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Abstract: Many natural games can have a dramatic difference between the quality of their best and
worst Nash equilibria, even in pure strategies. Yet, nearlyall work to date on dynamics shows only
convergence tosomeequilibrium, especially within a polynomial number of steps. In this work we
study how agents with some knowledge of the game might be ableto quickly (within a polynomial
number of steps) find their way to states of quality close to the bestequilibrium. We consider two
natural learning models in which players choose between greedy behavior and following a proposed
good but untrusted strategy and analyze two important classes of games in this context, fair cost-sharing
and consensus games. Both games have extremely high Price ofAnarchy and yet we show that behavior
in these models can efficiently reach low-cost states.
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1 Introduction

There has been substantial work in the machine
learning, game theory, and (more recently) algo-
rithmic game theory communities on understand-
ing the overall behavior of multi-agent systems
in which agents follow natural learning dynam-
ics such as (randomized) best/better response and
no-regret learning. For example, it is well known
that in potential games, best-response dynamics,
in which players take turns each making a best-
response move to the current state of all the oth-
ers, is guaranteed to converge to a pure-strategy
Nash equilibrium [24, 27]. Significant effort has
been spent recently on analyzing various proper-
ties of these dynamics and their variations, in par-
ticular on their convergence time [1, 26]. No re-
gret dynamics have also been long studied. For
example, a well known general result that applies
to any finite game is that if players each follow
a “no-internal-regret” strategy, then the empirical
distribution of play is guaranteed to approach the
set of correlated equilibria of the game [17–19].

There has also been a lot of attention recently

on fast convergence of both best response and re-
gret minimization dynamics to states with cost
comparable to the Price of Anarchy of the game
[4, 15, 26, 28], whether or not that state is an equi-
librium. This line of work is justified by the real-
ization that in many cases the equilibrium nature
of the system itself is less important, and what we
care more about is having the dynamics reach a
low-cost state; this is a position we adopt as well.

However, while the above results are quite gen-
eral, the behavior or equilibrium reached by the
given dynamics could be as bad as theworstequi-
librium in the game (the worst pure-strategy Nash
equilibrium in the case of best-response dynamics
in potential games, and the worst correlated equi-
librium for no-regret algorithms in general games).
Even for specific efficient algorithms and even
for natural potential games, in general no bounds
better than the pure-strategy price of anarchy are
known. On the other hand, many important po-
tential games, including fair cost-sharing and con-
sensus games, can have very high-cost Nash equi-
libria even though they also always have low-cost
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equilibria as well; that is, their Price of Anarchy
is extremely high and yet their Price of Stability is
low (we discuss these games more in Section 1.1).
Thus, a guarantee comparable with the cost of the
worst Nash equilibrium can be quite unsatisfac-
tory.

Unfortunately, in general there have been very
few results showing natural dynamics that lead to
low cost equilibria or behavior in games of this
type, especially within a polynomial number of
steps. For potential games, it is known that noisy
best-response in which players act in a “simulated-
annealing” style manner, also known as log-linear
learning, doeshave the property that the states
of highest probability in the limit are those min-
imizing the global potential [8, 9, 23]. In fact,
as temperature approaches0, these are the only
stochastically-stable states. However, as we show
in Appendix A.2, reaching such states with non-
negligible probability mass may easily require ex-
ponential time. For polynomial-time processes,
Charikar et al. [11] show natural dynamics rapidly
reaching low-cost behavior in a special case of
undirected fair cost-sharing games; however, these
results require specialized initial conditions and
also do not apply to directed graphs.

In this paper we initiate a study of how to aid
dynamics, beginning from arbitrary initial condi-
tions, to reach states of cost close to thebestNash
equilibrium. We propose a novel angle on this
problem by considering whether providing more
information to simple learning algorithms about
the game being played can allow natural dynam-
ics to reach such high quality states. At a high
level, there are two barriers to simple dynamics
performing well. One is computational: for di-
rected cost-sharing games for instance, we do not
even know of efficientcentralizedprocedures for
finding low-cost states in general. As an optimiza-
tion problem this is the Directed Steiner Forest
problem and the best approximation factor known
is min(n1/2+ǫ, N4/5+ǫ, m2/3N ǫ) wheren is the
number of players,N is the number of vertices and
m is the number of edges in the graph [12, 16].
The other barrier is incentive-based: even if a low-
cost solution were known, there would still be the
issue of whether players would individually want
to play it, especially without knowing what other
players will choose to do. For example, low-cost

solutions might be known because people analyz-
ing the specific instance being played might dis-
cover and publish low cost global behaviors. In
this case, individual players might then occasion-
ally test out their parts of these behaviors, using
them as extra inputs to their own learning algo-
rithm or adaptive dynamics to see if they do in fact
provide benefit to themselves. The question then is
can this process allow low cost states to be reached
and in what kinds of games?

Motivated by this question, in this paper we de-
velop techniques for understanding and influenc-
ing the behavior of natural dynamics in games
with multiple equilibria, some of which may be
of much higher social quality than others. In par-
ticular we consider a model in which a low cost
global behavior is proposed, but individual play-
ers do not necessarily trust it (it may not be an
equilibrium, and even if it is they do not know if
others will follow it). Instead, players use some
form of experts learning algorithm where one ex-
pert says to play the best response to the current
state and another says to follow the proposed strat-
egy. Our model imposes only very mild conditions
on the learning algorithm each player uses: dif-
ferent players may use completely different algo-
rithms for deciding among or updating probabili-
ties on their two high-level choices. Assume that
the players move in a random order. Will this pro-
duce a low-cost solution (even if it doesn’t con-
verge to anything)? We consider two variations of
this model: alearn-then-decidemodel where play-
ers initially follow an “exploration” phase where
they put roughly equal probability on each expert,
followed by a “commitment” phase where based
on their experience they choose one to use from
then on, and asmoothly adaptivemodel where
they slowly change their probabilities over time.
Within each we analyze several important classes
of games. In particular, our main results are that
for both fair cost-sharing and consensus games,
these processes lead to good quality behavior.

Our study is motivated by several lines of work.
One is the above-mentioned work on noisy best-
response dynamics which reach high-quality states
but only after exponentially many steps. Another is
work on thevalue of altruism[29] which considers
how certain players acting altruistically can help
the system reach a better state. The last is the work
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in [5] which considers a central authority who can
temporarily controla random subset of the players
in order to get the system into a good state. That
model is related to the model we consider here, but
is much more rigid because it posits two classes
of players (one that follows the given instructions
and one that doesn’t) and does not allow players to
adaptively decide for themselves. (See Section 1.2
for more discussion).

1.1 Our Results
As described above we introduce and analyze

two models for guiding dynamics to good equi-
libria, and within these models we prove strong
positive results for two classes of games, fair cost
sharing and consensus games. Inn-playerfair cost
sharinggames, players choose routes in a network
and split the cost of edges they take with others us-
ing the same edge; see Section 3 for a formal def-
inition. These games can model scenarios such as
whether to drive one’s own car to work or to share
public transportation with others (see Figure 1 for
a simple example) and can have equilibria as much
as a factor ofn worse than optimal even though
they are always guaranteed to have low-cost equi-
libria that are onlyO(log n) worse than optimal as
well. In consensus games, players are nodes in a
network who each need to choose a color, and they
pay a cost for each neighbor of different color than
their own (see Section 4). These again can have a
wide gap between worst and best Nash equilibrium
(in this case, costΩ(n2) for the worst versus 0 for
the best).

Our main results for these games are the
following. For fair cost-sharing, we show
that in the learn-then-decide model, so long
as the exploration phase has sufficient (polyno-
mial) length and the proposed strategy is near-
optimal, the expected cost of the system reached
is O(log(n) log(nm)OPT). Thus, this is only
slightly larger than that given by the price of sta-
bility of the game. For the smoothly-adaptive
model, if there are many players of each type
(i.e., associated to each(si, ti) pair) we can do
even better, with high probability achieving cost
O(log(nm)OPT), or evenO(OPT) if the num-
ber of players of each type is high enough. Note
that with many players of each type the price of
anarchy remainsΩ(n) though the price of sta-
bility becomesO(1). For consensus games, we

Figure 1 A directed cost-sharing game, that mod-
els a setting where each player can choose either
to drive its own car to work at a cost of 1, or share
public transportation with others, splitting an over-
all cost ofk. For any1 < k < n, if players arrive
one a time and each greedily chooses a path min-
imizing its cost, then the cost of the equilibrium
obtained isn, whereasOPT has cost onlyk.

show that so long as players place probability
β > 1/2 on the proposed optimal strategy, then
with high probability play will reach the exact opti-
mal behavior within a polynomial number of steps.
Moreover for certain natural graphs such as the
line and the grid, anyβ > 0 is sufficient. Note that
our results are actuallystrongerthan those achiev-
able in the more centralized model of [5], where
one needs to make certain minimal degree assump-
tions on the graph as well.

In both our models it is an easy observation that
for any game, if the proposed solution is a good
equilibrium, then in the limit the system willeven-
tually reach the equilibrium and stay there indef-
initely. Our interest, however, is in polynomial-
time behavior.

1.2 Related Work
Dynamics and Convergence to Equilibria: It is
well known that in potential games, best-response
dynamics, in which players take turns each mak-
ing a best-response move to the current state of
all the others, is guaranteed to converge to a pure-
strategy Nash equilibrium [24, 27]. Significant ef-
fort has been spent recently on the convergence
time of these dynamics [1, 26], with both exam-
ples of games in which such dynamics can take
exponential time to converge, and results on fast
convergence to states with cost comparable to the
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Price of Anarchy of the game [4, 15].

Another well known general result that applies
to any finite game is that if players each follow
a “no-internal-regret” strategy, then the empirical
distribution of play is guaranteed to approach the
set of correlated equilibria of the game [17–19]. In
particular, for good no-regret algorithms, the em-
pirical distribution will be anǫ-correlated equilib-
rium afterO(1/ǫ2) rounds of play [7]. A recent
result of [20] analyzes a version of the weighted-
majority algorithm in congestion games, showing
that behavior converges to the set of weakly-stable
equilibria. This implies performance better than
the worst correlated equilibrium, but even in this
case the guarantee is no better than the worst pure-
strategy Nash equilibrium.

Noisy best-response has been shown in the limit
to reach states of minimum global potential [8,
9, 23], and thus provide strong positive results in
games with a small gap between potential and cost.
However, this convergence may take exponential
time, even for fair cost-sharing games. In partic-
ular we show in Appendix A.2 that if one makes
many copies of the edges of cost1 in the example
of Figure 1, reaching a state with sufficiently many
players on the shared path to induce others to fol-
low along would take time exponential ink even
if the algorithm can arbitrarily vary its temperature
parameter. For details see Appendix A.2.

An alternative line of work assumes that the sys-
tem starts empty and players join one at a time.
Charikar et al. [11] analyze fair cost sharing in
this setting on anundirectedgraph where all play-
ers have a common sink. Their model has two
phases: in the first, players enter one at a time and
use a greedy algorithm to connect to the current
tree, and in the second phase the players undergo
best-response dynamics. They show that in this
case a good equilibrium (one that is within only
a polylog(n) factor of optimal) is reached. We
discuss this result further in Appendix A. We re-
mark here that for directed graphs, it is easy to con-
struct simple examples where this process reaches
an equilibrium that isΩ(n) from optimal (see Fig-
ure 1). For scheduling on unrelated machines with
makespan cost function, the natural greedy algo-
rithm to assign incoming jobs is anO(m) approx-
imation and a more sophisticated online algorithm
guarantees anO(log m) approximation [3]. This

implies that in a two phase model, where in the
first phase the jobs join one at a time and use the
greedy algorithm (or that of [3]), and in the sec-
ond phase they perform a best response dynamics,
achieves cost within a factorO(m) (or O(log m))
of optimal. This is in contrast to the unbounded
Price of Anarchy in general.

Taxation: There has also been work on using taxes
to improve the quality of behavior [13, 14]. Here
the aim is via taxes toadjust the utilities of each
player, such that the only Nash equilibria in the
new game correspond to optimal or near-optimal
behavior in the original game. In contrast, our fo-
cus is to identify how dynamics can be made to
reach a good result without changing the game or
adjusting utilities, but rather by injecting more in-
formation into the system.

Public service advertising: Finally, the public
service advertisingmodel of [5] also uses the idea
of a proposed strategy in order to move players
into a good equilibrium. In the model of [5], the
players only once select (randomly) between fol-
lowing the proposed strategy or not. Players then
stick with their decision while those that decided
not to follow the proposed strategy settle on some
equilibrium for themselves (given the other play-
ers actions are fixed). Then, in the last phase all
players perform a best response dynamics to con-
verge to a final equilibrium (the convergence is
guaranteed since the discussion is limited to poten-
tial games). In contrast, in our models the players
continuously randomly re-select between follow-
ing the proposed strategy or performing a best re-
sponse. This continuous randomization makes the
analysis of our dynamics technically more chal-
lenging. Conceptually, the benefit of our model is
that the players are “symmetric” and can continu-
ously switch between the two alternatives, which
better models selfish behavior. This continuous
process is what enables the players to both explore
and exploit the two alternative actions.

2 A Formal Framework
2.1 Notation and Definitions

We start by providing general notations and def-
initions. A game is denoted by a tuple

G = 〈N, (Si), (costi)〉
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whereN is a set ofn players,Si is the finite action
space of playeri ∈ N , andcosti is the cost func-
tion of playeri. The joint action space of the play-
ers isS = S1 × . . . × Sn. For a joint actions ∈ S
we denote bys−i the actions of playersj 6= i, i.e.,
s−i = (s1, ..., si−1, si−1, ..., sn). The cost func-
tion of player i maps a joint actions ∈ S to a
real non-negative number, i.e.,costi : S → R

+.
Every game has associated a social cost function
cost : S → R that maps a joint action to a real
value. In the cases discussed in this paper the so-
cial cost is simply the sum of players’ costs, i.e.,

cost(s) =

n∑

i=1

costi(s).

The optimal social cost is

OPT(G) = min
s∈S

cost(s).

We sometimes overload notation and useOPT for
a joint actions that achieves costOPT(G).

Given a joint actions, theBest Response (BR)of
playeri is the set of actionsBRi(s) that minimizes
its cost, given the other players actionss−i, i.e.,
BRi(s−i) = arg mina∈Si

costi(a, s−i).
A joint actions ∈ S is apure Nash Equilibrium

(NE) if no playeri ∈ N can benefit from unilat-
erally deviating to another action, namely, every
player is playing a best response action ins, i.e.,
si ∈ BRi(s−i) for everyi ∈ N . A best response
dynamics is a process in which at each time step,
some player which is not playing a best response
switches its action to a best response action, given
the current joint action. In this paper we focus on
potential games, which have the property that any
best response dynamics converges to a pure Nash
equilibrium [24].

Let N (G) be the set of Nash equilibria of the
gameG. The Price of Anarchy(PoA) is defined
as the ratio between the maximum cost of a Nash
equilibrium and the social optimum, i.e.,

max
s∈N (G)

cost(s)/OPT(G).

The Price of Stability(PoS) is the ratio between
the minimum cost of a Nash equilibrium and the
social optimum, i.e.,

min
s∈N (G)

cost(s)/OPT(G).

For a class of games, the PoA and PoS are the max-
imum over all games in the class

2.2 The Model

We now describe the formal model that we con-
sider. Initially, players begin in some arbitrary
state, which could be a high-cost equilibrium or
even a state that is not an equilibrium at all. Next
an entity, perhaps the designer of the system or a
player who has studied the system well, proposes
some better global behaviorB. B may or may not
be an equilibrium behavior, our only assumption
is that it have low overall cost. Now, players move
one at a time in a random order. Each player, when
it is their turn to move, chooses among two op-
tions. The first is to simply behave greedily and to
make a best-response move to the current configu-
ration. The second option is to follow their part of
the given behaviorB. These two high-level strate-
gies (best-response or followB) are viewed as two
“experts” and the player then runs some learning
algorithm aiming to learn which of these is most
suitable for himself. Note that best-response is
an abstractoption — the specific action it corre-
sponds to may change over time.

Because moves occur in an asynchronous man-
ner, there are multiple reasonable ways to model
the feedback each player gives to its learning al-
gorithm: for instance, does it consider the average
cost since the player’s previous move or just the
cost when it is the player’s turn to go, or some-
thing in between? In addition, does it get to ob-
serve the cost of the action it did not take (the full
information model) or only the action it chose (the
bandit model)? To abstract away these issues, and
even allow different players to address them differ-
ently, we consider here two models that make only
very mild assumptions on the kind of learning and
adaptation made by players.

Learn then Decide model: In this model, play-
ers follow an “exploration” phase where each
time it is their turn to move, they flip a coin
to decide whether to follow the proposed be-
havior B or to do a best-response move to
the current configuration. We assume that the
coin gives probability at leastβ toB, for some
constantβ > 0. Finally, after some common
time T ∗, all players switch to an “exploita-
tion” phase where they each commit in an ar-
bitrary way based on their past experience to
follow B or perform best response from then
on. (The timeT ∗ is selected in advance.)
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The above model assumes some degree of coor-
dination: a fixed timeT ∗ after which all players
make their decisions. One could imagine instead
each playeri having its own timeT ∗

i at which it
commits to one of the experts, perhaps with the
time itself depending on the player’s experience.
In the Smoothly-Adaptive model below we even
more generally allow players to smoothly adjust
their probabilities over time as they like, subject
only to a constraint on the amount by which prob-
abilities may change between time steps.

Smoothly Adaptive model: In this model, there
are no separate exploration and exploitation
phases. Instead, each playeri maintains and
adjusts a valuepi over time. When playeri
is chosen to move, it flips a coin of biaspi

to select between the proposed behavior or a
best-response move, choosingB with prob-
ability pi. We allow the players to use ar-
bitrary adaptive learning algorithms to adjust
these probabilities with the sole requirement
that learning proceed slowly. Specifically, us-
ing pt

i to denote the value ofpi at timet, we
require that

|pt
i − pt+1

i | ≤ ∆

for a sufficiently (polynomially) small quan-
tity ∆, and furthermore that for alli, the ini-
tial probabilityp0

i ≥ p0 for some overall con-
stant0 < p0 < 1. Note that the algorithm
may updatepi even in time steps at which it
does not move. The learning algorithm may
use any kind of feedback or weight-updating
strategy it wants to (e.g., gradient descent [30,
31], multiplicative updating [10, 21, 22]) sub-
ject to this bounded step-size requirement.
We say that the probabilities are(T, β)-good
if for any time t ≤ T we have for alli, pt

i >
β. (Note that if∆ < (p0 − β)/T then clearly
the probabilities are(T, β)-good.)

We point out that while one might at first think that
any natural adaptive algorithm would learn to favor
best-response (always decreasingpi), this depends
on the kind of feedback it uses. For instance, if the
algorithm considers only its cost immediately after
it moves, then indeed by definition best-response
will appear better. However, if it considers its cost
immediatelybefore it moves (comparing that to
what its cost would have been had it chosen the

other alternative) or even the sum total cost since
its previous move, thenB might appear better. Our
model allows users to update in any way they wish,
so long as the updates are sufficiently gradual.

Finally, as mentioned in the introduction, in both
our models it is an easy observation that for any
game, if the proposed solution is a good equilib-
rium, then in the limit (asT ∗ → ∞ in the Learn-
then-Decide model or as∆ → 0 in the Smoothly
Adaptive model) the system willeventuallyreach
the equilibrium and stay there indefinitely. Our in-
terest, however, is in polynomial-time behavior.

3 Fair Cost Sharing
The first class of games we study in this paper,

because of its rich structure and wide gap between
price of anarchy and price of stability, is that of
fair cost sharing games. These games are defined
as follows. We are given a graphG = (V, E),
which can be directed or undirected, where each
edgee ∈ E has a nonnegative costce ≥ 0. There
is a setN = {1, ..., n} of n players, where player
i is associated with a sourcesi and a sinkti. The
strategy set of playeri is the setSi of si − ti paths.
In an outcome of the game, each playeri chooses
a single pathPi ∈ Si. Given a vector of players’
strategiess = (P1, . . . , Pn), let xe be the number
of agents whose strategy contains edgee. In the
fair cost sharing game the cost to agenti is

costi(s) =
∑

e∈Pi

ce

xe

and the goal of each agent is to connect its termi-
nals with minimum total cost. The social cost of
an outcomes = (P1, ..., Pn) is defined to be

cost(P1, ..., Pn) =
∑

e∈∪iPi

ce.

It is well known that fair cost sharing games are
potential games [2, 24] and the price of anarchy in
these games isΘ(n) while the price of stability is
H(n) [2], whereH(n) =

∑n
i=1 1/i = Θ(log n).

In particular, the potential function for these games
is

Φ(s) =
∑

e∈E

xe∑

x=1

ce/x,

which satisfies the following inequality:
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Fact 1 In fair cost sharing, for anys ∈ S we
have:cost(s) ≤ Φ(s) ≤ H(n) · cost(s).

For ease of notation, we assume in this section
that the proposed strategyB is the socially optimal
behaviorOPT, so we can identifyPOPT

i = PB
i

as the behavior proposed byB to playeri. If B
is different fromOPT, then we simply lose the
corresponding approximation factor.

Overview of the Results and Analysis:Our main
results for fair cost sharing are the following. If
we have many players of each type (the type of
a player is determined by its sourcesi and desti-
nation ti) then in both the learn-then-decide and
smoothly adaptive models we can show that with
high probability, behavior will reach a state of cost
within a logarithmic factor ofOPT within a poly-
nomial number of steps. Moreover, for the learn-
then-decide model, even if we do not have many
players of each type we can show that theexpected
cost at the end of the process will be low.

The high level idea of the analysis is that we
first prove that so long as each player randomizes
with probability near to50/50, with high proba-
bility the overall cost of the system will drop to
within a logarithmic factor ofOPT in a poly-
nomial number of steps; moreover, at that point
both the best response and the proposed actions are
pretty good strategies from the individual players
point of view. To finish the analysis in the “Learn
then Decide” model, we show that in the remain-
ing steps of the exploration phase theexpectedcost
does not increase by much; using properties of the
potential function, we then show that in the final
“decision” roundT ∗, the overall potential cannot
increase substantially either, which in turn implies
a bound on the increase in overall cost.

For the adaptive model, one key difficulty in the
analysis is to show that if the system reaches a
state where the social cost is low and both abstract
actions are pretty good for most players, the cost
never goes high again. We are able to show that
this indeed is the case as long as there are many
players of each type, no matter how the players
adjust their probabilitiespt

i or make their choice
between best-response and following the proposed
behavior.

3.1 The Main Arguments

We begin with the following key lemma that is
useful in the analysis of both learn-then-decide and
smoothly adaptive models.

Lemma 2 Consider a fair cost sharing game.
There exists aT = poly(n), such that if the prob-
abilities are(T, β)-good for constantβ > 0, then
with high probability the cost at timeT will be at
mostO(OPT log(mn)).

Moreover, if we have at leastc log(nm) players
of each(si, ti) pair for sufficiently large constant
c, then with high probability the cost at timeT will
beO(OPT).

Proof: We begin with the general case. Letnopt
e

denote the number of players who use edgee in
OPT. We partition edges into two classes. We
say an edge is a “high traffic” edge ifnopt

e >
c log(nm) wherec is a sufficiently large constant
(c = 32/β suffices for the argument below). We
say it is a “low traffic” edge otherwise.

DefineT0 = 2n log n. With high probability, by
time T0 each player has had a chance to move at
least once. We assume in the following that this in-
deed is the case. Note that as a crude bound, at this
point the cost of the system is at mostn2 · OPT

(each player will move to a path of cost-share at
mostOPT and therefore of actual cost at most
n·OPT). Next, by Chernoff bounds and the union
bound, our choice ofc implies that with high prob-
ability each high-traffic edgee has at leastβnopt

e /2
players on it at all time stepsT ∈ [T0, T0 + n3];
in particular, Chernoff bounds imply that each of
the at mostmn3 events has probability at least
1 − e−βnopt

e /8 ≥ 1 − 1/(mn)4. In the remain-
ing analysis, we assume this indeed is the case as
well.

Let OPTi denote the cost of playeri in OPT,
so thatOPT =

∑
i OPTi. Our assumption

above implies that for any time stepT under con-
sideration, if playeri follows the proposed strategy
POPT

i , its cost will be at mostc log(nm)OPTi.
In particular, its cost on the low-traffic edges in
POPT

i can be at most a factorc log(nm) larger
than its cost on those edges underOPT, and its
cost on high-traffic edges is at most a2/β factor
larger than its cost on those edges underOPT.
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We now argue as follows. LetcostT denote the
cost of the system at timeT . If

costT ≥ 2c log(nm)OPT,

then the expected cost of a random player is at least

2c log(nm)OPT/n.

On the other hand, if playeri is chosen to move at
time T , from the above analysis its cost after the
move (whether it choosesB or best response) will
be at mostc log(nm)OPTi. The expected value
of this quantity over playersi chosen at random is
at mostc log(nm)OPT/n. Therefore, if

costT ≥ 2c log(nm)OPT,

the expected drop in potential at timeT is at least

c log(nm)OPT/n.

Finally, since the cost at timeT0 was at mostn2 ·
OPT, which implies by Fact 1 the value of the
potential was at mostn2(1 + log(n))OPT, with
high probability this cannot continue for more than
O(n3) steps. Formally, we can apply Hoeffding-
Azuma bounds for supermartingales as follows: let
us defineQ = c log(nm)OPT and

∆T = max(ΦT − ΦT−1 + Q/n,−2Q)

and consider running this process stopping when
costT < 2Q. Let

XT = Φ0 + ∆1 + . . . + ∆T .

Then throughout the process we have

E[XT |X1, . . . , XT−1] ≤ XT−1

and
|XT − XT−1| ≤ 2Q,

where the first inequality holds because our analy-
sis showing an expected decrease in potential of at
leastQ/n is true even if we cap all decreases to a
maximum of2Q as in the definition of∆T . So, by
Hoeffding-Azuma (see Theorem 10 in Appendix
B), aftern3 steps in the non-stopped process with
high probability we would have

XT − X0 ≤
1

2
n2Q,

which is not possible since by definition ofXT we
have

ΦT ≤ Φ0 + (XT − X0) − TQ/n

which would be negative. Therefore, with high
probability stopping must occur before this time
as desired.

Finally, if we have at leastc log(mn) players of
each type, then there are no low-traffic edges and
so we do not need to lose thec log(mn) factor in
the argument.

We now present a second lemma which will be
used to analyze the “Learn then Decide” model.

Lemma 3 Consider a fair cost sharing game in
the Learn-then-Decide model. If the cost of the
system at timeT1 is O(OPT log(mn)), andT =
T1 + poly(n) < T ∗, then the expected value of the
potential at timeT is O(OPT log(mn) log(n)).

Proof: First, as argued in the proof of Lemma
2, with high probability for any playeri and any
time t ∈ [T1, T ], the cost for playeri to fol-
low the proposed strategy at timet is at most
c log(nm)OPTi for some constantc. Let us as-
sume below that this is indeed the case.

Next, the above bound implies that if the cost
at time t ∈ [T1, T ] is costt, then the expected
decrease in potential caused by a random player
moving (whether following the proposed strategy
or performing best response) is at least

(costt − c log(nm)OPT)/n;

in particular, costt/n is the expected cost
of a random player before its move, and
c log(nm)OPT)/n is an upper bound on the ex-
pected cost of a random player after its move. Note
that this is an expectation over randomness in the
choice of player at timet, conditioned on the value
of costt. In particular, since this holds true for
any value ofcostt, we can take expectation over
the entire process from timeT1 up to t, and we
have that if

E[costt] ≥ c log(nm)OPT

then
E[Φt+1] ≤ E[Φt],
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whereΦt is the value of the potential at time step
t.

Finally, sinceΦt ≤ log(n)costt, this implies
that if

E[Φt] ≥ c log(nm) log(n)OPT

then
E[Φt+1] ≤ E[Φt].

Since for any value ofcostt we always have

E[Φt+1] ≤ E[Φt] + c log(nm)OPT/n,

this in turn implies by induction ont that

E[Φt] ≤

c log(nm) log(n)OPT + c log(nm)OPT/n

for all t ∈ [T1, T ], as desired.

Our main result in the “Learn then Decide”
model is the following:

Theorem 4 For fair cost sharing games in the
Learn then Decide model, a polynomial num-
ber of exploration stepsT ∗ is sufficient so that
the expected cost at any timeT ′ ≥ T ∗ is
O(log(n) log(nm)OPT).

Proof: From Lemma 2, there existsT = poly(n)
such that with high probability the cost of the sys-
tem will be at mostO(OPT log(mn)) at some
time T1 ∈ [T ∗ − T, T ∗]. From Lemma 3, this
implies the expected value of the potential at time
T ∗ right before the final exploitation phase is
O(OPT log(mn) log(n)). Finally, we consider
the decisions made at timeT ∗. When a player
chooses to make a best-response move, this can
only decrease potential. When a player chooses
B, this couldincreasepotential. However, for any
edgee in the proposed solutionB, the total in-
crease in potential caused by edgee overall play-
ers who havee in their proposed solution is at most

ce · H(nopt
e ) = O(ce log n).

This is because whenever a new player makes a de-
cision to commit to following the proposed strat-
egy and using edgee, all previous players who
made that commitment after timeT and whose
proposed strategy uses edgee are still there. Thus,

the total increase in potential after timeT ∗ is at
mostO(OPT log n).

Since after all players have committed, poten-
tial can only decrease, this implies that the ex-
pected value of the potential at any timeT ′ ≥ T ∗

is O(OPT log(mn) log(n)). Therefore, the ex-
pected cost at timeT ′ is at most this much as well,
as desired.

We now use Lemma 2 to analyze fair cost shar-
ing games in the adaptive learning model when the
number of playersni of each type (i.e., associated
to each(si, ti) pair) is large.

Theorem 5 Consider a fair cost sharing game in
the adaptive learning model satisfyingni = Ω(m)
for all i. There exists aT1 = poly(n) such that
if the probabilities are(T1, β)-good for constant
β > 0, then with high probability, forall T ≥ T1

the cost at timeT is O(log(nm)OPT).
Moreover, there exists constantc such that if

ni ≥ max[m, c log (mn)] then with high probabil-
ity, for all T ≥ T1 the cost at timeT is O(OPT).

Proof: First, by Lemma 2 we have that with high
probability at some timeT0 ≤ T1, the cost of the
system reachesO(OPT log(mn)). The key to the
argument now is to prove that once the cost be-
comes low, it willneverbecome high again. To do
this we use the fact thatni is large for alli. Our
argument which follows the proof of Theorem 4.3
in [6] is as follows.

Let U be the set of all edges in use at timeT0

along with all edges used inB. In general, we will
insert an edge intoU if it is ever used from then
on in the process, and we never remove any edge
from U , even if it later becomes unused. Letc∗ be
the total cost of all edges inU . So,c∗ is an upper
bound on the cost of the current state and the only
way c∗ can increase is by some player choosing a
best response path that includes some edge not in
U . Now, notice that any time a best-response path
for some(si, ti) player uses such an edge, the total
cost of all edges inserted intoU is at mostc∗/ni,
because the current player can always choose to
take the path used by the least-cost player of his
type and thoseni players are currently sharing a
total cost of at mostc∗. Thus, any time new edges
are added intoU , c∗ increases by at most a mul-
tiplicative (1 + 1/ni) factor. We can insert edges
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into U at mostm times, so the final cost is at most

cost(T0)(1 + 1/ni∗)
m,

whereni∗ = mini ni. This implies that as long as
ni∗ = Ω(m) we havecost(T ) = O(cost(T0))
for all T ≥ T0. Thus, overall the total cost remains
O(OPT log(mn)).

If ni ≥ max[m, c log(mn)], we simply use the
improved guarantee provided by Lemma 2 to say
that with high probability the cost of the system
reachesO(OPT) within T0 ≤ T1 time steps, and
then apply the charging argument as above in order
to get the desired result.

Variations: One could imagine a variation on our
framework where rather than proposing a fixed be-
haviorB, one can propose a more complex strat-
egy such as “followB until time stepT ∗ and then
follow B′” or “follow B until time stepT ∗ and
then perform best-response”. In the latter case,
the Smoothly-Adaptive model with(T ∗, β)-good
probabilities becomes essentially a special case of
the Learn-then-Decide model and all results above
for the Learn-then-Decide model go through im-
mediately. On the other hand, this type of strat-
egy requires a form of global coordination that one
would prefer to avoid.

4 Consensus Games

Another interesting class of games we consider
is that of consensus games. Here, players are ver-
tices in ann-vertex graphG, and each have two
choices of action,red or blue. Players incur a
cost equal to the number of neighbors they have
of different color, and the overall social cost is the
sum of costs of each player. The potential func-
tion for consensus games is simply half the social
cost function, or equivalently the number of edges
having endpoints of different color. While in these
games optimal behavior is trivial to describe (all
red or all blue for a total cost of 0) and is an equi-
librium, they also have extremely poor equilibria
as well. For example consider two cliques ofn/2
vertices each, with each node also havingαn/2
neighbors in the other clique for some0 < α < 1.
In this case, there is a Nash equilibrium with one
clique red and one clique blue, for an overall cost

of Ω(n2).1 This is substantially worse than optimal
(either by anΩ(n2) or infinite factor, depending on
whether one allows an additive offset or not).

Unlike in the case of fair cost-sharing games,
for consensus games there is no hope of quickly
achieving near-optimal behavior forall β > 0. In
particular, for anyβ < 1/2 there existsα > 0
in the example above such that if players choose
the proposed strategyB with probability β, with
high probability all nodes have more neighbors
performing best response than followingB. Thus,
it is easy to see by induction that no matter what
strategyB is, all best-response players will remain
with their initial color. Moreover, this remains true
for exponentially inn many steps.2 On the other
hand, this argument breaks down forβ > 1/2. In
fact, we will show that forβ > 1/2, for any graph
G, the system will in polynomial time reach opti-
mal behavior (ifB = OPT).

It is interesting to compare this with the cen-
tralized model of [5] in which a central authority
takes control of a random constant fraction of the
players and aims to use them to guide the selfish
behavior of the others. In that setting, even sim-
ple low-degree graphs can cause a problem. For
instance, consider a graphG consisting ofn/4
4-cycles each in the initial equilibrium configura-
tion red, red, blue, blue. If the authority controls
a randomβ fraction of players (for any constant
β < 1), with high probability a constant fraction of
the 4-cycles contain no players under the author-
ity’s control and will remain in a high-cost state.
On the other hand, it is easy to see that this specific
example will perform well in both our learn-then-
decide or smoothly-adaptive models. We show that
in fact all graphsG perform well, though this re-
quires care in the argument due to correlations that
may arise.

We assume that the proposed behaviorB is the
optimal behavior “all blue” and prove that with
high probability the configuration will reach this
state afterO(n log2 n) steps. We begin with a sim-

1Intuitively one can think of this example as two countries,
one using English units and one using the metric system, nei-
ther wanting to switch.

2Of course, in the limit as the number of time stepsT →

∞ eventually we will observe a sequence in which all players
selectB, and ifB is an equilibrium the system will then remain
there forever. Thus ifB is “all blue” the system will in the
limit converge to optimal behavior. However, our interest is in
polynomial time convergence.
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ple preliminary lemma.

Lemma 6 If X1, . . . , Xd are {0, 1}-valued ran-
dom variables withPr(Xi = 1) ≥ p, then no
matter how they are correlated,

Pr(MAJORITY(X1, . . . , Xd) = 1) ≥ 2p − 1.

Proof: The expected number of 1’s is at leastpd.
It is also at most

d · pMAJ + (d/2) · (1 − pMAJ )

where

pMAJ = Pr(MAJORITY(X1, . . . , Xd) = 1)).

Solving, we getpMAJ ≥ 2p− 1.

We now present our main result of this section.

Theorem 7 In both Learn-then-Decide and
Smoothly-Adaptive models, for any constant
β > 1/2, if the proposed behaviorB is op-
timal then with high probability play will
become optimal inO(n log2 n) steps. For the
Smoothly-Adaptive model we assume behavior is
(cn log2 n, β)-good for sufficiently large constant
c.

Proof: In both models the dynamics contain
two random processes: the random order in which
players move and the random coins flipped by the
players to determine how they want to move. In
order to prove the theorem it will be helpful to sep-
arate these two processes and consider them each
in turn.

First, consider and fix a random sequenceS of
players to move. LetT1 denote the time by which
all players have moved at least once according to
S, and more generally letTt+1 denote the time by
which all players have moved at least once since
time Tt. Since players move i.i.d. in a random
order, with high probabilityTt+1 ≤ Tt+3n log(n)
for all t = 1, . . . , n. We assume in the following
that this indeed is the case; in fact, we can allowS
to be an arbitrary, adversarially-chosen sequence
subject to this constraint.

Fixing S, we now consider the coin flips of the
individual players. We will prove by induction that
each player has probability at leastqt of being blue
at timeTt (not necessarily independently) for

qt = (1 − γ)qt−1 + γ for γ = 2β − 1.

Equivalently, we can write this as

1 − qt = (1 − qt−1)(1 − γ).

Since γ > 0 (becauseβ > 1/2), this in turn
implies thatt = O(log n) is sufficient to reach
1− qt ≤ 1/n2, meaning that with high probability
all nodes are blue as desired.

We prove this bound onqt as follows. Consider
the nodes who move at timesTt−1 + 1, Tt−1 +
2, . . . , Tt in order. When some nodev moves, by
induction each neighborw of v has probability at
leastqt of being blue (though these may not be
independent). By assumption,v choosesB with
some probabilityβ′ ≥ β > 1/2 and chooses best-
response with probability1 − β′. Therefore, the
probabilityv becomes blue is at least:

β′ + (1 − β′)Pr(majority of nbrs ofv are blue)

≥ β′ + (1 − β′)(2qt−1 − 1) (by Lemma 6)

= (1 − (2β′ − 1))qt−1 + (2β′ − 1)

≥ (1 − γ)qt−1 + γ (for γ = 2β − 1)

as desired. Thus, with high probability all nodes
are blue by timeTt for t = O(log n), and by our
assumption onS this occurs withinO(n log2 n)
steps.

The general result above requiresβ > 1/2, and
as noted earlier there exists graphsG and initial
configurations such that the process will fail for
anyβ < 1/2. On the other hand, for several “nice”
graphs such as the line or grid,anyconstantβ > 0
is sufficient. For this we assume that best-response
will only ask to switch color if the new color is
strictly better than the current color.

Theorem 8 For the line andd-dimensional grid
graphs (constantd), for anyβ > 0, if the proposed
actionB is optimal then with high probability play
will reach optimal in poly(n) steps. For the case of
the Smoothly-Adaptive model we assume behavior
is (T, β)-good forT a sufficiently large polynomial
in n.

Proof: AssumeB is “all blue”. On the line, if
any two neighbors become blue, they will remain
blue indefinitely. Similarly in the grid, if anyd-
dimensional cube becomes blue, the nodes in the
cube will also remain blue indefinitely. On the line,
any neighbors, in any two consecutive steps, have
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probability at leastβ2/n2 of becoming blue, and
on thed-dimensional grid, any cube, in any2d con-
secutive steps, has probability at least(β/n)2

d

of
becoming all blue. Therefore with high probability
all nodes become blue in a polynomial number of
steps.

5 Conclusions and Future Directions

In this paper we initiate a study of how to aid
dynamics, beginning from arbitrary initial con-
ditions, to reach states of cost close to thebest
Nash equilibrium. We propose a novel angle on
this problem by considering how providing more
information to simple learning algorithms about
the game being played can allow the dynamics
to reach such low-cost states. We show that for
fair cost-sharing and consensus games, propos-
ing a good solution and allowing users to adap-
tively decide for themselves between that solution
and best-response behavior will efficiently lead
to near-optimal configurations, so long as users
adapt sufficiently slowly. Both of these games
have the property that all by itself, random best re-
sponse may easily end up in a high-cost state: cost
Ω(n · OPT) for fair cost-sharing and costΩ(n2)
for consensus, whereas with this additional aid the
states reached have cost only polylog(n) · OPT

for cost-sharing and0 for consensus.

Open questions and future directions
Our results for fair cost sharing games in the

adaptive learning model hold only for the case
when the number of playersni of each type is
large. One natural open question is whether sim-
ilar positive results can be shown for the general
case, i.e., when the number of playersni of each
type is arbitrary. It would also be interesting to
broaden the types of learning algorithms the play-
ers can use. In particular, for the Smoothly Adap-
tive model, how large a learning rate∆ (or for the
Learn-then-Decide model, how small a cutoff time
T ∗) can one allow and still produce comparable
positive results on the quality of the final outcome?

It would also be interesting to extend this model
to the case of multiple proposed solutions, some
of potentially much higher quality than others, and
still show that these dynamics reach good states.
In this case, one would need to make additional

assumptions on the learning algorithms the players
are using. In particular, if players are trying to de-
cide between various learning dynamics (best re-
sponse, regret minimization, noisy best response,
etc.), and if they use an experts learning algorithm
to decide between these actions, can we show that
if following the the best of the dynamics is good
for all players and if the experts learning algo-
rithms have appropriate properties, then the play-
ers will do nearly as well as if they had used the
best dynamics?

Finally, in both of the games we consider play-
ers with the same profile (the same source and des-
tination in the fair cost sharing case) receive the
same global advice, which can also be easily com-
municated as a single message. It would be inter-
esting to also analyze games where players with
the same profile might receive different global ad-
vice.

One way to view our model is as follows. Start-
ing from the original game, we create a meta-game
in which each player is playing one of the two
abstract actions, best response and the proposed
strategy. We then show that if the players learn in
the new meta-game, with restrictions only on the
learning rate, then this results in good behavior in
the original game. More generally, it would be in-
teresting to further explore the idea of designing
“meta games” on the top of the actual games and
showing that natural behavior in these meta games
induce good behavior in the original game of inter-
est.
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A Further Discussion of Other Dy-
namics

A.1 Players Entering One at a Time

As mentioned in Section 1.2, one form of nat-
ural dynamics that have been studied in potential
games is where the system starts empty and play-
ers join one at a time. Charikar et al. [11] analyze
this setting for fair cost sharing on anundirected
graph where all players have a common sink. They
consider a two-phase process. In Phase1, the play-
ers arrive one by one and each connects to the root
by greedily choosing a path minimizing its cost,
i.e., each selects a greedy (best response) path rel-
ative to the selection of paths by the previous play-
ers. In Phase2, players are allowed to change their
paths in order to decrease their costs, namely, in
the second step players play best response dynam-
ics. Charikar et al. [11] show that interestingly the
sum of the players’ costs at the end of the first step
will be within an O(log2 n) factor of the cost of
a socially optimal solution (which in this case is
defined to be a minimum Steiner tree connecting
the players to the root). This then then implies that
the cost of the Nash equilibrium achieved in the
second step, as well as all states reached along the
way, areO(log3 n) close toOPT.

Note that in the directed case the result above
does not hold, in fact such dynamics can lead to
very poor equilibria. Figure 1 shows an example
where if the players arrive one by one and each
connects to the root by greedily choosing a path
minimizing its cost, then the cost of the equilib-
rium obtained can be much worse than the cost of
OPT. The optimal solution which is also a Nash
equilibrium in this example is(P1, . . . , Pn) where
Pi = si → v → t for eachi; however the so-
lution obtained if the players arrive one at a time
and each connects to the root by greedily choos-
ing a path minimizing its cost is(P ′

1, . . . , P
′
n)

whereP ′
i = si → t for each playeri. Clearly,

cost(P ′
1, . . . , P

′
n) = n which is much worse than

cost(OPT) = k. Moreover, if one modifies the
example by making many copies of the edge of
costk, then even if behavior begins in arandom
initial configuration, with high probability each
edge of costk will have few players on it and so
best-response behavior will lead to the equilibrium
of costn.

A.2 A Lower Bound for Noisy Best-
Response

In noisy best-response dynamics (also called
log-linear learning [23]), when it is playeri’s turn
to move, it probabilistically chooses an action with
a probability that decreases exponentially with the
gap between the cost of that action and the cost
of the best-reponse action. The rate of decrease
is controlled by a temperature termτ , much like
in simulated annealing. In fact, the dynamics can
be viewed as a form of simulated annealing with
the global potential as the objective function. At
zero temperature, the dynamics is equivalent to
standard (non-noisy) best response, and at infinite
temperature the dynamics is completely random.
While it is known that with appropriate temper-
ature control this process in the limit will stabi-
lize at states of optimum global potential, we show
here there exist cost sharing instances such that no
dynamics of this form can achieve expected cost
o(n ·OPT/ log n) within a polynomial number of
time steps.

We begin with a definition capturing a broad
range of dynamics of this form.

Definition 1 Let generalized noisy best response
dynamicsbe any dynamics where players move
one at a time in a random order, and when it is
a given playeri’s turn to move, it probabilistically
selects among its available actions. The sole re-
quirement is that if actiona is a worse response
for player i than actionb to the current stateS,
and furthermorea has been a worse response than
b to all past statesS′, then the probability of choos-
ing a should be at most the probability of choosing
b.

The above definition captures almost any natu-
ral individual learning-based dynamics. We now
show that no dynamics of this form can achieve
expected costo(n ·OPT/ logn) within a polyno-
mial number of time steps for fair cost-sharing.

Theorem 9 For the fair cost sharing game, no
generalized noisy best response dynamics can
achieve expected costo(n · OPT/ logn) within
a polynomial number of time steps.

Proof: We consider a version of the “cars or
public transit” example of Figure 1, but where each
player hasn cars (options of cost 1 that cannot
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be shared by others). For this problem, we can
describe the evolution of the system as a random
walk on a line, where the current positiont in-
dicates the number of players currently using the
public transit (the shared edge of costk). The ex-
act probabilities in this walk depend on specifics
of the dynamics and may even change over time,
but one immediate fact is that so long as the walk
has never reachedt ≥ k, the shared edge of cost
k is a worse response to any player than its edges
of cost1. Therefore, by definition of generalized
noisy best response, each player has at most a1/n
chance of choosing the shared edge, and at least a
1−1/n chance of choosing a private edge, when it
is that player’s turn to move. Since positiont cor-
responds to at/n fraction of players on the shared
edge and a1 − t/n fraction on private edges, this
in turn implies that given that the random walk is
in position1 ≤ t ≤ k − 1,

1. the probabilitypt,t+1 of moving to position
t + 1 is at most1n (1 − t

n ), and
2. the probabilitypt,t−1 of moving to position

t − 1 is at least(1 − 1
n ) t

n ,
(with remaining probability1−pt,t+1−pt,t−1 the
walk remains in positiont). In particular,

pt,t+1/pt,t−1 ≤
n − t

t(n − 1)
≤ 1/t.

We now argue that the expected time for this
walk to reach positionk is superpolynomial in
n for k = log n. In particular, consider a sim-
plified version of the above Markov chain where
pt,t+1/pt,t−1 = 1/t (rather than≤ 1/t) and
we delete all self-loops except at the origin (so
pt,t+1 = 1/(t + 1) andpt,t−1 = t/(t + 1) for 1 ≤
t ≤ k − 1). Deleting self-loops can onlydecrease
the expected time to reach positionk since it corre-
sponds to simply ignoring time spent in self-loops,
and the same for settingpt,t+1/pt,t−1 = 1/t. So,
it suffices to show the expected time for this sim-
plified walk to reach positionk is superpolynomial
in n.

For convenience, setpk,k−1 = 1. We can
now solve for the stationary distributionπ of this
chain. In particular, the simplified Markov chain is
now equivalent to a random walk on an undirected
multigraph with verticesv0, v1, . . . , vk having one
edge betweenvk andvk−1, (k − 1) edges between
vk−1 andvk−2, (k−1)(k−2) edges betweenvk−2

andvk−3, and in general(k−1)(k−2) · · · t edges

betweenvt andvt−1 for 1 ≤ t ≤ k−1. In addition,
nodev0 has(n − 1) · (k − 1)! edges in self-loops
since the probabilityp0,0 is at least(n − 1)/n.
Therefore, since the stationary distribution of an
undirected random walk is proportional to the de-
gree of each node [25], we have that

πk ≤ 1/(n · (k − 1)!) < 1/k!.

Lastly, since the expected timehkk between con-
secutive visits to nodevk satisfieshkk = 1/πk by
the Fundamental Theorem of Markov Chains, the
expected timeh0k to reachvk from v0 is at least
1/πk as well. So, the expected time to reachvk

is at leastk! which is superpolynomial inn for
k = log(n) (or evenk = ω(log n/ log log n)).

Finally, the fact that the expected time to reach
positionk is superpolynomial inn implies that the
probability of reaching positionk within a polyno-
mial number of time steps is less than1/poly(n):
specifically, if the walk has probabilityp of reach-
ing positionk in T time steps starting from posi-
tion 0, then by the Markov property the expected
time to reach positionk is at mostT/p. More-
over, so long as the walk has not yet reached po-
sition k, the cost of the system isΘ(n) = Θ(n ·
OPT/k). Thus, the expected cost of the sys-
tem within a polynomial number of time steps is
Ω(n · OPT/ log n) as desired.

B Hoeffding-Azuma
For completeness we present here the

Hoeffding-Azuma concentration bound for
supermartingales.

Theorem 10 SupposeX0, X1, X2, . . . is a super-
martingale, namely that

E[Xk|X1, . . . , Xk−1] ≤ Xk−1,

for all k. Suppose also that for allk we have

|Xk − Xk−1| ≤ C.

Then, for anyλ > 0 and anyn ≥ 1,

Pr[Xn ≥ X0 + λ] ≤ e−λ2/(2C2n).
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