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Abstract—We consider k-median clustering in finite metric
spaces andk-means clustering in Euclidean spaces, in the
setting where k is part of the input (not a constant). For
the k-means problem, Ostrovsky et al. [18] show that if the
optimal (k—1)-means clustering of the input is more expensive
than the optimal k-means clustering by a factor of1/¢?, then
one can achieve a(l + f(¢))-approximation to the k-means
optimal in time polynomial in n and k by using a variant
of Lloyd's algorithm. In this work we substantially improve
this approximation guarantee. We show that given only the
condition that the (k—1)-means optimal is more expensive than
the k-means optimal by a factor1+ « for some constanta > 0,
we can obtain a PTAS. In particular, under this assumption, br
any € > 0 we achieve a(1 + ¢)-approximation to the k-means
optimal in time polynomial in n and k, and exponential in
1/e and 1/a. We thus decouple the strength of the assumption
from the quality of the approximation ratio. We also give a
PTAS for the k-median problem in finite metrics under the
analogous assumption as well. Fork-means, we in addition
give a randomized algorithm with improved running time of
nO(l)(klogn)poly(l/e,l/a)_

Our technique also obtains a PTAS under the assumption of
Balcan et al. [4] that all (1 4 o)) approximations are ¢-close to
a desired target clustering, in the case that all target clugrs
have size greater thandn and « > 0 is constant. Note that
the motivation of Balcan et al. [4] is that for many clustering
problems, the objective function is only a proxy for the true
goal of getting close to the target. From this perspective, o
improvement is that for k-means in Euclidean spaces we reduce
the distance of the clustering found to the target fromO(¢)
to § when all target clusters are large, and fork-median we
improve the “largeness” condition needed in [4] to get exady
0-close from O(dn) to dn. Our results are based on a new
notion of clustering stability.
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is typically studied for data in a finite metric (complete
weighted graph satisfying triangle inequality) over thdata
points; k-means clustering is typically studied far points
in a (finite dimensional) Euclidean space. Both objectives
are known to be\P-hard (we viewk as part of the input
and not a constant, though even thaneans problem in
Euclidean space was recently shown to Me-hard [8]).
For k-median in a finite metric, there is a knowh+ 1/¢)-
hardness of approximation result [14] and substantial work
on approximation algorithms [11], [7], [2], [14], [9], with
the best guarantee &+ ¢ approximation. Fork-means in
a Euclidean space, there is also a vast literature of approx-
imation algorithms [17], [3], [9], [10], [12], [15] with the
best guarantee a constant-factor approximation if polyigbm
dependence ok and the dimensiod is desirect

Ostrovsky et al. [18] proposed an interesting condition
under which one can achieve bettemeans approximations
in time polynomial inn and k. They considerk-means
instances where the optimalclustering has cost noticeably
smaller than the cost of ar{y — 1)-clustering, motivated by
the idea that “if a near-optimdi-clustering can be achieved
by a partition into fewer thark clusters, then that smaller
value of k should be used to cluster the data” [18]. Under
the assumption that the ratio of the cost of the optimal
(k—1)-means clustering to the cost of the optinkaineans
clustering is at leastax{100, 1/¢2}, Ostrovsky et al. show
that one can obtain @l + f(¢))-approximation fork-means
in time polynomial inn andk, by using a variant on Lloyd’s
algorithm. In this paper, we substantially improve on this
approximation guarantee. We show that under the much
weaker assumption that the ratio of these costs is just at

Clustering is a well-studied task, arising in numerousleast (1 + «) for someconstante > 0, we can achieve a
areas from computer vision to computational biology toPTAS: namely,1 + ¢)-approximate thé:-means optimum,
distributed computing. Generally speaking, the goal os<lu for any constant > 0. Our approximation scheme runs

tering is to partitionn given data objects inté groups that

in time which is poly(n, k) and exponential only inl/e

share some commonality. Operationally, clustering isrofte and1/a. Thus, we decouple the strength of the assumption
performed by viewing the data as points in a metric spacdrom the quality of the conclusion, and in the process allow
and then optimizing some natural objective over them. Is thi the assumption to be substantially weaker. Femeans

paper, we consider two popular such objectiviesnedian
and k-means. Both measure f-partition by choosing a
special point for each cluster, called tbenter and define

clustering we in addition give a randomized algorithm with
improved running timen®® (klog n)Pely(1/e1/e),
Balcan et al. [4], motivated by the fact that objective

thecostof a clustering as a function of the distances betweerunctions are often just a proxy for the underlying goal

the data points and their respective centers. Initimeedian

case. the cost is the sum of the distances of the points 1If k is constant, therk-median in finite metrics can be trivially solved

to their centers, and in thé-means case, the cost is the

sum of these distances squared. Thenedian objective

in polynomial time and there is a PTAS known flermeans (and:-median)
in Euclidean space [16]. There is also a PTAS known for lomefisional
Euclidean spaces (dimension at masgt log n) [1], [12].



of getting the data clustered correctly, propose clusterin while not so intuitive, we show is implied by weak deletion-
instances that satisfy the condition that @H- «) approxi-  stability and will be the actual condition that our algonith
mations to the given objective (e.d:smedian ork-means)  will use. We then go on to prove that beifydistributed
are )-close, in terms of how points are partitioned, to asuffices to give a PTAS fdt-median in Section 4. We extend
target clustering (such as a correct clustering of proteinghe algorithm tok-means clustering in Section 5, where
by function or a correct clustering of images by who is in we also introduce a randomized version whose run-time is
them). This can be viewed as an assumption mamdicitly ~ bounded byn? ((log(n) - k))Pely(/e1/8) \we conclude with
when considering approximation algorithms for problemsdiscussion and open problems in Section 6.
of this nature where the true goal is to get close to the
target. Balcan et al. show that for amy and §, given an
instance satisfying this property far-median ork-means ~ We are given a seb of n points. When discussing-
objectives, one can in fact efficiently produce a clusteringmedian, we assume the points reside in a finite metric
that isO(8/)-close to the target clustering (s6(6)-close ~ Space, and when discussiigmeans, we assume they all
for any constanty > 0), even though obtaining a + « reside in a finite dimensional Eucll_dean space. We de-
approximation to the objective iNP-hard for « < 1, and noted : S x 5 — Ry, as the distance function. A
remains hard even under this assumption. Thus they sho@Plution to thek-median objective partitions the points
that one can approximate the target even though it is hard t#hto & disjoint subsetsCy, Cs, .. ., Cj, and assigns a center
approximate the objective. One interesting question taat h ¢ for each subset. Tlrgé:-median cost of this partition
remained is the approximability of the objectives when allis then measured by >, > . d(z,¢;). A solution to
target clusters are large comparedstg since the hardness the k-means objective again gives krpartition of the
of approximation requires allowing small clustérslere, we 7 data points, but now we may assume uses the center
show that for bothi-median and:-means objectives, if all  Of Mass,jic; = 77X ,cc, . as the center of the;.
clusters contain more thaim points, then for any constant We then measure thé-means cost of this clustering by
a > 0 we can in fact get a PTAS. Thus, we (nearly) resolver:1 Ywec, A(x, pe,) = Zle Yosee, lz—pe .
the approximability of these objectives under this corditi The optimal clustering (w.r.t. to either themedian or the
Note that under this condition, this further implies findiag k-means objective) is denoted s = {C},C5,...,C}},
d-close clustering (setting = «). Thus, we also extend the and its cost is denoted &PT. The centers used in the
results of Balcan et al. [4] in the case of large clusters an@ptimal clustering are denoted &sj, 5, ..., c;}. Clearly,
constanty by getting exactlys-close for bothk-median and  given the optimal clustering, we can find the optimal centers
k-means objectives. (In [4] this exact closeness was acthieve(either by brute-force checking all possible points for
for the k-median objective but needed a somewhat largemedian, or byc; = uc- for k-means). Alternatively, given
O(6n(1 + 1/c)) minimum cluster size requirement). the optimal centers, we can assign eacho its nearest
Our algorithmic results are achieved by examining impli- center, thus obtaining the optimal clustering. Thus, we use
cations of a property we caWeak deletion-stabilitghat is  C* to denote both the optimail-partition, and the optimal
implied by both the separation condition of Ostrovsky et al.list of k centers. We us©PT; to denote the contribution
[18] as well as (when target clusters are large) the stgbilit Of the clusteri to OPT, that is OPT; = }_ .. d(z,c})
condition of Balcan et al. [4]. In particular, an instancekef in the k-median case, 0OPT; = > _.. d*(z,c}) in the
mediank-means clustering satisfies weak deletion-stabilityk-means case. '
if in the optimal solution, deleting any of the center;
and assigning all points in clustérinstead to one ofm;ie 3. STABILITY PROPERTIES
remainingk — 1 centersc®, results in an increase in the =~ As mentioned above, our results are achieved by ex-

k-mediank-means cost by an (arbitrarily small) constant ploiting implications of a stability condition we call weak
factor. deletion-stability, and in particular an implication wellca
We also show that weak deletion-stability still allows for being5-distributed. In this section we define weak deletion-
NP-hard instances and that no FPTAS is possible as weftability and of beingj-distributed, relate weak deletion-
(unlessP = NP). Thus, our algorithm, whose running time Stability to conditions of Ostrovsky et al. [18] and Balcan
is (n/{)poly(l/eyl/ﬁ), is optimal in the sense that the super- €t al. [4], and show that weak deletion-stability implieg th
polynomial dependence ofye and1/3 is unavoidable. clustering is3-distributed. In Sections 4 and 5 we use the
After presenting notation and preliminaries in Section 2,Property of beings-distributed to obtain a PTAS.
?n Section 3 we intro_duce weak deletion-stability and @Iat Definition 3.1. For a > 0, a k-mediank-means instance
it to the stability notions of [18] and [4]. We then define satisfieq1+-a) weak deletion-stabilityif it has the following
another property of a clustering beingdistributedwhich, property. Let {c,ci,...,ci} denote the centers in the

2. NOTATION AND PRELIMINARIES

2|n fact, as shown in [19], the-median algorithm in [4] for the case that S3Technically, we could skip the “middleman” of weak deletistability
clusters are sufficiently large comparedda(1 + 1/«) achieves a better and just define the property of being-distributed as our main stability
constant-factor approximation. Note thheed not be a constant. notion, but weak deletion-stability is a more intuitive dition.



optimal k-mediank-means solution. LeOPT denote the That is, for any(1 + «) approximationC to objective ®,
optimal k-mediank-means cost and 1eOPT 7 denote we havemin,es, >, [C{"?" — Cyiy| < on (here,o is
the cost of the clustering obtained by removifigis a center  simply a matching of the indices in the target clustering to
and assigning all its points instead t9. Then for anyi # j,  those inC). In general,dn may be larger than the smallest
it holds that target cluster size, and in that case approximation-stabil
iy need not imply weak deletion-stability (not surprisingly
OPT(™7) > (1+a)OPT since [4] show that-median andk-means remain hard to
We use weak deletion-stability via the following implica- approximate). However, when all target clusters have size
tion we call being3-distributed. greater tharvn (note thaté need not be a constant) then
approximation-stability indeed also implies weak deletio

Definition 3.2. For 5 > 0, a k-median instance is3-  giapjlity, allowing us to get a PTAS (and therebylose to
distributedif for any centerc; of the optimal clustering and o target) whem > 0 is a constant.

any data pointc ¢ C7, it holds that
OPT Claim 3.4. A k-mediank-means clustering instance that
d(z,ci) > B ——. satisfies(1 + «, ) approximation-stability, and in which all
IC7 clusters in the target clustering have size greater than
A k-means instance ig-distributed if for any such:} and  also satisfieg1 + o) weak deletion-stability.

@ ¢ CF, it holds that Proof: Consider an instance étmediank-means clus-

P (z,c7) >3- OPT tering which satisfiegl + «, 9) approximatiop-stability. -As
)= || before, let{cy,c3,...,c;} be the centers in the optimal

solution and consider the clustering!“—7) obtained by

no longer usingc; as a center and instead assigning each

oint from cluster: to c¢j, making theith cluster empty.

We prove that(1 + ) weak deletion-stability implies the
clustering isa/2-distributed fork-median ¢/4-distributed
for k-means) in Theorem 3.5 below. First, however, we relat

; o - ; ; he dist f this clustering f the t t is defined
weak deletion-stability to the conditions considered iB][1 e. stance o talrsggt us er(‘i@j)rom © 6(1:93) IS defined as
and [4]. ~minges, Y, |Cy — Cyy |- SinceC has only

(k — 1) nonempty clusters, one of the target clusters must
A. ORSS-Separability map to an empty cluster under any permutatorSince by

Ostrovsky, Rabani, Schulman and Swamy [18] define @ssumption, this target cluster has more tharpoints, the
clustering instance to beseparated if the optimal-means ~ distance betwee@** s and "9 will be greater thary
solution is cheaper than the optim@ — 1)-means solution ~and hence by the BBG stability condition, themediank-
by at least a factoe2. For a given objectivei(-means or Mmeans cost of2("—7) must be greater thafil + «)OPT.
k-median) let us us®©PT_,) to denote the cost of the u

optimal (k — 1)-clustering. Introducing a parameter> 0, C. Weak Deletion-Stability implies-distributed

say a clustering instance {8 + «)-ORSS separablié ) L
We show now that weak deletion-stability implies the
OPT (1) S1+4a instance is3-distributed.
OPT

If an instance satisfied + «)-ORSS separability then all
(k — 1) clusterings must have cost more th@n+ «)OPT
and hence it is immediately evident that the instance will
also satisfy(1 + «)-weak deletion-stability. Hence we have Proof: Fix any center in the optimat-clustering,c;,
the following claim: and fix any pointp that does not belong to th€; cluster.
Denote byC’; the cluster thap is assigned to in the optimal
k-clustering. Therefore it must hold théfp, c;) < d(p, c;).
Consider the clustering obtained by deletitjgfrom the list
B. BBG-Stability of centers, and assigning each pointdff to C7. Since

Balcan, Blum, and Gupta [4] (see also Balcan and Braverfghe instance ig1 + «)-weakly deletion-stable, this should

man [5] and Balcan, Raglin, and Teng [6]) consider a notion"crease the cost by at leasOPT. o

of stability to approximations motivated by settings in oHi Suppose we are dealing with k*amed|an instance. Each
there exists some (unknown) target clusteriig™s* we PNtz € C7 orl*gmally paysd(:v,c*i), and now, assigned to
would like to produce. Balcan et al. [4] define a clustering®}» It PaySd(z, ¢] )*5, d(z,cj)+d(ci, cj). Thus, the new cost
instance to be1 + a, ) approximation-stable with respect ©f the points inC; is upper bounded by ¢ .. d(, ¢j) <

to some objectivé (such ask-median ork-means), if any OPTi + [C7ld(c],c}). As the increase in cost is lower
k-partition whose cost unddr is at most(1+a)OPT agrees  bounded byrOPT and upper bounded by’ |d(c], ¢j), we

with the target clustering on all but at ma%t data points.  deduce thatl(c}, cj) > a%- Observe that triangle inequal-

Theorem 3.5. Any (1 + «)-weakly deletion-stablg-median
instance isg-distributed. Any(1+-a)-weakly deletion-stable
k-means instance i§-distributed.

Claim 3.3. Any (1 + «)-ORSS separable-mediank-means
instance is alsq1 + «)-weakly deletion stable.



ity gives thatd(c}, ;) < d(cf,p) +d(p,c;) < 2d(c},p), so  resulting instance igl + «) weakly deletion-stable, in fact,

we have thatl(cf,p) > (a/Q)%_ even(1+«) ORSS-separable. In particular, using one center
Suppose we are dealing with a Euclidearmeans in-  from each augmented set-point results iraedian solution

stance. Again, we have created a new clustering by assignir@f cost< m(D+1)+k(n+2mD—1) < (k+1)(n+2mD);

all points in C; to the centerc:. Thus, the cost of transi- hence, OPT is at most this quantity. However, in any

tioning from the optimalk-clustering to this new(k — 1)- & — 1 clustering, one of the copies of the augmented set-

clustering, which is at leastOPT, is upper bounded by POints must not contain a center and thereforeT ;, ) >

Zmec* T — C;THQ — ||(E —cz’f‘||2_ As cz’f‘ = pc:, it follows that OPT + (n + 2mD)(D - 1) ChOOSingD = Oé(k + 1) +1
this bound isexactly ", .- [|c; — 1|2 = |Cr[d2 (et e), ensures that this cost is at legst+ a)OPT. O
see [13] 2, Theoren®). It follows thatd?(c}, ¢}) > Of%}ﬁ- 4. A PTASFOR ANY 3-DISTRIBUTED k-MEDIAN

As before,d’(c;, ¢;) < (d(c},p) + d(p, C}f))Q < dd*(c;,p), INSTANCE

sod?(ct,p) > %%. ] We now present the algorithm for finding @ + ¢)-

D. NP-hardness under weak deletion-stabilit approximation of thek-median optimum fors-distributed
' y instances. First, we comment that using a standard doubling

Finally, we would like to point out theliP-hardness of the  {echnique, we can assume we approximately know the value
k-median problem in maintained even if we restrict ourselvegs opT.4 Our algorithm works if instead 0OPT we use

only to weakly deletion-stable instances. Also the reducti 5 \5iuev s.t. OPT < v < (1 + ¢/2)OPT, but for ease of
sketched below uses only integer poly-size distances, angynosition, we assume that the exact valu®BT is known.
hence rules out the existence of a FPTAS for the problem, gejow, we informally describe the algorithm for a special
unlessP = NP. In addition, the reduction can be modified ¢55e ofs-distributed instances in which no cluster dominates
to show thatlNP-hardness is maintained under the conditionsihe gverall cost of the optimal clustering. Specifically, we
studied in [18] and [4]. say a clusterC; in the optimal k-median clusteringC*

Theorem 3.6. For any constantn > 0, finding the opti-  (hereafter also referred to as the target clusteringhisap
. : ’ . ; OPT ; ; ;

mal k-median clustering of1 + «)-weakly deletion-stable if OPT; < BOPT, otherwise, we say’; is expensiveNote

instances iSNP-hard. that in any event, there can be at most a cons(%ét)

number of expensive clusters.

Proof: Fix any constantx > 0. We give a poly-time
reduction fromSet-Cover to (1+ «)-weakly deletion-stable Algorithm Intuition: The intuition for our algorithm and
k-median instances. Under standard notation, we assume of@r introducing the notion of cheap clusters is the follogin
input consists ofr subsets of a given universe of size, Pick some clusteCf in the optimalk-median clustering.
for which we seek &-cover. We reduce such an instance Since the instance ig-distributed, anyx ¢ C; is far
to a k-median instance oven + k(n + 4akm) points. We  from ¢}, namely,d(z, c¢}) > ‘OCPT‘ In contrast, the average

start with the usual reduction @et-Cover to an instance (distance ofr € C# from ¢ is CPI‘I'. Thus, if we focus on

with m points representing the items of the universe and , ¢|yster whose contributiorOP'f’i, is no more than, say,
points representing all possible sets. Fix integers> 1 to #OPT, we have that? is 100 times closer, oraverage to

be chosen later. Ij belongs to theth set, fix the distance {ha points ofC’> than to the points outside’ . Furthermore,
d(i, j) = D, otherwise we fix the distana#(i, j) = D+ 1, ysing the triangle inequality we have that any two “average”
and between any two set-points we fix the distance to b%oints of C¥ are of distance at mo&fo—% OPT \vhile the

. . . - C* 1
L. (The distance between any two item points is shortestgisiance between any such “average” p‘of’r{t and any point
ath distance.) However, we augment theet-points with ; . i 995 OPT ;
P ) 9 P outside of C; is at leastT5; 7. So, if we manage to

additional 2mD points, setting the distance between all
of the (n + 2mD) points asl. Furthermore, we replicate
k copies of thesgn + 2mD) augmented set-points, all
connected only via then-item points.

Observe that each of thé copies of our augmented
set-points components contains many points, and all poin

outside this copy are of distance D from it. Therefore, Note that in the general case we might have up%%o

in the _optmal k-median solution, each ce_nter reS|de_s Inexpensive clusters. We handle them by brute force guessing
one unique copy of the augmented set-points. Now, if our

Set-Cover instance has d-cover. then we can pick the their centers. In Subsection 4-A, we present the algorithm
respective centers and have an ’0 timal solutiorf) with COSfor clustering-distributed instances df-median under the

P pur éssumption that for all the expensive clusters we have made
exactlyk(n + 2mD — 1) + mD. Otherwise, nd: sets cover

. . . the correct guess for their cluster centers. The algorithm
all m items, so for any: centers, some item-point must have

diStanceI_) + 1 from its center, and so the cost of ary “4Instead of doubling froml, we can alternatively run an off-the-shelf
partition is> k(n+2mD — 1) + mD + 1. Furthermore, the  5-approximation ofOPT, which will return a valuev < 50PT.

correctly guess the size of a cheap cluster, we can set
a radiusr = © (822T) and collect data-points according
to the size and intersection of theballs around them. We
note that this use of balls with an inverse relation between
tsize and radius is similar to that in the min-sum clustering
Slgorithm of [5).



populates a lisQ, where each element in this list is a subset| 1) Initialization Stage: SetQ « Q.

of points. Ideally, each subset is contained in some targgt 2) Population Stage:Fors =n,n—1,n-2,...,1

cluster, yet we might have a few subsets with points from do:

two or more target clusters. The first stage of the algorithm a) Setr = 2971,

is to add components int@, and the second stage is to find b) Remove any point such thatd(z, Q) <

k good components i, and use thesé components to 2r.

retrieve a clustering with low cost. (Here,d(z, Q) = minpeo.yer d(x,y).)
Since we do not have many expensive clusters, we can ¢) For any remaining data point denote the

run the algorithm for all possible guesses for the centers set of data points whose distance fram

of the expensive clusters and choose the solution which is at mostr, by B(z,r). Connect any two

has the minimum cost. The analysis below shows that remaining points: andb if:

one such guess will lead to a solution of cost at mos (i) d(a,b) <, (i) |B(a,r)| > 5 and (iii)

(1+€)OPT. Later, in Section 5, when we deal withmeans |B(b,r)| > 3.

in Euclidean space, we use sampling techniques, similar tp d) LetT be a connected component of size

those of Kumar et al. [16] and Ostrovsky et al. [18], to get > 5. Then:

good substitutes for the centers of the expensive cluster

5. i) Add T to Q. (Thatis,Q «— QU{T}.)
Note however an important difference between the approach i) Define the setB(T) = {x : d(x,y) <
of [16], [18] and ours. While they sample points from all 2r for somey € T}. Remove the
k clusters, we sample points only for th@(1) expensive points of B(T") from the instance.

clusters. As a result, the runtime of the PTAS of [16], [18]

) ; 3) Centers-Retrieving StageFor any choice ok
has exponential dependence fin while ours has only a

) : componentsly, Ts, ..., Ty out of Q (we later
polynomial dependence ih. show that|Q| < & + O(1/5))
A. Clusteringg-distributed Instances a) Find the best center ¢; for

T, U B(TZ) That is ¢ =
arg Miny,er,uB(T;) ZmeTiUB(Ti d(x,p).2
b) Partition all n points according to the
nearest point among thie centers of the
currentk components.
c) If a clustering of cost at mogil + ¢)OPT
is found — output thesg centers and halt

The algorithm is presented in Figure 1. In this section
we assume that at the beginning, the tis initialized
with 9Q;,:;; which contains the centers of all the expensive
clusters. In general, the algorithm will be run several sme
with Q,;,,;; containing different guesses for the centers of the
expensive clusters. Before going into the proof of correstn
of the algorithm, we introduce another definition. We define|

theinner ring of C} as the Se{x; d(z,cf) < g‘OCPT } Note aThis can be done before fixing the choicekofomponents out
the following fact: of Q.

Figure 1. The algorithm to obtain a PTAS fordistributed instances of

Fact 4.1. If C7 is a cheap cluster, then no more than an, = (.-

/4 fraction of its points reside outside the inner ring. In
particular, at least half of a cheap cluster is containedhiit
the inner ring. a point p; s.t. d(cf,p1) < g‘OPT and a pointp, S.t.

crl
Proof: This follows from Markov's inequality. If more  d(c},p2) > % ?C?TI

than (¢/4)|C7| points are outside of the inner ring, then
OPT; > dcl] . gopT _ B3eOPT/32. This contradicts the

Proof: We prove (a) by contradiction. Assunié con-

4 8[Cr] T tains a pointz s.t. 89PT < ¢ < 3BOPT  get
fact thatC; is cheap ﬁopr< S0PT 21C7] (€i,2) < 5 [Cr]

Our h|gh level goal is to show that for any cheap cluster” = < Ticep lustasin the stage whéhwas added to
C7 in the target clustering, we insert a componénthatis <. and letp be any point in the balB(z, 7). Then by the tri-
contained withinC'¥, and furthermore, contains only points angle inequality we have thatc;, p) > d(c}, z) —d(z,p) >
that are close te?. It will follow from the next claims that Z?cp*p and similarlyd(c}, p) < d(c}, z) + d( p) < QOET.
the componenf; is the one that contains points from the Since our instance i§-distributed it holds thap belongs to
inner ring of C¥. We start with the following Lemma which C;, and from the definition of the inner ring &f, it holds
we will utilize a few times. thatp falls outsidethe inner ring. However; is added tdl’
because the balB(z,r) contains more thar/2 > |C|/2
many points. So more than half of the points @rf fall
outside the inner ring of’;, which contradicts Fact 4.1.

Assume now (b) does not hold. Recall thatis a con-
nected component, so exists some path— p,. Each two

Lemma 4.2. Let T' be any component added @. Let
s be the stage in which we ad@ to Q. Let C; be
any cheap cluster s.ts > |Cf|. Then (a)7 does not
contain any pointz s.t. the distancei(c}, z) lies within

OPT 380 : : ; .
the range{" & v Pﬂ and (b)T" cannot contain both  consecutive points along this path were connected because



their distance is at mos€9°T < ZOFPT As d(cf,p;) <  components.

417
S5 andd(c;,p2) > 25T, there must exist a point  Claim 4.4. Let T be a good component added @,

along the path whose distance frorh falls in the range containing an inner ring point from a cheap clustét:.
[% ?CP*T" %%’ﬂ, contradicting (a). m (By Claim 4.3 we know at least one su€hexists.) Then:

: ‘ (a) all points inT are of distance at mo% from ¢,
Claim 4.3. Let C7 be any cheap cluster in the target (n) 7 U B(T) is fully contained inC;, and (c) the entire
clustering. By stages = |C7|, the algorithm adds toQ jnner ring of C; is contained ir"U B(T), and (d) no other
a componenf” that contains a point from the inner ring of componentl” € Q, T’ # T, contains an inner ring point
. from C.

Proof: Suppose that up to the stage= |C}| the Proof: As we do not know (d) in advance, it might
algorithm has not inserted such a component @tdNow, it  be the case tha@ contains many good components, all
is possible that by stage the algorithm has inserted some containing an inner-ring point from the same clustéy,.
component?” to Q, s.t. somex in the inner ring ofC;  Out of these (potentially many) components, Tetdenote
is too close to somg € T’ (namely,d(z,y) < 2r), thus the first one inserted t@. Denote the stage in whicf
causingz to be removed from the instance. Assume for nowwas inserted t@ ass. Due to the previous claim, we know
this is not the case. This means that the inner ring of clustes > |C?|, and so Lemma 4.2 applies T7a We show (a), (b),
C7 still contains more thafCf|/2 points. Also observe that (c) and (d) hold forT’, and deduce thaf is the only good
all inner ring points are of distance at m PJ from the  component to contain an inner ring point frofij.
center, so every pair of inner ring points has a distance of Part (a) follows immediately from Lemma 4.2. We know
at mosti%j. Hence, when we reach stage= |C7|, any 7 contains some inner ring pointfrom C;, sod(c},z) <
ball of radiusr — 89PT — B9PT centered at any inner-ring 8 1] < %?C"T‘ﬁ so we know that any € 7 must satisfy

OPT

s 1C;
point, must contain all oth‘erllnner-ring points. This meansthatd(c},y) < 5 Tc7r- Since we now know (a) holds and the
that at stages = |C;| all inner ring points are connected instance is3-distributed, we have thaf ¢ C}, so we only
among themselves, so they form a component (in fact, @aeed to showB3(T') C C}. Fix anyy € B(T). The pointy is
clique) of size> s/2. Therefore, the algorithm inserts a assigned ta3(T") (thus removed from the instance) because
new component, containing all inner ring points. there exists some point € T' s.t. d(x,y) < 2r. So again,

So, by stages = |C}|, one of two things can happen. we have that(c;,y) < d(c},z) + d(z,y) < %, which
Either the algorithm inserts a component that contains somgives us thaty € C; (since the instance i§-distributed).
inner ring point to@, or the algorithm removes an inner We now prove (c). Because of (b), we deduce that the
ring point due to some componeit € Q. If the former  number of points inT" is at most|C;|. However, in order
happens, we are done. So let us prove by contradiction thder 7' to be added t@, it must also hold thalT'| > s/2. It
we cannot have only the latter. follows thats < 2|C|. Let « be an inner ring point o'’

Lets > |C;| be the stage in which we throw away the first that belongs td”. Then the distance of any other inner ring
inner ring point of the cluste€. At stages the algorithm ~ point of C7 andz is at m03t§|c;\ < 552 = 2. It follows
removes this inner ring point because there exists a point  that any inner ring point o’} which isn't added tol is
in some componeri’ € Q, s.t.d(z,y) < 2r = 23°T and  assigned toB(T). ThusT U B(T') contains all inner-ring
sod(c,y) < d(ct, ) +d(z,y) < g%ﬁl + ﬁgSPT < %B\gPIT points. _F_ir_1a||y, observe that (d) follows immediately from
This immediately implies that” cannot be the center ‘of an the definition of a good_compqnent and frqm ©). -

We now show that in addition to having all good
components, we cannot have too many bad components.

expensive cluster since any such point will be at a distahce a
Ieastﬁ‘gﬁ from ¢!. Let s’ > s > |C?| be the previous stage
in which we added the componefit to . As Lemma 4.2  Claim 4.5. We have less thai6/(3/3) bad components.

: / « 3 OPT
applies toT", we deduce thati(cf,y) < 557. Recall Proof: Let T’ be a bad component, and lebe the stage

that 7 contains> s'/2 > |C;*|/2*many points, yet, by i, which 7" was inserted ta. Let y be any point inT’, and
ass#mptlon, conta}gs no?e”of ﬂff@ |/2 points thﬁt reside ot o+ pe the cluster to whichy belongs in the optimal
in the inner ring ofC;. It follows from Fact 4.1 that some ; ; * ‘ * 38 OPT

g i clustering with center”. We showd(c*,y) > =~ . We

pointw € 7" must belong to a different cluster;. Since  jiide into cases. s

: (@ At _ BOPT . .

the instance ig-distributed, we have that(c;, w) > B‘cﬂ : Case 1:C* is an expensive cluster. Note that we are
The existence of botly andw in 7" contradicts part (b) of working under the assumption th&;,;; contains the cor-
Lemma 4.2. B rect centers of the expensive clusters. In particu@y,;;

We call a componerif’ € Q goodif it contains an inner containsc*. Also, the fact that poingy was not thrown out
ring point of some cheap clustét'. A component is called  in stages implies thatd(c*,y) > 2r = 2571 > 350FT.
bad if it is not good and is not one of the initial centers Case 2:C* is a cheap cluster ang > |C*|. We apply

present inQ;,;;. We now discuss the properties of good Lemma 4.2, and deduce that eithéfc*,y) < g% or



thatd(c*,y) > 3L > 3OPT. As the inner ring ofC*  d(x,¢;) < d(z,¢}) + d(¢,c;) < (1 + €)d(z,¢}), which
contains> |C*|/2 andT' contains> s/2 > |C*|/2 many  gives the required result.

points, none of which is an inner ring point, some point Note that thus far, we have only used the fact that the

w € T does not belong t6™* and hence(c*, w) > B‘gi"T > cost of any cheap cluster is proportional BOPT/|Cx|.

%%’J- Part (b) of Lemma 4.2 assures us that all points inHere is t_he first (and the only) time we use th(_e fact that
the cost is actually at mogt/32) - BOPT/|C7|. Using the

T are also far from:*. . ; . S
Case 3:C* is a cheap cluster and < |C*|. Using Markov inequality, we have that the set of pqlnts satisfying
< ¢ - BOPT/(16|C}|)} contains at least

Claim 4.3 we have that some good component containing a7 d(z,cf) - o o .
point - from the inner ring ofC* was already added t@. h_alf of the points inC}, and they all reside in the inner
So it must hold thati(z, y) > 2r, for otherwise we removed "d. thus belong toT" U B(T%.Oéssume for the sake of
y from the instance and it cannot be added to anywe  contradiction thatd(c;, ¢f) > eg=7. Then at least half of
deduce thatl(c*, y) > d(x,y) —d(c*,z) > 25FT — S0F= > the points inC; contribute more than ;7= to the sum
3o OPT > rerun(r) Az, c;). It follows that this sum is more than
All points in T have distance> 22PT from their e% > OPT,. However,¢; is the point that minimizes
respective centers in the optimal clustering, and recalith  the shmeETUB(T) d(z,p), and by usingp = ¢} we have

is added toQ becausd’ contains at least/2 many points. ZmETUB(T) d(z,p) < OPT;. Contradiction.

Therefore, the contribution of all elementsThto OPT is m
at least®”27T . It follows that we can have no more than
16/3( such bad components. m B. Runtime analysis

We can now prove the correctness of our algorithm. A naive implementation of thend step of algorithm in

Theorem 4.6. The algorithm outputs #-clustering whose ~Section 4-A take)(n?) time (for everys and every point
cost is no more tharfl + ¢)OPT. x, find how many of the remaining points fall within the

ball of radiusr around it). Findinge; for all components

Proof: Using Claim 4.4, it follows that there exists some takesO(n?2) time, and measuring the cost of the solution
choice ofk componentsy, ..., Tk, such that we have the ysing a particular set o data points as centers takes
center of every expensive cluster and the good component (k) time. Guessing the right components takes®(/5)
corresponding to every cheap clustér. Fix that choice. time. Overall, the running time of the algorithm in Figure
We show that for the optimal clustering, replacing the true1 js O(n3%£°(1/%)). The general algorithm that brute-force
centers{cj, c, ...,c;.} with the centers{ci, c2,...,ck} that  guesses the centers of all expensive clusters, maRegs<)
the algorithm outputs, increases the cost by at mdstiae)  jterations of the given algorithm, so its overall runningé
factor. This implies that using thécy, o, ..., ¢k} @s centers g ,0(1/8¢).O(1/5)
must result in a clustering with cost at mdst+ ¢)OPT.

Fix any C in the optimal clustering. LeOPT; be the 5. APTASFOR ANY 3-DISTRIBUTED EUCLIDEAN

cost of this cluster. IfC is an expensive cluster then we k-MEANS INSTANCE

know that its Cel’]terc;F is present in the list of centers Ana|ogous to the:-median a|g0rithm’ we present an es-
chosen. Hence, the cost paid by pointsGfi will be at  sentially identical algorithm fok-means in Euclidean space.
most OPT;. If C7 is a cheap cluster then denote By  |ndeed, the fact that-means considers distances squared,
the good component corresponding to it. We break thenakes upper (or lower) bounding distances a bit more
cost of C7 into two parts:OPT; = >’ .c.d(z,c]) =  complicated, and requires that we fiddle with the parameters
>werun) UL ¢7) + Xpecs, yetagrun(r d(@,¢;) and  of the algorithm. In addition, the centers may not be data
compare it to the cosC} using ¢;, the point picked points. However, the overall approach remains the same.
by the algorithm to serve as centey. _..d(x,c;) =  Roughly speaking, converting thiemedian algorithm to the
Yverun(m) U, ) + X peor yetagTUB(T) d(z,c;). Now, k-means case, we use the same constants, only squared.
the first term is exactly the function that is minimized As before we handle expensive clusters by guessing good
by ¢;, asc¢; = argmin, Y o) d(z,p). We also  substitutes for their centers and obtgimodcomponents for
know cf, the actual center ofC, resides in the in- cheap clusters.
ner ring, and therefore, by Claim 4.4 must belong Often, when considering the Euclidean spaeeneans
to T U B(T). It follows that ZIeTUB(T) d(z,c;) < problem, the dimension of the space plays_an important
> werun(r) d(x, ;). We now upper bound the 2nd term, factor. In contrast, here we make no assumptions about the
and show that}" .. yetz ¢ TUB(T) d(z,c;) < (1 + dimension, and our results hpld for apyly(n) d|mens_|on.
- In fact, for ease of exposition, we assume all distances

€) Zmecg, yetz¢ TUB(T) d(z,c) b ) .

Any point z € CF,sta ¢ T U B(T), must reside etween any two points were computed in advance and are

outside the inner ring of’;. Therefore,d(z,cj) > 2=t given to our algorithm. Clearly, this only add3(n” - dim)

OPT
We show thatd(c;,c;) < Engf\’ and thus we have that  swe stress that we made no attempt to optimize the constants.




to our runtime. In addition to the change in parameters, weas break points. Correspondingly, we defiheto be the
utilize the following facts that hold for the center of mass number of expensive clusters whose size is in the range
in Euclidean space. [n- k=272 n-k~%). Whenevers reaches such a - k=2
break point, we randomly sample points in order to guess
the I, 5 centers of the clusters that liintervals “ahead”
(and so, initially, we guess all centers in the fi3shtervals).
We prove that in every interval we are likely to sample good
empirical centers. This is a simple corollary of Fact 5.2hglo
with the following two claims. First, we claim that at the end
9 1 1 5 of each interval, the number of points remaining is at most
Prfluo — pall” > s|A] U Z |l = pol”| <6 (1) . k=241, Secondly, we also claim that in each interval we
zev do not remove even a single point from a cluster whose size
1 is smaller tham-k—2"—6. We refer the reader to Appendix A
> llz = pall® > 1+ m) Y - HU||2] <46 for the algorithms and their analysis.
xeU zeU

Fact 5.1. Let U be a (finite) set of points in an Eu-
clidean space, and lely denote their center of mass
(0 = I_lll\ > wcu x). Let A be a random subset df, and
denote by 4 the center of mass of. Then for any < 1/2,
we have both

Pr

2) 6. DiscussiON ANDOPEN PROBLEMS

Fact 5.2. Let U be a (finite) set of points in an Euclidean e gigorithm we present here férmedian has runtime
space, and letd # () and B be a partition ofU. Denote ¢ poly(n'/% n'/¢ k), and the algorithm for:-means has
by uy and pa the center of mass df and A resp. Then | \ntime poly(n, (klogn)/<, (klogn)'/#).6 We comment

B
o — pall? < |_[])" Ywev Iz = pull® - %- that it is unlikely that we can obtain an algorithm of runtime
Fact 5.2, proven in [18] (Lemma 2.2), allows us to uloperpoly(nl/f, 1/4, k). Observe that for any clustering instance

. OPT(x_ .
bound the distance between the real center of a clustédnd anyk > 1 we have that—5+> > 1+ +, simply

and the empirical center we get by averaging all points inPy considering thei-clustering that results from taking the
T U B(T) for a good componerit’. Fact 5.1 allows us to optimal (k — 1)-clustering, and setting the point which is
handle expensive clusters. Since we cannot brute forcesguethe furthest from its center in a cluster of its own (as a
a center (as the center of the clusters aren’t necessatily daneéw center). Hence, anf-mediank-means instance is-
points)’ we guess a Samp|e 6]‘(5*1 + 671) points from distributed forg = Q(%) Recall from Section 3-D thé-
every expensive cluster, and use their average as a centéfedian problem restricted only to weakly-stable instances
Both properties of Fact 5.1, proven in [13]3( Lemmal has no FPTAS. So the fact that our algorithm’s runtime
and 2), assure us that the center is an adequate substituféds super-polynomial dependencebiath 1/5 and 1/ is

for the real center and is also close to it. This motivates théinavoidable. Nonetheless, one might still hope to do better
approach behind our first algorithm, in which we brute-forceln particular, one major runtime expense of our algorithm

traverse all choices af(e~! + 4~ 1) points for any of the ~Ccomes from handling expensive clusters by brute-force
expensive clusters. guessing or sampling. Can one improve the runtime by doing

The second algorithm, whose runtime is Something more clever for expensive clusters? It is worth
(klogn)Poly(1/1/8)O(n3), replaces brute-force guessing noting that for the stability conditions of [4], Voevodski e
with random sampling. Indeed, if a cluster containsal- [20] develop an especially efficient implementationfwit
poly(1/k) fraction of the points, then by randomly good performance (in terms of both accuracy and speed) on
sampling O(e~! + 3~!) points, the probability that real-world protein sequence datasets.
all points belong to the same expensive cluster, and A different open problem lies in the relation to results
furthermore, their average can serve as a good empiricdlf Ostrovsky et al. [18]. Their motivating question was
center, is at |easl/kpoly(1/e,1/ﬁ)_ In contrast, if we have to analyze the performance of Lloyd-type methods over
expensive clusters that contain few points (e.g. an expensi Stable instances. Is it possible that weak deletion-stabil
cluster of size\/n, while k = poly(log(n))), then random is sufficient for some version of thg-means heuristic to
sampling is unlikely to find good empirical centers for converge to the optimal clustering?

them. HOWeVer, recall that our algorithm collects pOIntd an Acknow|edgements:ThiS work was Supported in part by

deletes them from our instance. So, it is possible that in thgne National Science Foundation under grant CCF-0830540.
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1) Initialization Stage: SetQ « Q;ni:.
2) Population Stage:Fors =n,n—1,n—2,...,1
do:

__ BOPT
a) Setr = = —.

b) Remove any point such that??(z, Q) <

Claims 4.3 and 4.4, we omit them.

Lemma A.4. We do not add ta@ more than1000/4 bad
components.

Proof: Consider any bad componefit that we add

4. to @ and denote that stage in which we inséitto Q

(Here,d(z, Q) = minpeoyer d(z,y).) as s. So the size of this component is 5. Let y be an
c) Forany remaining data point denote the arbitrary point fromT" which belongs to cluste€* in the

set of data points whose distance squafed optimal clustering. Let* be the center of*. We show that

from z is at mostr, by B(x,r). Connect d*(c*,y) > 2P,

any two remaining points andb if: We divide into cases.

(i) d*(a,b) < r, (i) |B(a,r)| > § and Case 1:C* is a cheap cluster and > |C*|. Recall that

(iii) |B(b,7)| > 5.

_ T must contains/2 > |C*|/2 points, so it follows thafl"
d) LetT be a connected component of size  contains some point that does not belong 16*. 3-stability

> 5. Then: gives that this point has distaneé(c*,z) > SP5F, and
i) Add T to Q. (Thatis,Q «— QU{T}.) we apply Lemma A.1 to deduce that all pointsihare of
i) Define the set B(T) = {z distance squared of at lea$ CPT‘

d*(z,y) < 4r for somey € T}. Re-
move the points ofB(T') from the
instance.

3) Centers-Retrieving Stage:For any choice of
k componentsl’, Ts, ..., T} out of Q

a) Find the best center;, for T; U B(T;).
That is ¢ = /L(TZ U B(Tl)) =
W(T” Y weT,UB(T,) T _

b) Partition all n points according to the
nearest point among thee centers of the
currentk components.

c) If a clustering of cost at mogt +¢)OPT

is found — output thesk centers and halt

Case 2C* is a cheap cluster and< |C*|. In this case we
have that the entire inner ring 6f* already belongs to some
T € Q. Letz € T' be any inner ring point fronC*, and

we have thati(c*, z)? < 52t < 220k, while d?(x, ) >

OPT * OPT
BOPT 1t follows thatd?(c*,y) > (3d(z,y)/4)? > 58T,
Case 3:C* is an expensive cluster and > 2|C*|.

We claim thatd?(c*,y) > Z29FT |f, by contradiction,

32[C*[*
we have thatd®(c*,y) < P&, then we show that the
ball B(y,r) contains only points fromC}, yet it must
containss/2 > |Cf| points. This is because eagh €

B(y,r) satisfies that®(c*,p) < (d(c*,y) +d(y,p))” <

2
(V25 + 2T <52
Case 4:C* is an expensive cluster and < 2|C*|. In

this case, from Fact 5.1 we know thé&};,;; contains a a
good empirical center for the expensive clustar™*, in the
sense thaflc — ¢*[|? < 575 < L. Then, similarly
case 2 above we hav#(y,c*) > (d(y,c) — d(c,c*))? >
BOPT It follows that every point inl” has a large distance
from its center. Therefore, the/2 points in this component
contribute at leastOPT /1000 to the k-means cost. Hence,
twe can have no more thar00/3 such bad components.

Figure 2. A PTAS forg-distributed instances of Euclidedimeans.

Lemma A.1 allows us to give the analogous claims to
Claims 4.3 and 4.4. As before, call a compon&ngood if
it is contained within some target clustéf* and 7' U B(T')
contains all of the inner ring points af. Otherwise, the
component is callethad provided it is not one of the initial
centers present i@;,,;;. We now show that each cheap targe

cluster will have a single, unique, good component. . u
We now prove the main theorem.

Claim A.2. Let C; be any cheap cluster in the target
clustering. By stages = |C|, the algorithm adds toQ

a componenf’ that contains a point from the inner ring of
cy. Proof: Using Claim A.3, it follows that there exists
Claim A.3. LetT' be a good connected component addedfsomﬁ (;]hmche ok clomponen;[js Wh'é:h h;s_goodfcon;}ponents
to Q, containing an inner ring point from cluster;. Then: (;r?] the eap ¢ ulsters an Fgooh su hSt'.tUtes ((j)rt € c;e;nte
(a) all points in T are of distance squared at mogCPT of the expensive clusters. Fix that choice and consider a

. : o \©i1  cluster C; with centerc;. If C; is an expensive cluster
from ¢}, (b) T'U B(T) is fully contained inC, and (c) the then from Section 5 we know tha&;,;; contains a point;

entire inner ring ofC;" is contained inT" U B(T"), and (d) such that?(c;, *) < 2= 9PT: Hence, the cost paid by the

no other component” # T in Q contains an inner ring S ) = e [CF] .
point from . points inC;" will be atmost(1 + €)OPT;. If C}" is a cheap

cluster then denote by’ the good component that resides
As the proofs of Claims A.2 and A.3 are identical to the within C}. DenoteT U B(T') by A, andC; \ A by B. Let

Theorem A.5. The algorithm outputs &-clustering whose
cost is at most1 + €)OPT.



¢; be the center ofA. We know that the entire inner-ring
of C is contained inA, therefore,B cannot contain more
than ¢/16 fraction of the points ofC. Fact 5.2 dictates
that in this casellc; — ¢;||* < €475+, We know every 2)
x € B contributes at Ieas% to the cost ofC¥, so
le; — el < 55llz — ¢ ||*. Thus, for everyr € B, we have
that|lz—c;||> < (1+¢)||z—c||?. It follows that"__ ; [lo—
all> < (146> ,ep llz— ||, and obviously~  , ||z — 3)
cill? < XY eallr —¢f|* ase; is the center of mass of.
Therefore, when choosing the gohctcomponents out 09,

we can assign them to the centers in such a way that costs
no more thar(1+¢)OPT. Obviously the assignment of each
point to the nearest of thie-centers only yields a less costly
clustering, and thus its cost is also at most- ¢)OPT. H

1) Guesd < é—i, the number of expensive clusters.

Sett = 3 (log; n). Guess non-negative integers

91,92, - - - Gt, such thatg:Z gi = l.

Sampleg; + g2 + g3 sets, by sampling indeper

dently and u.a.O(% + 1) points for each set

For each such séf;, add the singletofi.(T;)}

to Q.

Modify the Population Stage from the previous

algorithm, so that whenever = ;3 for some

1 > 1 (We call this theinterval 7)

o Sampleg;.3 sets, by sampling indeper

dently and u.a.O(% + 1) points for each
set. For each such s&}, add the singleton

{u(T))} 10 .

B. A Randomized Algorithm fog-distributed £-Means In-
stances

We now present a randomized algorithm which [N orderto prove the correctness of the new algorithm, we

achieves a(1 + ¢) approximation to thek-means op- need to show that the sampling step in the initializatiogeta
timum of a A-distributed instance and runs in time succeeds with noticeable probability. Let be the actual
(klog,, n)Po(1/<1/AO(n3). The algorithm is similar in number of expensive clusters whose size belongs to the

nature to the one presented in the previous section, exce nge| &, iy )- In the proof which follows, we assume
that for expensive clusters we replace brute force guessin?at the correct guess fdy's has been made, i.g; = L,
of samples with random sampling. Note that the straightforfor everyi. We say that the algorithraucceeds at the end
ward approach of sampling the points right at the start ofof intervali if the following conditions hold:
the algorithm might fail, if there exist expensive clusters 1) In the beginning of the interval, our guess for all
which contain very few points. A better approach is to clusters that belong to interval + 3) produces good
interleave the sampling step with the rest of the algorithm. empirical centers. That is, for every expensive cluster
this way we sample points from an expensive cluster only C* of size in the rang€ 4, 4= ), the algorithm
when it contains a reasonable fraction of the total points picks a samplé’ such that the meap(T) satisfies:
remaining, hence our probability of success is noticeable (@) d?(u(T),c*) < %.
(namely,poly(1/ ). . 5 (0) Ypccn A (@, (1)) < (146 X pecn d*(w, ).

The _h|gh-level approach OT the algon_thm IS to partition 2) During the interval, we do not delete any pojinthat
the main loop of the Population Stage, in which we try all

1 n
possible values of (starting fromn and ending atl), into belongs to some target clustel” of $ize < gt
intervals Inintervali we runs on all values starting withz-
and ending with.». So overall, we have no more thar-
%logk(n) intervals. Our algorithm begins by guessihdhe
number of expensive clusters, then guessingys, ..., g;
s.t.) ", g; = l. Eachg; is a guess for the number of expensive
clusters whose size lies in the rangé:, =) Note that

> 9= #;f expensive clusters g—i
(logy, n)% number of possible assignments ¢gs and we
run the algorithm for every such possible guess.

Fixing g1, g2, . - -

points.

3) At the end of the interval, the total number of remain-
ing points (points that were not added to soime Q
or deleted from the instance because they are too close
to someT”’ € Q) is at moSt .

Lemma A.6. For everyi > 1, let S; denote the event
Hence. there are at most that the algorithm succeeds at the end of interzallhen
Pr[S;|51, 82, ...,

Sia] > ks O+

Before going into the proof we show that Lemma A.6

, ¢, we run the Population Stage of the implies that with noticeable probability, our algorithm-re

previous algorithm. However, wheneverreaches a new turns a (1 + e¢)-approximation of thek-means optimal
interval, we apply random sampling to obtain good empiricalclustering. First, observe the technical fact that for the

centers for the expensive clusters whose size tlase
intervals “ahead”. That is, in the beginning of interval

first three intervaldy, l5,13, we need to guess the centers
of clusters of size> %

+= before we start our Population

the algorithm tries to collect centers for the clusters vehos Stage. However, as these clusters contaifi fraction of
size > s = 75, Yet < = = 5. We assume for this the points, then using Fact 5.1, our sampling finds good

algorithm thatk is significantly greater thar;. Obviously,

empirical centers for all of thesg + I> + I3 expensive

if k is a constant, then we can use the existing algorithm otlusters w.p> k&~ (172405 +%)  Applying Lemma A.6

Kumar et al. [16].

we get that the probability our algorithm succeeds after all



intervals is> 1/k0(§z%%>_ Now, a similar analysis as in the Using Fact 5.1 we have that with probability k~©(5+<)
previous section gives us that for the correct guess of théhis sample yields a good empirical center.
good components i@, we find a clustering of cost at most  We now prove conditior8, under the assumption that
(1+¢)OPT. is satisfied. We need to bound the number of points left in
Proof of Lemma A.6: Recall that3 is a constant, the instance at the end of intervalThere are two types of
whereask is not. Specifically, we assume throughout theremaining points: points that in the target clustering bglo
proof that k> > 39 and so we allow ourselves to use to clusters of size> 5127, and points that belong to clusters
asymptotic notation. of size< 575 To bound the number of points of the second
We first prove that conditior2 holds during intervak.  type is simple — we havk clusters, so the overall number of
Assume for the sake of contradiction that for some clustepoints of the second type is at magki—. We now bound
C* whose size is less thaps;, there exists some point the number of remaining points of the first type.
y € C*, which was added to some compondntduring At the end of the interval = 7, so we remove from
interval 7, at some stage € iﬁ, k%) This means that the instance any poiptwhose distance (squared) from some
by setting the radius = 22T the ball B(y,r) contains  pointin Q is at mostir = PT X" e already know that
> 5/2 > s points. SinceC* contains at mostgisr by the end of intervali, either by successfully sampling
many point, we havéC*| < s/2, so at leasts/4 points in  an empirical center or by adding an inner-ring point to a
B(y,r) belong to other clusters. Our goal is to show thatcomponent inQ, for every clusteiC™ of size > 5757, exists
theses/4 points contribute more tha@PT to the target someT € Q with a pointc’ € T, s.t.d?(c¢*, /) < % <
clustering, thereby achieving a contradiction. BOPT g2t

X . Thus, ifz € C* is a point that wasn’t removed
128 ’
Let = be such point, and denote the cluster thafs from the instance by the end of intervalit must hold that

assigned to in the target clustering l8y; # C*. Since a2(c* S (e 2) — dic*. ¢NE = Q(k2+2)OPT  Clear]
the instance isg-distributed we have thati?(c*,z) > (c", ) 2 (d(c, z) = d(", ) ( )5 ¢

at mostn - O(k~2"=2) points can contribute that much to the

BOPT Eo+2i _ ] |
o = BOPT= 2-3” the other handd*(z,y) < r = ¢ost of the optimak-means clustering, and so the number
BOPTﬁ < BOPT ’“64711. Therefored?(c*, x) = Q(k*) - r, of points of the first type is at mosfz—r as well. .

S0 d2(y,c¢*) = (d(c¢*,z) —d(z,y))* = Q(k*) - r. Recall As we need to traverse all guessgs, the runtime of

that in the target clustering each point is assigned to itghis algorithm ltc'sllfesO(n:”(log,C n)o(ﬁ)). Repeating this
nearest center, s@z(c;-‘,y) > d?(c*,y) = Q(k*) - r. Sowe  algorithm k°U3+<) many times, we increase the prob-

have thatd?(c,z) > (d(c*f y) —d(z y))2 = QK r = ability of success to be> 1/2, and incur runtime of
soptt ’ O(2)1O(55)
Q(k4) . ﬁ(gZT kn . O(n3(1ogk n)0E) =)y,
So, at leasts/4 = Q(g=) points contribute

Q(k*)ZPTES 1o the cost of the optimal clustering. Their
total contribution is therefore(k?) - %OPT > OPT.
Contradiction.

A similar proof gives that no poiny € C* is deleted
from the instance because for somec T, whereT is
some component i, we have thati?(y, z) < 4r. Again,
assume for the sake of contradiction that syc¢h and 7'
exist. Denote bys € [kz%,k%) the stage in which we
removey, and denote by’ > s the stage in which we insert
T into Q. By setting the radiugs’ = % < r, we have
that the ballB(x, ") contains at least’/2 > s/2 points,
and therefore, the balB(y, 5r) contains at least/2 points.
We now continue as in the previous case.

We now prove conditionl. We assume the algorithm
succeeded in all previous intervals. Therefore, at the be-
ginning of intervali, all points that belong to clusters of
size < 7 remain in the instance, and in particular, the
clusters we wish to sample from at intenialemain intact.
Furthermore, by the assumption that the algorithm sucakede
up to interval(i—1), we have that each expensive cluster that
should be sampled at the beginning of intervatontains
a 1/k" fraction of the remaining points. We deduce that
the probability that we pick a random sample®f% + 1)

points from such expensive cluster is at least®(5 o),



