One classiehwiduch a scenario is theRRVELING SALES-
MAN PROBLEM, in which we ask for the tour that visits all the sites and vehiength is as short as possible.
However, what if this robot cannot visit everything? Formde, it might have a limited supply of bat-
tery power. In that case, a natural question to ask is fordhe that visits the maximum total reward of
sites (where reward might correspond to the value of a pa&ckamg delivered or the probability that some
lost item we are searching for is located there), subjectdorstraint that the total length is at most some
given boundB. This is called the (rooted) RIENTEERING problem (“rooted”, because we are fixing the
starting location of the robot). Interestingly, while tdrave been a number of algorithms that given a de-
sired reward can approximately minimize the distance tealvévhich yield approximations to the unrooted
ORIENTEERING problem), approximating the reward for the case &ikadstarting location anfixedhard
length limit has been an open problem.

Alternatively, suppose that battery power is not the lingtconsideration, but we simply want to give
the robot a penalty for taking too long to visit high-valugesi For example, if we are searching for a
lost item, and at each time step there is some possibilityitéme will be taken (or, if we are searching
for a trapped individual in a dangerous environment, andaah dime step there is some probability the
individual might die), then we would want to discount the agd/for a site reached at tinteby v/, where
~ is a known discount factor. We call this thed@ OUNTED-REWARD-TSP. This problem is motivated by
an approximation to a planning problem in thiarkov decision proces@viDP) framework [25, 24] under
the commonly employeihfinite horizon discounted rewanptimality criterion. The approximation arises
from a need to deal with exponentially large state spacdstharge when trying to model one-time events
and non-repeatable rewards (such as for package deliveries

In this paper, we provide the first constant-factor apprations to both the (rooted) IENTEERING
and the DSCOUNTED-REWARD-TSP problems, and well as a number of variants that we discea®w.
We also prove that ENTEERING is APX-hard, or NP-hard to approximate within an arbitsasimall
constant factor.

1.1 Motivation and background

Robot navigation and path planning problems can be modeletany ways. In the Theoretical Computer
Science and Optimization communities, these are typicatigeled as kinds of Prize-Collecting Traveling
Salesman Problems [18, 4, 16, 3]. In the Artificial Inteltige community, problems of this sort are often
modeled as Markov decision processes [6, 7, 20, 24, 25].vBel give some background and motivation
for our work from each perspective.

1.1.1 Markov decision processes and time-dependent rewasd

A Markov decision process (MDP) consists of a state sggaeset of actionsl, a probabilistic transition
functionT’, and a reward functio®. For this work, it is sufficient to consider discrete, finfeand A. At
any given time step, an agent (such as a robot) acting in an MiDBPe located at some statec S, where it
can choose an actiane A. The agent is subsequently relocated to a new stateawn from the transition
probability distributionT’(s'|s,a) = Pr[gi1 = s'|¢¢ = s,al], whereg; is a random variable indicating
the agent's state at time stepThe transition function captures both the agent’s stdachdgnamics (e.qg.,
unreliable actuators) and structure and characteristitteecenvironment such as walls, pits, friction of the



surface, etc. Associated with each state is a real-valwearde given by the functio®(s), which the agent
receives upon entering statgs For example, a package-delivery robot might get a rewardyetme it
correctly delivers a package.

The goal of planning in an MDP framework is to formulate apgliy : S — A, that guides the agent
to optimal long-term aggregate reward. In order to encaithg agent to perform the tasks that we want,
and to do so in a timely manner, a commonly employed aggregatard objective function is thiafinite
horizon discounted rewarfR0, 24, 25]. Specifically, for a givediscount factory € (0, 1), the value of
reward collected at timeis discounted by a factoey’. Thus the total discounted reward, which we aim to
maximize, iSRit = Y g R(s;)~'. Because the agent’s actions are stochastic, in practicewse settle
for optimizing the expected value of this quantity? (s) = Ey[Ritlqo = s], where the expectation is
taken with respect to all possible trajectories throughdta¢e space rooted at stateweighted by their
probability of occurring under policy>. Note that because a fixéd, a) pair yields a fixed probability
distribution over next states, the combination of an MDFhwiffixed policy produces a Markov chain over
S. The expectation, therefore, is simply the expected distmolireward accumulated by a random walk on
the corresponding Markov chain. This optimality criterignides the agent to accumulate as much reward
as possible as early as possible, and produces what inqa&gins out to be good behavior.

One can also motivate exponential discounting by imagitiag, at each time step, there is some fixed
probability the game will end (the robot loses power, a ¢etpbic failure occurs, the objectives change,
etc.). The quantity/¥ (s) then gives the expected (undiscounted) reward collectetidoyobot before the
game ends. Exponential discounting also has the nice matiwhproperty that it isime-independent
meaning that an optimal strategystationaryand can be completely described by the mapping from states
to actions given by).? The overall goal of planning, then, is to locaté, the policy that maximize¥ ¥ (s),
the expected infinte horizon discounted reward. A fundaai¢héorem of MDP planning states that for this
optimality criterion, there is guaranteed to be a statipnaf that dominates all other policies at all states:
V¥ (s) > V¥(s) forall s € S and ally) [24].

There are well-known algorithms for solving MDPs in timeymmial in the cardinality of the state
space [6, 24, 25]. However, one drawback of the MDP modekisttte agent receive3(s) every time that
states is visited. Thus, in order to model a package-delivery or@deand-rescue robot, one would need a
state representing not only the current location of the t,ding also a record of all packages (victims) it has
already delivered (rescued). For example, one could Write L x 2¢, whereL is a set of discrete locations
that the robot could occupy, and the listdbits tracks whether the agent has achieved eachsab-goals
(packages or rescues). Then the reward function caR(eby, ... ,b,)) = 1iff [ is a location containing
sub-goal andb; = 0, or R(s) = 0 otherwise. When the robot reaches the location containibegeali, b;
is set to 1 and remains so thereafter. This formulation gialdl exponential increase in the size of the state
space over the raw cardinality @f and prevents a direct, exact solution of the MDP. Insteadbitld/ be
preferable to directly model the case of rewards that arengonly thefirst time a state is visited [21, 22].

As a first step towards tackling this general problem, we dbarthe stochastic element and restrict
the model to deterministic, reversible actions. This masgl@ reasonable approximation to many robot-
navigation style MDP domains, in which we can formulate pabeies for navigating between pairs of
locations in the environment. Often, such sub-policiesmacros, can be “nearly deterministic” (failing
with probability < ¢) because they average out the stochasticity of atomicrectiwer many steps [22].

It is also possible to model rewards associated with actisrigansitions by writing more general reward functionsrsas
R(s,a) or R(s,a,s"), but such extensions do not fundamentally change the naftine MDP. Any such functions can be rewritten
into a model of the form we give here with an appropriate moadifon to the state and action sets.

2Under other objective functions, an optimal policy coulduige dependence on the number of steps remaining in the game
other functions of the history of states encountered to.date



We can to a good approximation, therefore, treat such a doaga deterministic planning problem over
the set of sub-goal locations (nodes) and location-totiocamacros (arcs). This leads us to study the
DISCOUNTED-REWARD TRAVELING SALESMAN PROBLEM, in which we assume we have an undirected
weighted graph (edge weights represent the time to tragegieen edge), with a reward valag on each
vertexv, and our goal is to find a path visiting each verteat timet,, so as to maximiz&_ 7.

1.1.2 PC-TSP and Orienteering problems

A different way to model the goal of collecting as much rewasdgossible as early as possible is to impose
a hard deadline on the time the robot may spend deliveringaitkages. The robot gets a reward equal to
the value of the package on a delivery, but only if the dejiiemade before a deadlin@. If the deadline is
exceeded, he gets no reward. This problem has been stua@dysly as the @ ENTEERING18] or Bank
Robber’s [3] Problem.

ORIENTEERING belongs to the family of the Prize-Collecting Traveling &ahan problems (PC-TSP).
Given a set of cities with non-negative “prize” values assed with them and a table of pairwise distances,
a salesman needs to pick a subset of the cities to visit so mnimize the total distance traveled while
maximizing the total amount of prize collected. Note tharéhis a tradeoff between the cost of a tour
and how much prize it spans. The original version of the P@-Ti8roduced by Balas [4] deals with
these two conflicting objectives by combining them: one seekour that minimizes theumof the total
distance traveled and the penalties (prizes) on citiegpskipwhile collecting at least a given quota amount
of prize. Goemans and Williamson subsequently focused greaia case of this problem in which the
guota requirement is dropped, and provided a primal-dws@-oximation algorithm for it [17].

An alternative approach to the bicriterion optimizatiortdsoptimize just one of the objectives while
enforcing a fixed bound on the other. For example, in a quote version of the PC-TSP, callédTSP,
every node has a prize of one unit and the goal is to minimieddtal length of the tour, while visiting at
leastk nodes. Similarly, @IENTEERING can be viewed as a budget-driven version of the PC-TSP, since
we are maximizing total amount of prize collected, while gieg the distance traveled below a certain
threshold?

There are several constant-factor approximations knowithik-TSP problem [2, 14, 8, 3], the best
being a recenk-approximation due to Garg [15]. Most of these results amebtan a classic primal-dual
algorithm for PC-TSP due to Goemans and Williamson [17] ¢meed above).

The algorithms fok-TSP extend easily to thenrootedversion of the @IENTEERING problem in which
we do not fix the starting location [3, 15]. In particular, giva tour (cycle) of valuél whose length igD
for somec > 1, we can just break the cycle intopieces of length at modb, and then take the best one,
whose total value will be at leaBt/c. Noting that an optimal cycle of lengthD must span at least as much
reward as an optimal path of length (since one could just traverse the path forward and then)baek
get a2c-approximation guarantee on the amount of reward contamadsegment we pick. However, this
does not work for the rooted problem because the “best piadée above reduction might be far from the
start. In contrast to this simple result, there is no presiplknown O(1)-approximation algorithm for the
rooted QRIENTEERING Problem in general graphs. Arkin et al. [1] give a constaiatdr approximation to
the rooted RIENTEERING problem for the special case of points in the plane.

3Strictly speaking, a budget-driven version of the PC-TSRIdioequire a tour, e.g. a path that ends at the start nodeeabie
the ORIENTEERINGproblem is content with a path that ends at an arbitrary ndéeconsider both versions of the problem.



1.2 Summary of results

In this paper, we give the first constant factor approxinmagtgorithms for both the above problems. A key
contribution of our work is the introduction of tlein-excessbjective. The excess of a path is defined to be
the difference between the length of a prize-collectirgpath and the length of the shortest path between
the two end points. Informally, any path must spend a mininanmount of time equal to the shortest distance
betweens andt, just to get to the destinatian the excess of the path is the extra time spent by it to gather
reward along the way. We consider the followingNEXCESS PATH problem: given a weighted graph
with rewards, end-points and¢, and a reward quotk, find a minimum-excess path frogto ¢ collecting
reward at leask.

Approximating the excess of a path turns out to be a cruciapmment in our algorithms for REN-
TEERING and DSCOUNTED-REWARD-TSP. Note that an approximation for the excess is a strimlyer
guarantee than what is implied by an approximation algoritbr the k-TSP; the latter would return a path
that has length at most a constant multiple timegdite optimal length froms to ¢.

Our algorithm for approximating Mi-EXCESSPATH uses as subroutine an approximation to a variant
of the k-TSP, the min-cost-t path problem k-PATH problem in [9]). In particular, am¢ p-approximation
to the k-PATH, when used as a subroutine in our algorithm, impliesxgp = %OZCP — % approximation
for the MIN-EXCESSPATH problem. The best currently known approximation for kRRATH problem is a
(2 + §)-approximation (for any fixed > 0), that follows from a(2 + §)-approximation to thé-TSP due
to Chaudhuri et al. [9] Then via our reduction, this implies(a.5 + §)-approximation to excess, for any
fixedd > 0. We also present an improved analysis of our algorithm basdthie Chaudhuri et alk-TSP
algorithm obtaining & + ¢ approximation for the MN-EXCESSPATH problem.

An app-approximation to MN-EXCESSPATH further implies al + [app | approximation for QIEN-
TEERING, and a roughlye(agp + 1) approximation for BSCOUNTED-REWARD-TSP. Our final approxi-
mation factors for the latter two problems d@rand6.75 + § respectively.

Finally, using the APX-hardness of TSP on bounded metri8$ je prove that NN-EXCESS PATH
and CRIENTEERING are APX-hard.

1.3 Subsequent work

Following the initial publication of our work, Bansal et ] obtained a 3-approximation for a stronger
version of QRIENTEERING called “point-to-point RIENTEERING’, in which the starting locatior as well
as the terminal locationare fixed. They also consider the Vehicle Routing Problerh mine-Windows, a
generalization of RIENTEERING in which each reward has a time-window (“release time” arehttline”)
associated with it, and reward is earned only if the locaonsited within the corresponding time-window.
Bansal et al. obtain a®(log?n) approximation for this problem, as well as @flog n)-approximation
when all the release times are zero.

Organization. The rest of this paper is organized as follows. We begin withesdefinitions in Section 2.
Then we give an algorithm for Mi-EXCESSPATH in Section 3, followed by algorithms forIBCOUNTED-
REWARD-TSPand RIENTEERING in sections 4 and 5 respectively. In Section 6 we extend sdntleco
algorithms to tree and multiple-path versions of the pnotdeWe present some hardness of approximation
results in Section 7 and conclude in Section 8.

4Garg’s2-approximation algorithm for the-TSP, although better that Chaudhuri et g2s+ §)-approximation, only implies a
5-approximation to thé-PATH problem.



2 Notation and definitions

Our work encompasses a variety of problems. In this sect®mttoduce the notation to be used throughout
the paper, provide formal problem statements and descrilpgf@m naming scheme for them.

LetG = (V, E) be a weighted undirected graph, with a distance functiondgegd : £ — R, and a
prize or rewardfunction on nodesy : V' — R™. Letw, = 7(v) be the reward on node Lets € V denote
a special node called thetart or root.

For a pathP visiting « beforev, let d”(u,v) denote the length along from u to v. Let d(u,v)
denote the length of thehortestpath from node: to nodev. For ease of notation, let, = d(s,v) and
d”(v) = d”(s,v). For a set of node¥’ C V, letII(V') = 3" ., m,. For a set of edge&’ C E, let
A(E) = ¥ e d(e).

Our problems aim to construct a certain subgraph—a path, trecycle, possibly with additional con-
straints. Most of the problems attempt a trade-off betwaendbjective functions: theost(distance) of
the path (or tree, or cycle), and tkatal prize spanned by it. From the point of view of exact algorithms,
we need simply to specify the cost we are willing to toleratd the prize we wish to span. Most variants
of this problem, however, at&® P-hard, so we focus on approximation algorithms. We must Hpatify
our willingness to approximate the two distinct objectivége refer to anin-costproblem when our goal is
to approximatelyminimize the cost of our objective subject to a fixed lowertmbon prize (thus, prize is a
feasibility constraint while our approximated objectigecost). Conversely, we refer tar@ax-prizeproblem
when our goal is t@approximatelymaximize the prize collected subject to a fixed upper bouncosi (thus,
cost is a feasibility constraint while our approximatedeative is prize). For example, the min-cost tree
problem is the traditionat-MST: it requires spanning prize and aims to minimize the cost of doing so.
Both the rooted and unrooted min-cost tree problems havstaoifactor approximations[19, 2, 14, 8, 3].
The max-prize path problem, which aims to find a path of lergtmostD from the start node that visits
a maximum amount of prize, is theRIENTEERING problem.

The main subroutine in our algorithms requires also intoiaty a variation on approximate cost. Define
the exces®f a pathP from s to ¢ to bed” (s, t) — d(s, t), that is, the difference between that path’s length
and the distance betweenandt in the graph. Obviously, the minimum-excess path of tot&eptl is
also the minimuneostpath of total prizdI; however, a path of a constant factor times minimum cost may
have more than a constant-factor times the minimum excessh¥vefore consider separately thaimum
excess patiproblem. Note that afs, t) path approximating the optimum excesby a factora: will have
lengthd(s, t) +ae < a(d(s,t)+e¢) and therefore approximates the minimum cost path by a factsrwell.
Achieving a good approximation to thisiM-EXCESSPATH problem will turn out to be a key ingredient in
our approximation algorithms.

Finally, as discussed earlier, we consider a different medrcombining length and cost motivated by
applications of Markov decision processes. We introdudeseount factory < 1. Given a pathP rooted
at s, let thediscounted rewardtollected at node by path P be defined ag! = wvfydp(s’”). That is, the
prize gets discounted exponentially by the amount of tintekies for the path to reach node Themax-
discounted-rewargbroblem is to find a pati’ rooted ats, that maximizep? = Y vep pP’. We call this the
DiscouNTED-REWARD-TSP. Note that the length of the path is not specifically l@ahin this problem,
though of course shorter paths produce less discounting.

2.1 Reductions and approximation factors

We present a constant-factor approximation algorithmHemhax-prize path (rooted®DENTEERING) prob-
lem, solving an open problem of [3, 1], as well as thes@oUNTED-REWARD-TSP. Central to our results



Problem Best approx. Source/Reduction Hardness of
approximation

min-costs-t path (-PATH) acp =249 [9] 220/219

min-excess path agp=25+6 | 3(acp) — 3 220/219
(MIN-EXCESSPATH) agp =249 algorithm based on [9]

max discounted-prize path app =675+ | 1 +agp)(1+1/agp)*®? ?
(DISCOUNTED-REWARD-TSP)

max-prize path (RIENTEERING) | app =4 1+ [agp] 1481/1480

max-prize tree apr = 8 2app ?

max-prize cycle apc =8 20pp 1481/1480

max-prize multiple-path appp =5 app+1 1481/1480

Figure 1. Approximation factors and reductions for our peats.

is a constant-factor approximation for theilNMEXCESSPATH problem defined above, which uses an al-
gorithm for the min-cost-t path problem as a subroutine. We also give constant-fagimoaimations to
several related problems, including the max-prize tredlpro—the “dual” to thek-MST (min-cost tree)
problem—and max-prize cycle. Specific constants are givéigure 1. For the MN-EXCESSPATH prob-
lem, we derive a tighter analysis and an improved approxamadf 2 + ¢ in Section 3.2, based on the
min-costs-t path algorithm of [9]. This improvement gives a better appration factor of6.75 + 4 for the
DISCOUNTED-REWARD-TSP problem.

Our approximation algorithms reflect a series of reductfom® one approximation problem to another.
Improvements in the approximations for various problemspropagate through. We state approximation
factors in the formn.xy where XY denotes the problem being approximated; the first letteot@anthe
objective (cost, prize, excess, or discounted prize denoye’, P, £, and D respectively), and the second
the structure (path, cycle, or tree denotedthy, or T' respectively).

2.2 Preliminaries

To support dynamic programming in the max-prize variants,assume that all prizes are integers in the
range{1, ...,n%}—this allows us to “guess” the reward collected by the optisaéution by trying out all
integer values less thart. We can make this assumption by scaling the values down katthie maximum
value is exactlyn? (this guarantees that the optimal solution gets at ledseward). We then round each
value down to its nearest integer, losing an additive amotiat mostn, which is a negligible multiplicative
factor. This negligible factor does mean that an approxonaalgorithm for a max-prize problem with
guarantee: on polynomially bounded inputs has (weaker) guaranteeitfartly close toc” on arbitrary
inputs. For the NN-EXCESSPATH problem, we do not make this bounded-value assumption.iffipies
that the running time of our algorithm is linear in the totalue in the graph (the minimum value at any
location being 1). Note however that in our algorithms far thax-prize problems, we may use a bicriteria
version of MN-EXCESSPATH in which we approximate the value obtained to withifia- O(1/n)) factor
and excess to within atig p factor. We may then use the bounded value assumption, andiming time

is again bounded by a polynomialin



3 Min-Excess Path

Let P* be the shortest path fromto ¢ with II(P*) > k. Lete(P*) = d(P*) — d(s,t). Our algorithm
returns a pathP with II(P) > k and lengthd(P) = d(s,t) + agpe(P*), whereagp = 3acp — . Thus
we obtain a(2.5 + §)-approximation to MN-EXCESSPATH using an algorithm of Chaudhuri et al. [9] for
min-costs-t path (MCP) withacp = 2 + 6.

We begin with a brief description of the min-cost path altfori and approximation. In their paper
Chaudhuri et al. provide a subroutine for constructing a trentaining nodes andt that spans at leagt
vertice$ and has cost at mogt + %5) times the cost of the shortestt path withk vertices, for any fixed
constantd. To construct ars-t path from the tree obtained by the algorithm of Chaudhuril.etwee can
double all the edges, except those along the tree path4rmm. This gives us a partial “Euler tour” of the
tree that starts at and ends at. Clearly, the cost of such a path is at m@t+ §) times the cost of the
shortests-t path spanning priz&, for any fixed constani.

Now we return to the harder M-EXCESSPATH problem. The idea for our algorithm for M-
EXCESSPATH is as follows. Suppose that the optimum solution path enessill its vertices in increasing
order of distance from. We call such a patimonotonic We can find this optimum monotonic path via a
simple dynamic program: for each possible prize valaad for each vertekin increasing order of distance
from s, we compute the minimum excess path that starts at vertemds aé, and collects prize at leagt

We solve the general case by breaking the optimum patlsggmentshat are either monotonic (so can
be found optimally as just described) or “wiggly” (genengtia large amount of excess). We show that the
total length of the wiggly portions is comparable to the ascef the optimum path; our solution uses the
optimum monotonic paths and approximates the length of igglyportions by a constant factor, yielding
an overall increase proportional to the excess.

Consider the optimal patR* from s to ¢. We divide it into segments in the following manner. For any
reald, definef(d) as the number of edges @t with one endpoint at distance less thafrom s and the
other endpoint at distance at ledstom s. Note thatf(d) > 1 forall 0 < ¢ < d, (it may also be nonzero for
somed > d;). Note also thaf is piecewise constant, changing only at distances equartex/distances.
We break the real line into intervals according fto the type one interval@re the maximal intervals on
which f(d) = 1; the type 2 intervals are the maximal intervals on whi¢h) > 2. These intervals partition
the real line (out to the maximum distance reached by themypti solution) and alternate between types
1 and 2. Let the interval boundaries be labeded b, < by - - - b, Whereb,,, is the maximum distance of
any vertex on the path, so that tié interval is(b;,bi+1). Note that each, is the distance label for some
vertex. LetV; be the set of vertices whose distance frofialls in the:?” interval. Note that the optimum
path traverses each détexactly once—once it leaves somigit does not return. One of any two adjacent
intervals is of type 1; if the path left this interval and neted to it thenf(d) would exceed 1 within the
interval. Thus, the vertices @?* in setV; form a contiguousegmenbf the optimum path that we label as
S;i=P*NV,.

A segment partition is shown in Figure 2.

Note that for each, there may be (at most) 1 edge crossing frénto V; ;. To simplify the next two
lemmas, let us split that edge into two with a vertex at distdin from s, so that every edge is completely
contained in one of the segments (this can be done since dpeiehof the edge has distance exceeding
and the other endpoint has distance less than

Lemma 3.1. A segmenb; of type 1 has length at leasft, ; — b;. A segmens; of type 2 has length at least

The algorithm can be transformed easily to obtain a treerspgra given targeprize value—to each node with a prizer,,
we attachr, — 1 leaves, and run the algorithm on this new graph.

8



type 1 type 2 type 1 type 2 type 1 type 2

Figure 2: Segment partition of a path in gragh

3(bi+1 — b;), unless it is the segment containiti which case it has length at lea3td; — b;).

Proof. The length of segmerfi; is lower bounded by the integral ¢f{d) over thei?” interval. In a type 1
interval the result is immediate. For a type 2 interval, rtbte f (d) > 1 actually implies thaif (d) > 3 by
a parity argument—if the path crosses distasi¢eice only, it must end up at distance less tldan O

Corollary 3.2. The total length of type-2 segments is at n3e$P*) /2.

Proof. Let ¢; denote the length of segmentWe know that the length aP* is d; + e(P*) = >_ ¢;. Atthe
same time, we can write

m—1
A <bp =) (big1—=b)< Y L+ Y, )3
=1

i type1 i type2

It follows that

(P)=) ti—d > > 20/3

i type2
Multiplying both sides by3 /2 completes the proof. O

Having completed this analysis, we note that the corollamains true even if we do not introduce
extra vertices on edges crossing interval boundaries. Tdssing edges are no longer counted as parts of
segments, but this only decreases the total length of tyeg@ents.

3.1 A dynamic program

Our algorithm computes, for each interval that might be darwral of the optimum solution, a segment
corresponding to the optimum solution in that interval. Hern uses a dynamic program to paste these
fragments together using (and paying for) edges that cresgeen segments. The segments we compute
are defined by 4 vertices: the closeststand farthest-frons vertices,c and f, in the interval (which define
the start- and end-points of the interval: our computatslmiited to vertices within that interval), and the



first and last verticesy andy, on the segment within that interval. They are also definethbyamount
p of prize we are required to collect within the segment. TreeeethereforeO(IIn*) distinct segments to
compute, wherél is the total prize in the graph. For each segment we find amaoipti solution for a type
1 and a type 2 interval. For a type-1 interval the optimum gthonotonic; we can therefore compute (in
linear time) an optimum (shortest) monotonic path freio y that collects prize. If the interval is of type
2, the optimum path need not be monotonic. Instead, we uskl@f routine to approximate to within a
constant factor the minimum length of a path that starts &hishes at, stays within the boundaries of the
interval defined by: and f, and collects prize at leagt

Given the optimum type 1 and near-optimum type-2 segmerria@ted for each set of 4 vertices
and prize value, we can find the optimal way to paste some sobfisem together monotonically using a
dynamic program. Note that the segments corresponding todtimum path are considered in this dynamic
program, so our solution will be at least as good as the onestMeygusing the segments corresponding to the
ones on the optimum path (i.e., using the optimum type-1 se¢grand using the approximately optimum
type-2 segments). We need only show that this solution islgoo

We focus on the segments corresponding to the optimumpattConsider the segment; of length
¢; on the optimum path. I5; is of type 1, our algorithm will find a (monotonic) segment lwihe same
endpoints collecting the same amount of prize of no greatagth. IfS; is of type 2, our algorithm (through
its use of subroutine MCP) will find a path with the same ennigocollecting the same prize over length at
mostacpl;. Let L1 denote the total length of the optimum type 1 segments, hegetith the lengths of the
edges used to connect between segments.Li eenote the total length of the optimum type 2 segments.
Recall thatl,; + Ly = d; + ¢(P*) and that (by Corollary 3.2).5 < %e(P*). By concatenating the optimum
type-1 segments and the approximately optimum type-2 setanthe dynamic program can (and therefore
will) find a path collecting the same total prize 8% of total length at most

Li+acpLly =L+ Lo+ (cp — 1) Lo

<yt e(P) + (ace = 1) (3P

3 1

=d, + <§acp - 5) e(P").

In other words, we approximate the minimum excess to witHfactor of 2acp — 3.

3.2 Animproved approximation for Min-Excess

Our approximation guarantee forINFEXCESSPATH derived above is based on treating #heATH sub-
routine as a “black-box”. In this section we show how to dligimprove our approximation guarantee for
the MIN-EXCESSPATH problem by exploiting the details of the min-cost path ailfpon derived from the
work of Chaudhuri et al. [9].

Recall that Chaudhuri et al. provide an algorithm for carding a tree containing two nodesandt
that spans at leagtreward and has cost at mddt+ %5) times the cost of the optimatpath P* from s to
t. Doubling the edges of this tree, we obtain an approximatdhek-PATH problem withacp = (2 + 9).

In fact, if the optimal pathP* has length? = d(s,t) + €*, then the tree has length at mdst+
%5)(d(s, t) + €*). We convert this tree into a path frosrto ¢ by doubling all edges, except for the ones on
the tree path frons to ¢t. Noting that the total cost of “non-doubled” edges is attie#s, ¢t), we get a path
from s to ¢t of length at most{2 + §)(d(s,t) + €*) — d(s,t) = (1 + 9)(d(s,t) + €*) + € = (1 + )¢ + €*.
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This stronger guarantee gives us an improved guaranteeeopetfiormance of the M-EXCESSPATH
algorithm described above.

In particular, suppose that we apply theATH algorithm to a segment of type-2 with end poiatand
v, and having an optimum min-excess path with length d(u, v) 4+ . Then we get a path fromato v with
the same value and length at moktt §)¢ + ¢, for any fixed small constarit

Now we can apply Corollary 3.2 to obtain an approximationeimts of the excess. However, note that
the e in the above expression is the excess of the path betweerottes®m and v, and is not the same as
the difference of the excess of the pdth at v and its excess at. In order to obtain a bound in terms
of the latter, lete, denote the excess @P* from s to u, ande, the excess of°* from s to v. Then,
0= (dy+€) — (dy + €) < d(u,v) + €, — €,. Thereforeg < ¢, — ¢,, and the Chaudhuri et al. algorithm
returns a path of length at mast + 0)¢ + €, — €.

The dynamic program finds a path collecting the same totakevasP* and of total length at most

L+ (14 6)Ly + Y (ew—€) < Li+(1+0)Ly+e(P)
type 2 segments
= dt + 26(P*) + 5L2

< dy+2(P) + ?’2_56(P*)

where the last statement follows from Corollary 3.2. Therefwe get an approximation ratio ®f+- ¢’ for
the MIN-EXCESSPATH problem, for any small constant.

4 Maximum Discounted-Prize Path

In this section we present an approximation algorithm ferisCOUNTED-REWARD-TSP problem which
builds upon our MN-EXCESSPATH algorithm. Recall that we aim to optimizéP) = nydvav. Assume
without loss of generality that the discount factoryis= 1/2—we simply rescale each lengtho ¢’ such
thaty! = (%)Z/, i.e., ' =Lllogy(1/y).

We first establish a property of an optimal solution that weékenase of in our algorithm. Define the
scaled prizer’ of a nodev to be the (discounted) reward that a path gets at matifollows a shortest path
from the root tov. That is,x/, = m,v%. LetIl'(P) = 3", .p m,. Note that for any patt®, the discounted
reward obtained by’ is at mosfll’(P).

Now consider an optimal solutioR*. Fix a parametee that we will set later. Let be the last node on
the pathP* for which df* —d; < ¢, i.e., the excess of path* att is at most. Consider the portion aP*
from roots to ¢. Call this pathP;*.

Lemma 4.1. Let P} be the part of?* from s to t. Then,p(P;) > p(P*)(1 — 5-).

Proof. Assume otherwise. Suppose we shortetitby taking a shortest path froato the next node visited

by P* aftert. This new path collects (discounted) rewards from the eestofP* — P, which form more
than a2—1€ fraction of the total discounted reward by assumption. Thwtsutting procedure decreases the
distance on each of these vertices by at leasteaning these rewards are “undiscounted” by a factor of at
least2¢ over what they would be in patB*. Thus, the total reward on this path exceeds the optimum, a
contradiction. O

It follows that we can approximaieg P*) by approximating(P;"). Based on the above observation, we
give the algorithm of Figure 3 for finding an approximateltioyal solution. Note that “gues$ and “guess
k" are implemented by exhausting all polynomially many posisies.

11



Algorithm forDISCOUNTED-REWARD-TSP
1. Re-scale all edge lengths so that 1/2.

2. Replace the prize value of each node with the prize digeduhy the shortest path to that node:
7! = y%r,. Call this modified graplé’.

3. Guesg—the last node on optimal path* with excess less than
4. Guesgi—the value ofll'(P;).

5. Apply our MIN-EXCESSPATH approximation algorithm to find a path collecting scaled prizé&
with small excess.

6. Return this path as the solution.

Figure 3: Approximation for Maximum Discounted-Prize PEIhSCOUNTED-REWARD-TSP)

Our analysis below proceeds in termscof= agp, the approximation factor for our M-EXCESS
PATH algorithm.

Lemma 4.2. Our approximation algorithm finds a paff that collects discounted rewagd P) > T’ ( P;") /2°¢.

Proof. The prefix P;* of the optimum path shows that it is possible to collect stalezek = II'(P;") on

a path with excess. Thus, our approximation algorithm finds a path collecting $ame scaled prize with
excess at moste. In particular, the excess of any vertexn P is at mostwe. Thus, the discounted reward
collected aw is at least

(U) . l dy+ae _ l dy l ae _ 1 ae
PR =T 5 —™ 2) \2) T2
Summing over alb € P and observindl’(P) > II'(P*) > IT'(P;") completes the proof. O

Combining Lemma 4.2 and Lemma 4.1, we get the following:

Theorem 4.3. The solution returned by the above algorithm p&®) > (1 — - )p(P*)/2°<.

Proof.
p(P) >1I (P*)/QaE by Lemma 4.2
> p(Pf)/2¢ by definition ofr’
> (1 — —> *)/2%¢ by Lemma 4.1

O

We can now set as we like. Writingz = 27¢ we optimize our approximation factor by maximizing
(1 — z)z“ to deducer = a/(a + 1). Plugging in thisz yields an approximation ratio dft + agp)(1 +
1/OéEP)QEP.
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5 Orienteering

In this section we present an algorithm for computing an exiprately maximum-prize path of length
at mostD that starts at a specified vertex We will use the algorithm for MN-EXCESSPATH given in
Section 3 as a subroutine. Our algorithm for the Max-Prizblem is given in Figure 4. As before “guess
k" is implemented by performing a binary search.

Algorithm for Max-Prize PathQRIENTEERING)
1. Guessk, the amount of prize collected by an optimurR@NTEERING solution. Lete = [agp]| + 1.
2. For each vertex, compute the min-excess path frono v collecting prizek/«.

3. There exists a such that the min-excess path returned has length atbhasturn the corresponding
path.

Figure 4. Algorithm for Max-Prize Path (QRENTEERING)

We analyze this algorithm by showing that any optimumiENTEERING solution contains a low-excess
path which, in turn, is an approximately optimunR@NTEERING solution. More precisely, we prove that
for some vertex, there exists a path fromto v with excess at mos%i’" that collects prize at Ieascﬁip
whereagp is the approximation ratio for Mi-EXCESSPATH, app is the desired approximation ratio for
Max-Prize Path, andl* is the prize of the optimum Max-Prize Path. Assuming thismadists, our min-
excess path computation on this vertewill find a path with total length at most, + OéE'P% = Dand

prize at Ieasto%, providing anap p-approximation for QI ENTEERING.
Let ¢ be the last vertex on the optimumR@ENTEERING path. We first consider the case wheiis the
vertex at maximum distance frogon the optimum path.

Lemma 5.1. If there is a path frons to ¢ of length at mosD that collects prizdl, such that is the furthest
point froms along this path, then there is a path franto some node with excess at mosﬁ?;—d’“ and prize
at least! (for any integer > 1).

Proof. For each point: along the original pattP, lete(a) = df — d,; in other wordsg(a) is the excess in
the length of the path ta over the shortest-path distance. We ha{t¢ < D — d;. Consider mapping the
points on the path to a line froMto ¢(¢) according to their excess (we observe that excess onlyasese
as we traverse patR). Divide this line intor intervals with Iengtheg—t). Some such interval must contain at
Ieast% prize, since otherwise the entire interval froro ¢(¢) would not be able to collect priZé. Suppose
such an interval starts with nodeand ends with node. We consider a path from to v that takes the
shortests-a path, then follows patt® from a to v. This path collects the prize of the interval franto v in
the original path, which is a prize of at Ied%tas desired. The total length of this pathljs+ d* (a,v) =

dy +dP — dP = d, + e(v) — e(a) < d, + . The excess of this path &) < D=d: < D—dy O

Of course, in general the optimumREENTEERINGPath might have some intermediate node that is
farther froms than the terminal node We will generalize the above lemma to account for this case.

Lemma 5.2. If there is a path frons to ¢ of length at mosD that collects prizdI, then there is a path from

s to some node with excess at moé?;—d” and prize at Ieastr%1 (for any integerr > 1).
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Proof. Let f be the furthest point from along the given patl¥. We are interested in the case whegre ¢.
We can break patl into two pieces; first a path fromto f and then a path frorfi to ¢. Using the symmetry
of our metric, we can produce a second path froto f by using the shortest path fromto ¢ and then
following the portion of our original path fronfi to ¢ in reverse. We now have two paths frero f, each of
which has length at mog?. The total length of these paths is boundedby d;. We will call our pathsA
andB, and let their lengths bé +0 4 andd;+J 5 respectively. Note thaty +dp < D+d;—2d; < D—dy.

We now map path to the interval from0 to 64 according to the excess at each point, much as in
Lemma 5.1. We consider dividing this interval into piece:ﬁaulgth% (the last sub-interval may have
shorter length i 4 does not divide evenly). We perform the same process on/patiWe have created a
total of » + 1 intervals (this relies on the assumption thas integral, allowing us to bound the sum of the
ceilings of the number of intervals for each path). We codelthat some such interval has prize at least
T%. We suppose without loss of generality that this intervainspa portion of pati from a to v. We now
consider a path that travels fromto a via the shortest path and then franto v following path A. The

length of this path is bounded iy + 4292 for an excess of at modt= < D= a5 desired. O

Making use of Lemma 5.2, we can prove that our algorithm fenENTEERING obtains a constant
approximation. Making use of Chaudhuri et al.'s approxioratfor min-costs-t path [9] along with our
result on MN-EXCESSPATH from Section 3, we have &4approximation for QIENTEERING,

Theorem 5.3. Our algorithm is an([agp| + 1)-approximation for the max-prize patlORIENTEERING)
problem, wherexpp is the approximation factor foM IN-EXCESSPATH.

Proof. Lemma 5.2 implies that there exists a path frernto somev with excess

M%;H' Such a path has length + @;iﬁ , implying that the approximation algorithm for IM-ExCESS
PaTH will find a path froms to v with length at mostl, + (D — d,) = D and at least the same prize.
The algorithm described will eventually try the proper wswfk andv and find such a path in polynomial

time. O

ﬂ;iﬁ obtaining prize

6 Extensions

6.1 Max-Prize Tree and Max-Prize Cycle

In this section, we consider the tree and cycle variantsefJ3RIENTEERING problem. In Max-Prize Tree,
given a graphG with root r, prize functionll and lengthsi, we are required to output a tré&e rooted
atr with d(7) < D and maximum possible rewaid(7"). This problem is also called the Budget Prize-
Collecting Steiner Tree problem [19]. Although the unrabtersion of the problem can be approximated
to within a factor ofs + € via a 3-approximation fok-MST [19], the version of the problem in which a tree
is required to contain a specified vertex has remained op@rrecently.

Let the optimal solution for this problem be a tréé. Double the edges of this tree to obtain an Euler
tour of length at mos2D. Now, divide this tour into two paths, each starting from thet » and having
length at mostD. Among them, letP’ be the path that has greater reward. Now consider the Mae-Pri
Path problem on the same graph with distance litnit Clearly the optimal solutior®* to this problem
hasII(P*) > TI(P') > @ Thus, we can use thepp-approximation for QIENTEERING to get a
2a pp-approximation tol™.

Finally we note that we can use our algorithm for thRIENTEERING problem to approximate Max-
Prize Cycle. Namely, we can find an approximately maximuineptycle of length at modb that contains
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a specified vertex. To this end we apply our algorithm to an instance of thrRENTEERING problem with
the starting node and the length constrairi? /2. To obtain a cycle from the resulting path we connect its
endpoints by a shortest path. Clearly, the length of theltiegucycle is at mostD. Now, notice that an
optimal max-prize cycle of lengthh can span at most twice the amount of prize that an optimal pniae-
path of lengthD /2. Thus, usingvpp-approximation to @ ENTEERING We get2a p p-approximation to the
Max-Prize Cycle problem.

6.2 Multiple-path ORIENTEERING

In this section we consider a variant of th&@ @NTEERING in which we are allowed to construct up 4o
paths, each having length at mdst

We approximate this problem by applying the algorithm intec4 successively: times, to construct
thek paths. At the-th step, we set the prizes of all points visited in the firstl paths to 0, and constructed
the ¢-th path on the new graph, using th&k @NTEERING algorithm in Section 5. Using a set-cover like
argument, we get the following approximation guaranteeth®cases when all paths have the same starting
point and when different paths have different sfarts

Theorem 6.1. If all the paths have a common start node, the above algorigives al/(1 — e~ *rr)
approximation to Multiple-PatiODRIENTEERING. If the paths have different start nodes, the above algarith
gives aapp + 1 approximation to Multiple-PatfORIENTEERING.

Proof. Consider first the case when all the paths have the samengtg@aint. Let the difference in the
reward collected by the optimal solution and the rewardectéld by our solution up to stagéell;. At the
beginning, this is the total reward of the optimal solutié.stepi, at least one of the paths in the optimal
solution collects reward, not collected by the algorithmsktggei, of value at Ieas%Hi. Then, using the
approximation guarantee of the algorithm foRBNTEERING, our solution collects at Ieast%%lIP—P fraction

of this reward. Thatis[;;; < (1— ﬁ)ﬂi. By the end oft rounds, the total reward collected by optimal

solution, but not collected by us, is at m¢$t— kalpp)’“H(P*) < e~ *PPII(P*), and the result follows.
Next consider the case when different paths have differemtirsg locations. LeD; be the set of
points visited by the-th path in the optimal solution, and; be the corresponding set of points visited
by our algorithm. LetA; be the set of points that are visited by thth path in the optimal solution and
some other path in our solution. L& = U;0;, A = U;A; and A = U;A;. Now, in thei-th stage,
there is a valid path starting at thieh source, that visits all points i@; \ A;. Thus we havdI(4;) >
—L_(T1(0;) — TI(A;)). Summing ovet, we getappIl(A) > (II(O) — TI(A)). ButII(A) < TI(A). Thus

T1(4) > 11(0), 0

1
app+l

7 Hardness of approximation

All the problems discussed in this paper are NP-hard, asareegeneralizations of the Traveling Salesman
Problem. In this section we show that theNdEXCESS PATH problem and @IENTEERING are APX-hard,
that is, it is NP-hard to approximate these problems to widtn arbitrary constant factor.

The hardness of approximating theizMEXCESSPATH problem follows from the APX-hardness of
TSP [23]. In particular, we can reduce the TSP to an instahdé18-EXCESSPATH on the same graph,

5Subsequent to the initial publication of our work, Chekurila&umar [11] independently employed a similar analysisotber
“maximum-coverage” problems.
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with any one vertex as the start and the end point, and a resuaoth ofn. Then ana-approximation to
MIN-EXCESSPATH on this instance is also arapproximation to the TSP. We therefore get the following
theorem:

Theorem 7.1. TheMIN-EXCESSPATH problem is NP-hard to approximate to within a factor%%%.
Theorem 7.2. ORIENTEERING is NP-hard to approximate to within a factor &f3%.

Proof. We reduce the TSP o1, 2}-metrics to QRIENTEERING. In particular, lelG = (V, E') be a complete
graph onn nodes, with edges lengths in the $&t2}. Engebretsen and Karpinski [13] show that the TSP
is NP-hard to approximate within a factor bf- o = % on such graphs.

Our reduction is as follows. Let the length of the optimal Ts®kution beL = n + dn. (We simply try
all values ofL betweenn and2n.) Suppose that there is an algorithm that approximatRE@TEERING
within a factor ofl + 3, where < %ﬁ. We apply this algorithm to the gragh with distance limitL.
Note that the optimal solution (which is the optimal TSP paibilectsn — 1 nodes within distancé (all
nodes except the start, assuming a reward of 0 on the stag).ndtierefore, the solution returned by our

algorithm coIIectsHLﬁ (n — 1) nodes. We augment this solution to a tour containing all tiees, by using
(1-— ﬁ)(n — 1) 4+ 1 edges of length at mo&t Therefore, the length of our solution is at most

L+20-t5)n-1D)+2 = L+£Z5n—1)+2
< L+206n
= L+an<(1+a)L

where the second inequality follows from assuming that %.

Therefore, we get &l + a)-approximation to TSP of¥¥, contradicting the fact that TSP is NP-hard to
approximate to within &1 + «) factor on{1, 2}-metrics. O

Using a similar argument as forRKIENTEERING, we get a% hardness of approximation for the max-
prize cycle problem as well.

8 Conclusions

In this paper we give constant factor algorithms for tHRENTEERING problem, DSCOUNTED-REWARD-
TSP, and some of their variants. We also prove that it is Nf-ttaobtain a PTAS for the RIEENTEERING
and MIN-EXCESSPATH problems. An interesting open problem is to obtain betteragmations, or even

a PTAS, for these problems when the underlying metric isgslaAnother interesting open problem is to
consider the directed versions of the problems, althoughedieve that it may be hard to approximate these
to within constant or even logarithmic factors. Some regogress has been made in this direction by
Chekuri and Pal [12] who developed quasi-polynomial tingedgproximation algorithms for QENTEER-

ING and several related problems on directed graphs.

Even more ambitiously, returning to the MDP motivation fbistwork, one would like to generalize
these results to probabilistic transition functions. Hegre this has the additional complication that the
optimum solution may not even have a short description (ibifonger just a path). Still, perhaps some sort
of non-trivial approximation bound, or a result holding ingortant special cases, can be found. The Ph.D.
thesis of the second author [10] contains preliminary tssalthis direction.
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