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Abstract: Many natural games can have a dramatic difference betweequality of their best and
worst Nash equilibria, even in pure strategies. Yet, nealilyvork to date on dynamics shows only
convergence t@omeequilibrium, especially within a polynomial number of ssepln this work we
study how agents with some knowledge of the game might betahigickly (within a polynomial
number of steps) find their way to states of quality close ®hbstequilibrium. We consider two
natural learning models in which players choose betweeadyr®ehavior and following a proposed
good but untrusted strategy and analyze two importantetasbgames in this context, fair cost-sharing
and consensus games. Both games have extremely high PAocauathy and yet we show that behavior
in these models can efficiently reach low-cost states.

Keywords: Dynamics in Games, Price of Anarchy, Price of Stability, gsaring games, Consensus
games, Learning from untrusted experts

1 Introduction on fast convergence of both best response and re-

) ) _gret minimization dynamics to states with cost
There has been substantial work in the macm'&%mparable to the Price of Anarchy of the game

learning, game theory, and (more recently) alges 15 26, 28], whether or not that state is an equi-
rithmic game theory communities on understangpiym. This line of work is justified by the real-

ing the overall behavior of multi-agent systems 4o that in many cases the equilibrium nature
in which agents follow natural learning dynamg the system itself is less important, and what we
ics such as (randomized) best/better response a3de more about is having the dynamics reach a

no-regret learning. For example, it is well knowfy,y_cost state; this is a position we adopt as well.
that in potential games, best-response dynamics,

in which players take turns each making a best- However, while the above results are quite gen-
response move to the current state of all the otral, the behavior or equilibrium reached by the
ers, is guaranteed to converge to a pure-strate@yen dynamics could be as bad as Wm'stequi_
Nash equilibrium [24, 27]. Significant effort hagiprium in the game (the worst pure-strategy Nash
been spent recently on analyzing various propefquilibrium in the case of best-response dynamics
ties of these dynamics and their variations, in paify potential games, and the worst correlated equi-
ticular on their convergence time [1, 26]. No refiprium for no-regret algorithms in general games).
gret dynamics have also been long studied. Fggen for specific efficient algorithms and even
example, a well known general result that appligsr natural potential games, in general no bounds
to any finite game is that if players each follovpetter than the pure-strategy price of anarchy are
a “nO'internal-regret" strategy, then the empirica&nown_ On the other hand, many important po-
distribution of play is guaranteed to approach thential games, including fair cost-sharing and con-
set of correlated equi"bria of the game [17—19] sensus games, can have very high-cost Nash equi_
There has also been a lot of attention recentlijpria even though they also always have low-cost



equilibria as well; that is, their Price of Anarchysolutions might be known because people analyz-
is extremely high and yet their Price of Stability isng the specific instance being played might dis-
low (we discuss these games more in Section 1.thver and publish low cost global behaviors. In
Thus, a guarantee comparable with the cost of ttids case, individual players might then occasion-
worst Nash equilibrium can be quite unsatisfa@lly test out their parts of these behaviors, using
tory. them as extra inputs to their own learning algo-
. rithm or adaptive dynamics to see if they do in fact
Unfortunately, in general there have been very . . ) .
few results showina natural dvnamics that lead 0rowd.e benefit to themselves. The question then is
g y
low cost equilibria or behavior in games of thiga" t.hls process allow low cgst states to be reached
type, especially within a polynomial number ofind in what kinds of games?
steps. For potential games, it is known that noisy Motivated by this question, in this paper we de-
best-response in which players act in a “simulatedelop techniques for understanding and influenc-
annealing” style manner, also known as log-line@mng the behavior of natural dynamics in games
learning, doeshave the property that the statewith multiple equilibria, some of which may be
of highest probability in the limit are those min-of much higher social quality than others. In par-
imizing the global potential [8, 9, 23]. In fact,ticular we consider a model in which a low cost
as temperature approachesthese are the onlyglobal behavior is proposed, but individual play-
stochastically-stable states. However, as we shevs do not necessarily trust it (it may not be an
in Appendix A.2, reaching such states with norequilibrium, and even if it is they do not know if
negligible probability mass may easily require exathers will follow it). Instead, players use some
ponential time. For polynomial-time processe$orm of experts learning algorithm where one ex-
Charikar et al. [11] show natural dynamics rapidlpert says to play the best response to the current
reaching low-cost behavior in a special case efate and another says to follow the proposed strat-
undirected fair cost-sharing games; however, thesgy. Our model imposes only very mild conditions
results require specialized initial conditions andn the learning algorithm each player uses: dif-
also do not apply to directed graphs. ferent players may use completely different algo-

In this paper we initiate a study of how to aic{.'thms for deciding among or updating probabili-

q . o : L .ties on their two high-level choices. Assume that
ynamics, beginning from arbitrary initial condi-

tions, to reach states of cost close to li@stNash the players move in a _random ordgr. wil th,'s pro-
S .duce a low-cost solution (even if it doesn't con-
equilibrium. We propose a novel angle on this

roblem by considering whether providing mora€"9€ to anything)? We consider two variations of
P y g P g ?his model: dearn-then-decidenodel where play-

information to simple learning algorithms about . . W -
) ers initially follow an “exploration” phase where
the game being played can allow natural dynanj- -
ey put roughly equal probability on each expert,

[ reach h high li . At a hi )
¢s to reach such hig qua v stgtes ta .gollowed by a “commitment” phase where based
level, there are two barriers to simple dynamics

. . . . . on their experience they choose one to use from
performing well. One is computational: for di- :
th?n on, and amoothly adaptivenodel where

rected cost-sharing games for instance, we do r%Rey slowly change their probabilities over time.

even know of efficiententralizedprocedures for .~ . .
. . . ._ Within each we analyze several important classes
finding low-cost states in general. As an optimiza-

tion problem this is the Directed Steiner Fore:?f games. In particular, our main results are that

problem and the best approximation factor known both fair cost-sharing and consensus games,

is min(nl/2+¢, N4/5+¢ m2/3N¢) wheren is the these processes lead to good quality behavior.
number of players)V is the number of verticesand Our study is motivated by several lines of work.
m is the number of edges in the graph [12, 16Dne is the above-mentioned work on noisy best-
The other barrier is incentive-based: even if a lowesponse dynamics which reach high-quality states
cost solution were known, there would still be theut only after exponentially many steps. Anotheris
issue of whether players would individually wantvork on thevalue of altruisn{29] which considers

to play it, especially without knowing what othethow certain players acting altruistically can help
players will choose to do. For example, low-coghe system reach a better state. The last is the work



in [5] which considers a central authority who cafigure 1 A directed cost-sharing game, that mod-
temporarily controla random subset of the playergls a setting where each player can choose either
in order to get the system into a good state. Thgf drive its own car to work at a cost of 1, or share
modelis related to the model we consider here, bpitiblic transportation with others, splitting an over-
is much more rigid because it posits two classedl cost ofk. For anyl < k < n, if players arrive

of players (one that follows the given instructionsne a time and each greedily chooses a path min-
and one that doesn’t) and does not allow playersiifizing its cost, then the cost of the equilibrium
adaptively decide for themselves. (See Section JoBtained is:, wherea®OP'T has cost onlyk.

for more discussion).

1.1 Our Results

As described above we introduce and ana
two models for guiding dynamics to good eq
libria, and within these models we prove strc
positive results for two classes of games, fair (
sharing and consensus gamesa4playerfair cost
sharinggames, players choose routes in a netv
and split the cost of edges they take with others
ing the same edge; see Section 3 for a formal
inition. These games can model scenarios such as
whether to drive one’s own car to work or to share
public transportation with others (see Figure 1 f@how that so long as players place probability
a simple example) and can have equilibriaas mugh> 1/2 on the proposed optimal strategy, then
as a factor ofn. worse than optimal even thoughwith high probability play will reach the exact opti-
they are always guaranteed to have low-cost equoial behavior within a polynomial number of steps.
libria that are onlyO(log n) worse than optimal as Moreover for certain natural graphs such as the
well. In consensus gameplayers are nodes in aline and the grid, any > 0 is sufficient. Note that
network who each need to choose a color, and theyr results are actuallstrongerthan those achiev-
pay a cost for each neighbor of different color thaable in the more centralized model of [5], where
their own (see Section 4). These again can havere needs to make certain minimal degree assump-
wide gap between worst and best Nash equilibriutions on the graph as well.

(in this case, cos(n?) for the worst versus 0 for  In both our models it is an easy observation that
the best). for any game, if the proposed solution is a good

Our main results for these games are thequilibrium, then in the limit the system wiiven-
following. For fair cost-sharing, we showtually reach the equilibrium and stay there indef-
that in the learn-then-decide model, so lonigitely. Our interest, however, is in polynomial-
as the exploration phase has sufficient (polyntme behavior.
mial) length and the proposed strategy is near-
optimal, the expected cost of the system reachéd Related Work
is O(log(n)log(nm)OPT). Thus, this is only Dynamics and Convergence to Equilibria: It is
slightly larger than that given by the price of stawell known that in potential games, best-response
bility of the game. For the smoothly-adaptivelynamics, in which players take turns each mak-
model, if there are many players of each typiag a best-response move to the current state of
(i.e., associated to eadB;,t;) pair) we can do all the others, is guaranteed to converge to a pure-
even better, with high probability achieving cosstrategy Nash equilibrium [24, 27]. Significant ef-
O(log(nm)OPT), or evenO(OPT) if the num- fort has been spent recently on the convergence
ber of players of each type is high enough. Notéane of these dynamics [1, 26], with both exam-
that with many players of each type the price gfles of games in which such dynamics can take
anarchy remaing2(n) though the price of sta-exponential time to converge, and results on fast
bility becomesO(1). For consensus games, weonvergence to states with cost comparable to the




Price of Anarchy of the game [4, 15]. implies that in a two phase model, where in the

Another well known general result that appliefl'st Phase the jobs join one at a time and use the
to any finite game is that if players each folloy@reedy algorithm (or that of [3]), and in the sec-
a “no-internal-regret” strategy, then the empiricind Phase they perform a best response dynamics,
distribution of play is guaranteed to approach tHaFhieves cost within a fact@?(m) (or O(log m))
set of correlated equilibria of the game [17-19]. IRf OPtimal. This is in contrast to the unbounded
particular, for good no-regret algorithms, the enf-"ice of Anarchy in general.
pirical distribution will be are-correlated equilib- Taxation: There has also been work on using taxes
rium after O(1/€?) rounds of play [7]. A recent to improve the quality of behavior [13, 14]. Here
result of [20] analyzes a version of the weightedhe aim is via taxes tadjustthe utilities of each
majority algorithm in congestion games, showinglayer, such that the only Nash equilibria in the
that behavior converges to the set of weakly-stabiew game correspond to optimal or near-optimal
equilibria. This implies performance better thabehavior in the original game. In contrast, our fo-
the worst correlated equilibrium, but even in thisus is to identify how dynamics can be made to
case the guarantee is no better than the worst pureach a good result without changing the game or
strategy Nash equilibrium. adjusting utilities, but rather by injecting more in-

Noisy best-response has been shown in the linfirmation into the system.
to reach states of minimum global potential [8Public service advertising: Finally, the public
9, 23], and thus provide strong positive results iservice advertisingnodel of [5] also uses the idea
games with a small gap between potential and cost.a proposed strategy in order to move players
However, this convergence may take exponentiato a good equilibrium. In the model of [5], the
time, even for fair cost-sharing games. In partiglayers only once select (randomly) between fol-
ular we show in Appendix A.2 that if one makesowing the proposed strategy or not. Players then
many copies of the edges of cdsin the example stick with their decision while those that decided
of Figure 1, reaching a state with sufficiently manyiot to follow the proposed strategy settle on some
players on the shared path to induce others to f@lguilibrium for themselves (given the other play-
low along would take time exponential lneven ers actions are fixed). Then, in the last phase all
if the algorithm can arbitrarily vary its temperaturglayers perform a best response dynamics to con-
parameter. For details see Appendix A.2. verge to a final equilibrium (the convergence is

An alternative line of work assumes that the Syg,uaranteed since the discussion is limited to poten-
tem starts empty and players join one at a timtdal games). In contrast, in our models the players
Charikar et al. [11] analyze fair cost sharing i§ontinuously randomly re-select between follow-
this setting on amindirectedgraph where all play- ing the proposed strategy or performing a best re-
ers have a common sink. Their model has twgPonse. This continuous randomization makes the
phases: in the first, players enter one at a time af@@lysis of our dynamics technically more chal-
use a greedy algorithm to connect to the currel@ging. Conceptually, the benefit of our model is
tree, and in the second phase the players undetgat the players are “symmetric” and can continu-
best-response dynamics. They show that in tHa&isly switch between the two altern_atlves,_whmh
case a good equilibrium (one that is within On|§aetter m_odels selfish behavior. This continuous
a polylogn) factor of optimal) is reached. WeProcessis what enables thg playe_rs to both explore
discuss this result further in Appendix A. We re@nd exploit the two alternative actions.
mark here that for directed graphs, it is easy to con-
struct s_irnple examples where thi; process rgacfges A Formal Framework
an equilibrium that i2(n) from optimal (see Fig- ) o
ure 1). For scheduling on unrelated machines withl Notation and Definitions
makespan cost function, the natural greedy algo-We start by providing general notations and def-
rithm to assign incoming jobs is an(m) approx- initions. A game is denoted by a tuple
imation and a more sophisticated online algorithm
guarantees a®(logm) approximation [3]. This G = (N, (Si), (cost;))



whereN is a set ofn playersS,; is the finite action
space of playei € NV, andcost; is the cost func-
tion of playeri. The joint action space of the play
ersisS = &; x ... x §,. Forajoint actions € S
we denote by _; the actions of players # i, i.e.,
S—i = (81,.+y8i=1,8i-1,-.-,Sn). The cost func-
tion of player: maps a joint actiors € S to a
real non-negative number, i.&¢st; : S — RT.

Every game has associated a social cost functi

cost : § — R that maps a joint action to a real .
é%ghat it have low overall cost. Now, players move

value. In the cases discussed in this paper the
cial cost is simply the sum of players’ costs, i.e.,

cost(s) = Z cost;(s).

The optimal social cost is
PT(G) = mi .
OPT(G) min cost(s)

We sometimes overload notation and BT for
a joint actions that achieves co$9PT(G).

Given a joint actiors, theBest Response (BB)
playeri is the set of action8 R, (s) that minimizes
its cost, given the other players actions;, i.e.,
BR;(s—;) = argmingegs, cost;(a, s_;).

A joint actions € S is apure Nash Equilibrium
(NE) if no player: € N can benefit from unilat-
erally deviating to another action, namely, eve
player is playing a best response actionsjri.e.,

s; € BR;(s_;) for everyi € N. A best response

2.2 The Model

We now describe the formal model that we con-
sider. Initially, players begin in some arbitrary
state, which could be a high-cost equilibrium or
even a state that is not an equilibrium at all. Next
an entity, perhaps the designer of the system or a
player who has studied the system well, proposes
some better global behavi@. B may or may not
[be an equilibrium behavior, our only assumption

one at a time in a random order. Each player, when
it is their turn to move, chooses among two op-
tions. The first is to simply behave greedily and to
make a best-response move to the current configu-
ration. The second option is to follow their part of
the given behavioB. These two high-level strate-
gies (best-response or follofg) are viewed as two
“experts” and the player then runs some learning
algorithm aiming to learn which of these is most
suitable for himself. Note that best-response is
an abstractoption — the specific action it corre-
sponds to may change over time.

Because moves occur in an asynchronous man-
ner, there are multiple reasonable ways to model
the feedback each player gives to its learning al-

rg{orithm: for instance, does it consider the average

ost since the player’s previous move or just the
cost when it is the player’s turn to go, or some-
thing in between? In addition, does it get to ob-

dynamics is a process in which at each time S8rve the cost of the action it did not take (the full

some player which is not playing a best respon

fifformation model) or only the action it chose (the

switches its_ ac tion toa best response action, givgL, gt model)? To abstract away these issues, and
the current joint action. In this paper we focus 0f, o 5jiyy different players to address them differ-

potential games, which have the property that a
best response dynamics converges to a pure Nag

equilibrium [24].
Let N(G)
gameg. The Price of Anarchy(PoA) is defined

as the ratio between the maximum cost of a Nas

equilibrium and the social optimum, i.e.,
ma()é) cost(s)/OPT(G).

seN

The Price of Stability(PoS) is the ratio between
the minimum cost of a Nash equilibrium and the

social optimum, i.e.,

seI_I/l\}?g) cost(s)/OPT(G).

For a class of games, the PoA and PoS are the max-

imum over all games in the class

be the set of Nash equilibria of the

'%ﬁ%\l/y, we consider here two models that make only

mild assumptions on the kind of learning and
adaptation made by players.

Learn then Decide model: In this model, play-

p ersfollow an “exploration” phase where each
time it is their turn to move, they flip a coin
to decide whether to follow the proposed be-
havior B or to do a best-response move to
the current configuration. We assume that the
coin gives probability at leagtto 13, for some
constants > 0. Finally, after some common
time 7, all players switch to an “exploita-
tion” phase where they each commit in an ar-
bitrary way based on their past experience to
follow B or perform best response from then
on. (The timel™ is selected in advance.)



The above model assumes some degree of coother alternative) or even the sum total cost since
dination: a fixed timer™* after which all players its previous move, theB might appear better. Our
make their decisions. One could imagine insteadodel allows users to update in any way they wish,
each player having its own timeT;* at which it so long as the updates are sufficiently gradual.
commits to one of the experts, perhaps with the Finally, as mentioned in the introduction, in both
time itself depending on the player’s experienceur models it is an easy observation that for any
In the Smoothly-Adaptive model below we evegame, if the proposed solution is a good equilib-
more generally allow players to smoothly adjusium, then in the limit (a§™* — oo in the Learn-
their probabilities over time as they like, subjedhen-Decide model or a& — 0 in the Smoothly
only to a constraint on the amount by which probAdaptive model) the system willventuallyreach
abilities may change between time steps. the equilibrium and stay there indefinitely. Our in-

Smoothly Adaptive model: In this model, there t€rest, however, is in polynomial-time behavior.
are no separate exploration and exploitation
phases. Instead, each playanaintains and 3  Fair Cost Sharing

adjusts a valug; over time. When player The first class of games we study in this paper,

is chosen to move, it fli in of bi o X
S chosen to move, [t 1lips a coin o b.% because of its rich structure and wide gap between
to select between the proposed behavior or a

best-response move. choosifiawith prob- PHCE of anarchy and price of stability, is that of

ability p.p We allow lthe playegrvsv to E)Jse ar_fair cost sharing gamesThese games are defined

bitrary adaptive learning algorithms to adjus"f‘S .fOIIOWS' We-are given a gramﬁ = (V. E),
hich can be directed or undirected, where each

these probabilities with the sole requiremen .
that learning proceed slowly. Specifically, us.?Olgee € & has a nonnegative cosf > 0. There

ing p! to denote the value qf; at timet, we "> 2 setN' = {1,..., n} of n players, where player
require that 1 is associated with a souree and a sinki;. The

strategy set of playeris the setS; of s; — t; paths.

Pt —pit < A In an outcome of the game, each playehooses
3 — . .

a single path?; € S;. Given a vector of players’

for a sufficiently (polynomially) small quan-strategiess = (P, ..., P,), letz, be the number

tity A, and furthermore that for all, the ini- of agents whose strategy contains edgdn the
tial probabilityp? > p° for some overall con- fair cost sharing game the cost to ageist
stant0 < p° < 1. Note that the algorithm

may updatep; even in time steps at which it cost,(s) =
does not move. The learning algorithm may e€P;
use any kind of feedback or weight-updating ) ) )
strategy it wants to (e.g., gradient descent [38Nd the goal of each agent is to connect its termi-
31], multiplicative updating [10, 21, 22]) syb-nals with minimum total cqst. T.he social cost of
ject to this bounded step-size requirement. &n outcomes = (P, ..., F,) is defined to be

We say that the probabilities a(&', 5)-good

if for any timet < 7' we have for alk, p! > cost(Py, ... P) = Z Ce-

3. (Note that ifA < (p° — 8)/T then clearly e€Uibi

the probabilities ar¢T’, 5)-good.) It is well known that fair cost sharing games are
We point out that while one might at first think thapotential games [2, 24] and the price of anarchy in
any natural adaptive algorithm would learn to favafese games i®(n) while the price of stability is
best-response (always decreasir)y this depends H(n) [2], whereH(n) = Y7 1/i = ©(logn).
on the kind of feedback it uses. For instance, if the particular, the potential function for these games
algorithm considers only its costimmediately aftqg

Ce

Le

it moves, then indeed by definition best-response Le
will appear better. However, if it considers its cost D(s) = Z Z Ce/,
immediatelybeforeit moves (comparing that to e€Ez=1

what its cost would have been had it chosen thehich satisfies the following inequality:



Fact 1 In fair cost sharing, for anys € S we 3.1 The Main Arguments

have: cost(s) < ®(s) < H(n) - cost(s). We begin with the following key lemma that is

useful in the analysis of both learn-then-decide and

For ease of notation, we assume in this secti§inoothly adaptive models.
that the proposed stratedis the socially optimal

i i iffpOPT _ pB
behaviorOPT, so we can identify’; =P” Lemma 2 Consider a fair cost sharing game.

as t_he behavior proposed 8 to p_Iayerz. It B There exists & = poly(n), such that if the prob-

is different from OPT,_ the_n we simply lose theabilities are (T, 3)-good for constang > 0, then

corresponding approximation factor. with high probability the cost at tim& will be at
mostO(OPT log(mn)).

Overview of the Results and Analysis:Our main ~ Moreover, if we have at leasflog(nm) players
results for fair cost sharing are the following. Iof each(s;,t;) pair for sufficiently large constant
we have many players of each type (the type ofthen with high probability the cost at tinfewill

a player is determined by its souregand desti- beO(OPT).

nationt;) then in both the learn-then-decide and

smoothly adaptive models we can show that witg, ) . \ne begin with the general case. Let’"
high probability, behavior will reach a state of COS&enofe the number of players who usé edga

within a logarithmic factor oOPT within a poly- PT. We partition edges into two classes. We
nomial number of steps. Moreover, for the Iearrga

dge i “high traffic” edge if°rt
then-decide model, even if we do not have marg{y an edge 1s a ‘high traflic  €dge " =

players of each type we can show thatéxpected og(nm) Wher_ec is a sufficiently large constant
cost at the end of the process will be low (c = 32/ suffices for the argument below). We

say it is a “low traffic” edge otherwise.

The high level idea of the analysis is that we DefineT}, = 2n logn. With high probability, by
first prove that so long as each player randomizgge 7;, each player has had a chance to move at
with probability near to50/50, with high proba- |east once. We assume in the following that this in-
bility the overall cost of the system will drop togeed is the case. Note that as a crude bound, at this
within a logarithmic factor ofOPT in a poly- point the cost of the system is at most- OPT
nomial number of steps; moreover, at that poigach player will move to a path of cost-share at
both the best response and the proposed actions@ist OPT and therefore of actual cost at most
pretty good strategies from the individual players.OPT). Next, by Chernoff bounds and the union
pOint of view. To finish the analySiS in the “Learrbound, our choice of |mp||es that with h|gh prob-
then Decide” model, we show that in the remairabi“ty each high-traffic edgehas at leastn2’* /2
ing steps of the exploration phase theecteadost players on it at all ime stepg € [T, Ty + n®];
does not increase by much; using properties of t{i¢ particular, Chernoff bounds imply that each of
potential fUnCtion, we then show that in the finqhe at mostmn3 events has probabmty at least
“decision” roundT™, the overall potential cannoty _ —8n2""/8 > 1 _ 1/(mn)%. In the remain-

increase SubStantiaHy either, which in turn |mplleﬁ]g ana'ysis' we assume this indeed is the case as
a bound on the increase in overall cost. well.

For the adaptive model, one key difficulty in the Let OPT; denote the cost of playéin OPT,
analysis is to show that if the system reachessa thatOPT = )  OPT;. Our assumption
state where the social cost is low and both abstratiove implies that for any time stédpunder con-
actions are pretty good for most players, the cosideration, if playei follows the proposed strategy
never goes high again. We are able to show thBf"7, its cost will be at mostlog(nm)OPT;.
this indeed is the case as long as there are mdnyparticular, its cost on the low-traffic edges in
players of each type, no matter how the playeiR°”” can be at most a factarlog(nm) larger
adjust their probabilitiep! or make their choice than its cost on those edges un@PT, and its
between best-response and following the proposeakt on high-traffic edges is at mos2a3 factor
behavior. larger than its cost on those edges uno@&T.



We now argue as follows. Lebst denote the which is not possible since by definition &fr we
cost of the system at tinmg. If have

costp > 2clog(nm)OPT, Or < D+ (X7 — Xo) —TQ/n

then the expected cost of arandom player is at leggiich would be negative. Therefore, with high
probability stopping must occur before this time
as desired.

On the other hand, if playeris chosen to move at Finally, if we have at leastlog(mn) players of
time T, from the above analysis its cost after thgaCh type, then there are no low-traffic edge_s and
move (whether it chooses or best response) will S© We do not need to lose tadog(mn) factor in

be at mostlog(nm)OPT;. The expected valuethe argument. B

of this quantity over playerschosen at randomis \we now present a second lemma which will be
at moste log(nm)OPT /n. Therefore, if used to analyze the “Learn then Decide” model.

2¢log(nm)OPT /n.

costr > 2clog(nm)OPT, Lemma 3 Consider a fair cost sharing game in

the Learn-then-Decide model. If the cost of the
system at tim@? is O(OPT log(mn)), andT =
clog(nm)OPT /n. Ty + poly(n) < T*, then the expected value of the
potential at timeT" is O(OPT log(mn) log(n)).

the expected drop in potential at tirfieis at least

Finally, since the cost at tim&, was at most? -

OPT, which implies by Fact 1 the value of theProof: First, as argued in the proof of Lemma
potential was at most?(1 + log(n))OPT, with 2, with high probability for any playei and any
high probability this cannot continue for more thatime ¢t € [T%,77], the cost for player to fol-
O(n?) steps. Formally, we can apply Hoeffdinglow the proposed strategy at timeis at most
Azuma bounds for supermartingales as follows: lefog(nm)OPT; for some constant. Let us as-

us definel) = clog(nm)OPT and sume below that this is indeed the case.
Next, the above bound implies that if the cost
Ar = max(®r — P71+ Q/n, —2Q) at timet € [I3,T] is cost;, then the expected

_ ) _ ) decrease in potential caused by a random player
and consider running this process stopping When,,ing (whether following the proposed strategy
costr < 2Q). Let or performing best response) is at least

Xr=®+A1+... +Ar. (costy — clog(nm)OPT)/n;

Then throughout the process we have . . .
9 P in particular, cost;/n is the expected cost

E[X7|X1,..., X7_1] < X7y of a random player before its move, and
clog(nm)OPT)/n is an upper bound on the ex-
and pected cost of a random player after its move. Note
[ X7 — X7r_1] <2Q, that this is an expectation over randomness in the

_ . choice of player at time, conditioned on the value
where the first inequality holds because our analfx— pay

. ) . . f cost;. In particular, since this holds true for
sis showing an expected decrease in potential of at .

) ) any value ofcost;, we can take expectation over
least@/n is true even if we cap all decreases to : .

: : o e entire process from timé&; up to¢, and we

maximum of2Q as in the definition ofAr. So, by have that if
Hoeffding-Azuma (see Theorem 10 in Appendix

3 . }
B_), aftern s_t_eps in the non-stopped process with E[cost,] > ¢log(nm)OPT
high probability we would have

1 then
Xr = Xo < 5n%Q, E[®;1] < B[],



whered, is the value of the potential at time stephe total increase in potential after tini&* is at

t. mostO(OPT logn).
Finally, since®; < log(n)cost,, this implies  Since after all players have committed, poten-
that if tial can only decrease, this implies that the ex-
pected value of the potential at any tirhié > T
E[®,] > clog(nm)log(n)OPT is O(OPT log(mn)log(n)). Therefore, the ex-

pected cost at tim&” is at most this much as well,

then as desired. H

E[®:11] < E[®].

We now use Lemma 2 to analyze fair cost shar-
ing games in the adaptive learning model when the
number of players:; of each type (i.e., associated
to each(s;, t;) pair) is large.

Since for any value ofost; we always have
E[®;+1] < E[®{] + clog(nm)OPT /n,

this in turn implies by induction onthat
Theorem 5 Consider a fair cost sharing game in

E[®;] < the adaptive learning model satisfying = 2(m)
clog(nm)log(n)OPT + clog(nm)OPT/n for all i. There exists &, = poly(n) such that
if the probabilities are(71, 5)-good for constant
forall t € [T, T}, as desired. B £ > 0, then with high probability, foall 7" > T3
) , . ., _the cost attimd’ is O(log(nm)OPT).
Our main result_ in the “Learn then Decide Moreover, there exists constantsuch that if
model is the following: n; > max|m, ¢log (mn)] then with high probabil-

Theorem 4 For fair cost sharing games in the'ty’ forall T' > Ty the cost atimd” is O(OPT)

Learn then Decide model, a polynomial num-
ber of exploration step§™ is sufficient so that
the expected cost at any tmg > T* is
O(log(n)log(nm)OPT).

Proof: First, by Lemma 2 we have that with high
probability at some tim&}, < T3, the cost of the
system reach@@(OPT log(mn)). The key to the
argument now is to prove that once the cost be-
comes low, it willneverbecome high again. To do

such that with high probability the cost of the sydiS We use the fact that; is large for alli. Our

tem will be at mostO(OPT log(mn)) at some argument which follows the proof of Theorem 4.3
time Ty, € [I* — T,7*]. From Lemma 3, this " [6] is as follows. _ _
implies the expected value of the potential at time Lt U be the set of all edges in use at tiffig

T* right before the final exploitation phase i§/ong with all edges used B. In general, we will
O(OPT log(mn)log(n)). Finally, we consider insert an edge intd if it is ever used from then
the decisions made at timg*. When a player O" in the process, and we never remove any edge
chooses to make a best-response move, this &g U, even if it later becomes unused. letbe

only decrease potential. When a player choosg§ total cost of all edges iti. So,c” is an upper
B, this couldincreasepotential. However, for any bound on the cost of the current state and the only

edgee in the proposed solutio®s, the total in- Way ¢* can increase is by some player choosing a
crease in potential caused by edgeverall play- 0est response path that includes some edge not in

ers who have in their proposed solution is at most/- Now; notice that any time a best-response path
for some(s;, t;) player uses such an edge, the total

Ce - H(n2") = O(c. logn). cost of all edges inserted infé is at mostc* /n;,
because the current player can always choose to
This is because whenever a new player makes a thke the path used by the least-cost player of his
cision to commit to following the proposed strattype and those:; players are currently sharing a
egy and using edge, all previous players who total cost of at most*. Thus, any time new edges
made that commitment after tini€ and whose are added intd/, ¢* increases by at most a mul-
proposed strategy uses edgare still there. Thus, tiplicative (1 + 1/n;) factor. We can insert edges

Proof: From Lemma 2, there exist& = poly(n)



into U at mostm times, so the final cost is at mosbf (n?).! Thisis substantially worse than optimal
(either by arf2(n?) or infinite factor, depending on
cost(Tp)(1+ 1/ns=)", whether one allows an additive offset or not).
Unlike in the case of fair cost-sharing games,
wheren;~ = min; n;. This implies that as long asfor consensus games there is no hope of quickly
n; = Q(m) we havecost(T) = O(cost(Tp)) achieving near-optimal behavior fail 5 > 0. In
forall T > Ty. Thus, overall the total cost remaingatrticular, for anys < 1/2 there existse > 0
O(OPT log(mn)). in the example above such that if players choose
If n; > max|m, clog(mn)], we simply use the the proposed strateg§ with probability 3, with
improved guarantee provided by Lemma 2 to sdygh probabilityall nodes have more neighbors
that with high probability the cost of the systenperforming best response than followifsg Thus,
reaches)(OPT) within Ty < T} time steps, and it is easy to see by induction that no matter what
then apply the charging argument as above in ord#fategys is, all best-response players will remain
to get the desired result.l with their initial color. Moreover, this remains true
for exponentially inn many step$. On the other

hand, this argument breaks down for> 1/2. In

Variations: One could imagine a variation on OUka et we will show that ford > 1/2, for any graph

framework where rather than proposing a fixed b(a the system will in polynomial time reach opti-

havior B, one can propose a more complex straf- - | behavior (i3 = OPT)
egy such as “follows until time stepl™ and then It is interesting to compare this with the cen-

Jall & H 5 *
follow B™ or *follow B until time stepT™ and tralized model of [5] in which a central authority

:Eensperf(?[[]rln t'&zst-rt(_asponsde“.l I_r: th*e latter gast%kes control of a random constant fraction of the
e Smoothly-Adaptive model withl™, 5)-goo pl?yers and aims to use them to guide the selfish

probabilities becomes essentially a special case Ol vior of the others. In that setting, even sim-
the Learn-then-Decide model and all results abo (X low-degree graphs can cause a p;oblem For
for the Learn-then-Decide model go through i hstance, consider a grapfi consisting ofn /4
mediately. On the other hand, this type of Stra}f—cycles each in the initial equilibrium configura-

egy requires a form of global coordination that ONfon red, red, blue, blue. If the authority controls

would prefer to avoid. a randomg fraction of players (for any constant
£ < 1), with high probability a constant fraction of
4 Consensus Games _th(? 4-cycles conta_m no pl_ay_ers ur_1der the author-
ity’s control and will remain in a high-cost state.
Another interesting class of games we consid@n the other hand, it is easy to see that this specific
is that of consensus games. Here, players are vexample will perform well in both our learn-then-
tices in ann-vertex graphG, and each have twodecide or smoothly-adaptive models. We show that
choices of actionyed or blue. Players incur a in factall graphsG perform well, though this re-
cost equal to the number of neighbors they hawgiires care in the argument due to correlations that
of different color, and the overall social cost is thenay arise.
sum of costs of each player. The potential func- We assume that the proposed behayids the
tion for consensus games is simply half the sociaptimal behavior “all blue” and prove that with
cost function, or equivalently the number of edgesigh probability the configuration will reach this
having endpoints of different color. While in thesatate after)(n log® n) steps. We begin with a sim-
games optimal behavior is trivial to describe (ab——— , , ,
red or all blue for a total cost of 0) and is an equi-__'Muitively one can think of this example as two countries,
o ... one using English units and one using the metric system, nei-
librium, they also have extremely poor equilibrighe; wanting to switch.
as well. For example consider two cliquesrgf2 20f course, in the limit as the number of time steps—
vertices each, with each node also hav'mg/2 oo eventually we will observe a sequence in which all players
neighbors in the other clique for sorfie< a < 1. select3, and if B is an_eq_uiIiE)rium th:e system will then remain
. . AN . there forever. Thus i3 is “all blue” the system will in the
m. this case, there is a Nash equilibrium with ongnit converge to optimal behavior. However, our interestri
cligue red and one clique blue, for an overall cogblynomial time convergence.
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ple preliminary lemma. Equivalently, we can write this as

Lemma6 If Xq,..., X, are {0,1}-valued ran- L—g=(1-qg-1)(1—7).
dom variables withPr(X, = 1) > p, then no
matter how they are correlated, Sincey > 0 (becauses > 1/2), this in turn

implies thatt = O(logn) is sufficient to reach
1 — ¢ < 1/n% meaning that with high probability
all nodes are blue as desired.
We prove this bound og; as follows. Consider
the nodes who move at timé§_; + 1,T;_1 +
d-pyag+(d/2)- (1 —pras) 2,...,T; in order. When some nodemoves, by
induction each neighbar of v has probability at
where leastq; of being blue (though these may not be
— Pr(MAJORITY(X,, ..., X4) = 1)). independent). By assumption,chooses with
para Lo some probabilitys’ > 3 > 1/2 and chooses best-
Solving, we geparas >2p—1. B response with probability — 3. Therefore, the
. . .__probabilityv becomes blue is at least:
We now present our main result of this section.

Theorem7 In both Learn-then-Decide and? + (1 —/3")Pr(majority of nbrs ofv are blug
Smoothly-Adaptive models, for any constant> (' +(1—/)(2¢;:—1 —1) (by Lemma 6)
B > 1/2, if the proposed behavioB is op- = (1—-(26 —=1)q_1+ (26 1)

timal then with high probability play will _ on_
become optimal inO(nlog2 n) steps. For the — (1=7g-1+7 (fory =26 -1)
Smoothly-Adaptive model we assume behaviorgs desired. Thus, with high probability all nodes
(enlog®n, 3)-good for sufficiently large constantare blue by timeZ} for t = O(logn), and by our

c. assumption orS' this occurs withinO(n log® n)

Pr(MAJORITY (X;,..., Xq) =1) > 2p— 1.

Proof: The expected number of 1's is at leaslt
Itis also at most

V

Proof: In both models the dynamics contairsteps- B
two random processes: the random order in whichThe general result above requirés> 1/2, and
players move and the random coins flipped by thg noted earlier there exists grapfisand initial
players to determine how they want to move. lgonfigurations such that the process will fail for
order to prove the theorem it will be helpful to sepany 3 < 1/2. On the other hand, for several “nice”
arate these two processes and consider them eggdphs such as the line or griahyconstant3 > 0
in turn. is sufficient. For this we assume that best-response
First, consider and fix a random sequertef will only ask to switch color if the new color is
players to move. Lel; denote the time by which strictly better than the current color.
all players have moved at least once according to
S, and more generally lef;, ; denote the time by Theorem 8 For the line andd-dimensional grid
which all players have moved at least once singgaphs (constant), for anys > 0, if the proposed
time 7;. Since players move i.i.d. in a randonaction is optimal then with high probability play
order, with high probability, ., < T;+3nlog(n) Wil reach optimalin polyn) steps. For the case of
forallt = 1,...,n. We assume in the followingthe Smoothly-Adaptive model we assume behavior
that this indeed is the case; in fact, we can all®wis (7', 3)-good forT" a sufficiently large polynomial
to be an arbitrary, adversarially-chosen sequeniten.
subject to this constraint. ) .
Fixing S, we now consider the coin flips of the Proof: Assumes is “all blue”. On the line, if
individual players. We will prove by induction that@Y two neighbors become blue, they will remain

each player has probability at leasof being blue Plu€ indefinitely. Similarly in the grid, if anyl-
at time T} (not necessarily independently) for dimensional cube becomes blue, the nodes in the

cube will also remain blue indefinitely. On the line,
g =1 —=7)g—1+~ for y=26-1. any neighbors, in any two consecutive steps, have
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probability at least3? /n? of becoming blue, and assumptions on the learning algorithms the players
on thed-dimensional grid, any cube, in a@§ con- are using. In particular, if players are trying to de-
secutive steps, has probability at legsfn)?" of cide between various learning dynamics (best re-
becoming all blue. Therefore with high probabilitgponse, regret minimization, noisy best response,
all nodes become blue in a polynomial number @tc.), and if they use an experts learning algorithm
steps. B to decide between these actions, can we show that
if following the the best of the dynamics is good
for all players and if the experts learning algo-

5 Conclusions and Future Directions rithms have appropriate properties, then the play-

] o _ers will do nearly as well as if they had used the
In this paper we initiate a study of how to aig)ggt dynamics?

dynamics, beginning from arbitrary initial con- Finally, in both of the games we consider play-

ditions, to_ _regch states of cost close t0 $&st g ith the same profile (the same source and des-
Nash equilibrium. We propose a novel angle Of,ation in the fair cost sharing case) receive the

this problem by considering how providing morg,me giobal advice, which can also be easily com-
information to simple learning algorithms abouf, nicated as a single message. It would be inter-
the game being played can allow the dynam'%%ting to also analyze games where players with

to_ reach SUCh_ low-cost states. We show that fife same profile might receive different global ad-
fair cost-sharing and consensus games, propgso

ing a good solution and allowing users to adap- One way to view our model is as follows. Start-

tively decide for themselves between that solutiqﬂg from the original game, we create a meta-game
and best-response behavior will efficiently Ieag| which each player is p;Iaying one of the two

o near—optmal configurations, so long as US€Lhstract actions, best response and the proposed
adapt sufficiently slowly. Both of these game

Strategy. We then show that if the players learn in
have the property that all by itself, random best r gy Pay

| 4 unin a hiah i e new meta-game, with restrictions only on the
sponse may easily end up in a hig -cost stath. C?éérning rate, then this results in good behavior in
Q(n - OPT) for fair cost-sharing and co$(n?)

: ) . /. the original game. More generally, it would be in-
for consensus, whereas with this additional aid ﬂf@resting to further explore the idea of designing

?tates rez;ch_ed ha\éef cost only polyley- OPT “meta games” on the top of the actual games and
or cost-sharing and for consensus. showing that natural behavior in these meta games

Open questions and future directions g}stiuce good behavior in the original game of inter-

Our results for fair cost sharing games in the
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A Further Discussion of Other Dy- A2 A Lower Bound for Noisy Best-

namics Response
_ ] In noisy best-response dynamics (also called
A.1 Players Entering One at a Time log-linear learning [23]), when it is playeéls turn

to move, it probabilistically chooses an action with

A;sdmenthne::] |r: Sectl?)n 1'2’t03.e ;o_rm 0]; nTﬁ probability that decreases exponentially with the
ural dynamics that have been studied in potent, p between the cost of that action and the cost

games Is where the Sygf mllftarts elm[:iti/ andlpl "the best-reponse action. The rate of decrease
i soting fo faifcost sharing on amlrecteq = controled by a temperature term much ik

: in simulated annealing. In fact, the dynamics can
graph where all players have a common sink. Th viewed as a form of simulated annealing with
consider a two-phase pracess. In Pliashe play- the global potential as the objective function. At

ers arrive one by ane and each connects to the "9%%o temperature, the dynamics is equivalent to

.by greecri]ily Ichoosing a gatr; minimizing its Coststir:\dard (non-noisy) best response, and at infinite
l.e., each selects a greedy (best response) pat {& nperature the dynamics is completely random.

ative to the selection of paths by the previous pla_)o\-/h”e it is known that with appropriate temper-
ers. In Phase, players are allowed to change thel:[:,tture control this process in the limit will stabi-

paths in order to decrease their costs, namely, I2e at states of optimum global potential, we show

the second step players play best response dynEHgFe there exist cost sharing instances such that no

ics. Charikar et al. [11] show that interestingly thca namics of this form can achieve expected cost
sum of the players’ costs at the end of the first ste n-OPT/ log n) within a polynomial number of
will be within an O(log? n) factor of the cost of time steps 5

3 Sf.OC'E;"%/ obptlmal .S(_)Iut|ons(;/vh|ch tm this caset.|s We begin with a definition capturing a broad
efined to be a minimum Steiner tree connect nge of dynamics of this form.

the players to the root). This then then implies that

the cost of the Nash equilibrium achieved in thpefinition 1 Let generalized noisy best response

second step, as well as all states reached along #y@amicsbe any dynamics where players move

way, areO(log” n) close toOPT. one at a time in a random order, and when it is

Note that in the directed case the result abo@gdiven player’s turn to move, it probabilistically
does not hold, in fact such dynamics can lead &lects among its available actions. The sole re-
very poor equi"bria_ Figure 1 shows an examp|guirement is that if actiom is a worse response
where if the players arrive one by one and eadfr playeri than actiond to the current states,
connects to the root by greedily choosing a pafid furthermore: has been a worse response than
minimizing its cost, then the cost of the equilibb to all past states’, then the probability of choos-
rium obtained can be much worse than the cost & a should be at most the probability of choosing
OPT. The optimal solution which is also a Nast-

equilibrium in this example i§Py, . .., P,) where —
q pleier, ..., ) The above definition captures almost any natu-

P, = s; — v — t for eachi; however the so- lindividual | ing-based d . Wi
lution obtained if the players arrive one at a tim& 'ndividual learning-based dynamics. ¥ve now
how that no dynamics of this form can achieve

and each connects to the root by greedily chood. .
ing a path minimizing its cost i§P}, ..., P.) expected cosi(n - OPT/ logn) within a polyno-

where P! — s; — ¢ for each player. Clearly, mial number of time steps for fair cost-sharing.

cost(l,. .., F) = nwhich is much worse thanTheorem 9 For the fair cost sharing game, no
cost(OPT) = k. Moreover, if one modifies the generalized noisy best response dynamics can

example by making many copies of the edge gkhjeve expected costn - OPT/ logn) within
costk, then even if behavior begins inrandom 4 polynomial number of time steps.

initial configuration, with high probability each

edge of costk will have few players on it and so Proof: We consider a version of the “cars or
best-response behavior will lead to the equilibriupublic transit” example of Figure 1, but where each
of costn. player hasn cars (options of cost 1 that cannot

14



be shared by others). For this problem, we cdetween); andv;_; for1 < ¢ < k—1. In addition,
describe the evolution of the system as a randamdev, has(n — 1) - (k — 1)! edges in self-loops
walk on a line, where the current positianin- since the probabilityp o is at least(n — 1)/n.
dicates the number of players currently using thEherefore, since the stationary distribution of an
public transit (the shared edge of c@3t The ex- undirected random walk is proportional to the de-
act probabilities in this walk depend on specificgree of each node [25], we have that

of the dynamics and may even change over time,

but one immediate fact is that so long as the walk me < 1/(n- (k= 1)) < 1/kL

has never reached> £k, the shared edge of cost . )

k is a worse response to any player than its edgeStlY, since the expected tinig,;. between con-
of cost1. Therefore, by definition of generalizedb€CUtive Visits to node; satisfiesiy, = 1/m; by
noisy best response, each player has at mogha the Fundamental Theorem of Markoy Chains, the
chance of choosing the shared edge, and at lea§RECted timeigy; to reachu;. from vy is at least
1—1/n chance of choosing a private edge, when}¢ ™ as well. So, the expected time to reagh

is that player's turn to move. Since positiogor- 1S at leastk! which is superpolynomial im for
responds to &/n fraction of players on the shared® = 108(1) (or evenk = w(logn/loglogn)).

edge and d — t/n fraction on private edges, this Finally, the fact that the expected time to reach

in turn implies that given that the random walk i@0Sitionk is superpolynomial im implies that the
in position1 <t < k — 1 probability of reaching positiok within a polyno-

mial number of time steps is less thafpoly(n):
t specifically, if the walk has probability of reach-
2. the probabilityp; ;_; of moving to position i_ng positionk in T time steps starting from posi-
t—1lisatleas(l — L)%, t!on 0, then by the_ Markov property the expected
[ time to reach positiork is at most7’/p. More-
over, so long as the walk has not yet reached po-
sition k, the cost of the system B(n) = O(n -
<1/t. OPT/k). Thus, the expected cost of the sys-
tin—1) ~ tem within a polynomial number of time steps is

We now argue that the expected time for thig(n - OPT/logn) as desired. B
walk to reach positiont is superpolynomial in
n for k = logn. In particular, consider a sim- .
plified version of the above Markov chain WhereB Hoeffding-Azuma
Dri+1/Pet—1 = 1/t (rather than< 1/¢) and For completeness we present here the
we delete all self-loops except at the origin (sboeffding-Azuma  concentration bound for
priv1 = 1/(t+1)andp; 1 =t/(t+ 1) for 1 < supermartingales.
t < k — 1). Deleting self-loops can onlgecrease .
the expected time to reach positibsince it corre- Theorem 10 SupposeXo, X, X5, .. Is a super-
sponds to simply ignoring time spentin self-loop@artmgale’ namely that
and the same for setting ++1/p:+—1 = 1/t. So,
it suffices to show the epoC/ted time fo{ this sim- Bl X Xia] < X,
plified walk to reach positiok is superpolynomial for || 1. Suppose also that for all we have
inn.

For convenience, set, -1 = 1. We can | Xr — X 1] < C.
now solve for the stationary distributian of this
chain. In particular, the simplified Markov chain isThen, for any\ > 0 and anyn > 1,
now equivalent to a random walk on an undirected o
multigraph with verticesy, vy, . . ., v, having one PrX, > Xo+ )\ < e /GO,
edge between;, andv,_1, (k — 1) edges between
vg—1 andvg_q, (k—1)(k—2) edges between,
andv,_3, and in generglk — 1)(k —2) - - - t edges

1. the probabilityp; ;41 of moving to position
t+ lisatmost (1 — L), and

(with remaining probabilit — p; ++1 — p+ +—1 the
walk remains in positiom). In particular,

Pt+1/Pei—1 <
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