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ABSTRACT
We study the degree to which small fluctuations in costs in well-
studied potential games can impact the result of natural best-response
and improved-response dynamics. We call this thePrice of Uncer-
tainty and study it in a wide variety of potential games (includ-
ing fair cost-sharing games, set-cover games, routing games, and
job-scheduling games), finding a number of surprising results. In
particular, we show that in certain cases, even extremely small fluc-
tuations can cause these dynamics to spin out of control and move
to states of much higher social cost, whereas in other cases these
dynamics are much more stable even to large degrees of fluctuation.

We also consider the resilience of these dynamics to a small
number of Byzantine players about which no assumptions are made.
We show again a contrast between different games. In certaincases
(e.g., fair cost-sharing, set-covering, job-scheduling)even a single
Byzantine player can cause best-response dynamics to transition to
states of substantially higher cost, whereas in others (e.g., the class
of β-nice games which includes routing, market-sharing and many
others) these dynamics are much more resilient.

Categories and Subject Descriptors: J.4 [Social and Behavioral
Sciences]: Economics; F.2 [Analysis of Algorithms and Problem
Complexity]

General Terms: Algorithms, Theory, Economics.

Keywords: Algorithmic Game Theory, Best Response Dynamics,
Social Cost

1. INTRODUCTION
It is widely accepted that rational agents in competitive envi-

ronments can be viewed asutility maximizers. Economic theory
has gone to great lengths to justify this assumption, and deriving it
from basic plausible axioms. Major milestones in this line of re-
search include von-Neumann and Morgenstein [23], de Finetti [9]
and Savage [19]. In essence, these results connect between agents’

∗Supported in part by NSF grant CCF-0830540.
†Supported in part by the IST Programme of the EC, under the
PASCAL Network of Excellence, by the Israel Science Founda-
tion and by the United States-Israel Binational Science Foundation
(BSF). This publication reflects the authors’ views only.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’09,July 6–10, 2009, Stanford, California, USA.
Copyright 2009 ACM 978-1-60558-458-4/09/07 ...$5.00.

preferences, likelihoods of events, and utility functions. (We should
remark that there is a line of work in behavioral economics which
challenges this approach, for example the well known works of
Kahneman and Tversky [21].) In this work we explore how small
fluctuations or uncertainties about agents’ own utilities can substan-
tially affect social welfare when players follow natural dynamics.

In many cases we can view the agents’ utility functions as being
based on measurements of some physical quantities. For example
in job scheduling, the speed of each machine is a physical quantity
which determines the load on each machine. An agent has to ap-
proximate this speed from its observation, where the simplest way
is to consider the ratio of output quantity and time. Even if the out-
put quantity is given, different agents might have (slightly) different
measurements of time, which will cause them to compute slightly
different machine speeds. Even the same agent might hypothesize
different speeds for the same machine at different times, due to im-
perfection in its clock. We can model this phenomenon as follows.
We assume that each machine has an absolute speeds, and at each
time t each agenti observes a speedst

i ∈ [s/(1 + ǫ), s(1 + ǫ)], for
some uncertainty parameterǫ > 0. This modeling of uncertainty is
reminiscent of the statistical query learning model of Kearns [12].

In other situations, even without uncertainty in measurement, the
underlying game itself may exhibit small fluctuations in cost. For
example, consider a transportation problem where each agent se-
lects a route. We might model edges as having delay functionsthat
are, say, linear in the amount of traffic on them, but in reality de-
lays may also depend on external environmental factors which have
been abstracted out of the model. Therefore delays would notbe
exactly identical at two different times even if the amount of traffic
at those times is the same. We can again view this similarly: at each
time t, resourcej has costct

j ∈ [cj/(1 + ǫ), cj(1 + ǫ)] wherecj

is the “base” cost of that resource, andǫ is a degree-of-fluctuation
parameter. In fact, this same issue of fluctuations in actual(in ad-
dition to perceived) costs may occur in job scheduling as well.

The question we are interested in is: can these fluctuations (in
either perceived or actual costs) cause best-response and improved-
response dynamics to spin out of control and move from high-
quality states to states of much worse social welfare? What val-
ues ofǫ can different well-studied games tolerate? We focus on
potential games, where such dynamics are especially natural, and
define a new measure we call thePrice of Uncertainty (PoU), that
models the effect these perturbations can cause. To define the PoU
we assume at each stept an agent does a best (or improved) re-
sponse to the cost function at timet. The PoU of a given game
bounds the ratio of the initial social welfare to the social welfare
of any state that can be reached in such a dynamic.1 A small PoU

1As mentioned above, it could be theactual cost of resourcej at
timet is slightly different from its cost at time 0, or else these could
just be differences in measurement, but either way the effect on an



implies that the system can not deteriorate due to such perturba-
tions in costs, and provides a certain degree of robustness to the
system; a large PoU means that deterioration could be severe. Note
that all the games we consider have only a small gap between po-
tential and cost, so without any fluctuations, these dynamics would
never cause social welfare to deteriorate substantially. In addition,
all the games we consider have near-optimal equilibria (their price
of stability is low), and they continue to do so even after perturba-
tion: thus, the effect we are studying is not that the system moves
to a poor state because good equilibria no longer exist, but rather
whether small perturbations can lead natural dynamics astray.
Our Results: We analyze a number of well-studied potential games
from this perspective, including cost-sharing [2], matroid games
[1], job-scheduling [13, 8], and the class ofβ-nice games [3], prov-
ing both upper and lower bounds on how resilient they are to such
perturbations under both best-response and improved-response dy-
namics. Our analysis shows a number of surprising distinctions
between these games, as well as between these two dynamics. In
some cases, we show even exponentially small perturbationscan
result in drastic increases in cost; in others, polynomially-small per-
turbations are sufficient to ensure good behavior, and finally some
are resilient even to constant-sized fluctuations. For example, in
fair cost-sharing games with many players of each type, we show
that with best-response dynamics, the Price of Uncertaintyis con-
stant even for constantǫ > 0. However, with improved-response
dynamics, even exponentially small fluctuations can cause an ex-
ponentially large increase in the cost of the system. On the other
hand, with few players of each type, the game becomes less re-
silient, and constant-size fluctuations can cause even best-response
dynamics to incur a PoU ofΩ(n), wheren is the number of play-
ers, moving from an equilibrium of costO(OPT) to one of cost
Ω(n · OPT), matching the Price of Anarchy of the game. For
set-covering games, a natural special case of fair cost-sharing stud-
ied by [6] where players must choose which set to belong to and
split the cost with others making the same choice, we show both
best-response and improved-response dynamics have a logarith-
mic Price of Uncertainty forǫ = O(1/(mn)). However, for ma-
troid games (a broad class that generalizes set-covering and many
other games), while best-response dynamics continues to exhibit
good behavior, improved-response dynamics again has exponen-
tially large PoU even for exponentially smallǫ (exponential in the
rank of the matroid). We also give a technically intricate lower
bound ofΩ(ǫ

√
n/ log(1/ǫ)) on the PoU of best-response dynam-

ics for set-covering games, showing thatǫ < polylog(n)/
√

n is
necessary for polylogarithmic PoU. Finally, for the class of β-nice
games, which for constantβ includes congestion games with linear
(or constant-degree polynomial) latency functions, market-sharing
games, and many others [3], we show that for random order best-
response dynamics, the price of uncertainty isÕ(β). However,
again for improved-response dynamics the PoU can be exponen-
tial. We also present results for job scheduling on unrelated ma-
chines and consensus games.

We also explore a different kind of robustness, which is a robust-
ness to adversarial (Byzantine) players. This can be viewedas a
fault-toleranceof the system to a few misbehaved agents. For our
lower bounds, we concentrate on the case of a single adversarial
(Byzantine) player, and measure to what degree can such a player
can cause the system’s social welfare to deteriorate. We show

agent’s behavior is the same. Also, in general we assume thatthe
initial state is arbitrary. It could be an equilibrium, in which case
the PoU can be viewed as studying the stability of the equilibrium.
Alternatively, the initial state might result from a changein the sys-
tem (adding or removing a link in routing, or adding or removing
a machine in job scheduling). In such a case the agents dynamics
start from a more arbitrary state.

that for set cover games, a single Byzantine player can causebest-
response dynamics to move from an equilibrium of costO(OPT)
to one of costΩ(n · OPT). (This is as bad a situation as possible
since the Price of Anarchy in such games isO(n).) For job schedul-
ing on two unrelated machines we show that a single Byzantine
player can induce a dynamic where the cost increases from1 to
Ω(n), and that the same is true for consensus games. For our pos-
itive results, we allow any number of Byzantine players. We show
that for job scheduling on identical machines the effect of Byzan-
tine players is very limited. Forβ-nice games, under additional
assumptions on the impact the Byzantine players can have on the
social cost of anygiven state, and assuming random-order best-
response dynamics, we can show that at any timet, the expected
social cost can not be above6β ·OPT ·GAP,whereGAP bounds
the ratio between potential and cost for the game (e.g., for fair cost
sharing gamesGAP = O(log n)).

Our work can be thought of as asking what kinds of fault-tolerance
properties we can guarantee in multi-agent environments. That is,
if the system is currently in a low-cost equilibrium state, when can
we expect it to remain so even in the presence of slight perturba-
tions in costs or in the presence of a small number of misbehaving
(Byzantine) players. Our analysis also points out a fragility in stan-
dard potential-function arguments in cases where the underlying
model is not quite perfect.
Related Work: Recent work on the “Price of Malice” and re-
lated notions have also considered the effect that Byzantine players
can have in several natural games [4, 18, 15]. The focus of that
work has been on the effect of such players on the quality of the
worst Nash or coarse-correlated equilibria. In contrast, we are in-
terested in the effect of such players on an initial state that may be
much better than the worst equilibrium, for a wide class of potential
games with a low gap between potential and cost (so that without
any perturbations or Byzantine players, behavior would never de-
grade substantially).

2. THE MODEL
A game is denoted by a tupleG = 〈N, (Si), (costi)〉 where

N is a set ofn players,Si is the finite action space of player
i ∈ N , andcosti is the cost function of playeri. The joint ac-
tion space of the players isS = S1 × . . . × Sn. For a joint
action S ∈ S we denote byS−i the actions of playersj 6= i,
i.e., S−i = (s1, ..., si−1, si−1, ..., sn). Furthermore we denote
by S ⊕ s′i the state(s1, ..., si−1, s

′
i, si−1, ..., sn). The cost func-

tion of playeri maps a joint actionS ∈ S to a real non-negative
number, i.e.,costi : S → R

+. Every game has associated a so-
cial cost functioncost : S → R that maps a joint action to a
real value. In the cases discussed in this paper the social cost is a
simple function of the costs of the players. In particular, we dis-
cuss the sum, i.e.,cost(S) =

Pn
i=1 costi(S), and the max, i.e.,

cost(S) = maxn
i=1 costi(S). (In the context of load balancing

games we call the maximum social function themakespansocial
cost function.) The optimal social cost of a gameG isOPT(G) =
minS∈S cost(S). We sometimes overload notation and useOPT

for a joint actionS that achieves costOPT(G).
Given a joint actionS, theBest Response (BR)of playeri is the

set of actionsBRi(S) that minimizes its cost, given the other play-
ers actionsS−i, i.e., BRi(S−i) = arg mins∈Si

costi (s, S−i).
Given a joint actionS, the Improved Response (IR)of player i is
the set of actionsIRi(S) that have lower cost than its current ac-
tion, i.e.,IRi(S) = {s ∈ Si|costi(s, S−i) ≤ cost(S)}.

A joint action S ∈ S is a pure Nash Equilibrium (NE)if no
player i ∈ N can benefit from unilaterally deviating to another
action, namely, every player is playing a best response action in
S, i.e., si ∈ BRi(S−i) for every i ∈ N . A best (improved)
response dynamicsis a process in which at each time step, some



player which is not playing a best response switches its action to
a best (improved) response action, given the current joint action.
In this paper we will concentrate on games in which any best (im-
proved) response dynamics converges to a pure Nash equilibrium
(which are equivalent to the class of ordinal potential games [14,
17]). Throughout the paper we denote byGAP(G, n) the maxi-
mum ratio between the cost of a given joint action and the value of
the potential function for it, whereG is a game ofn players.

LetN (G) be the set of Nash equilibria of the gameG. ThePrice
of Anarchy(PoA) is defined as the ratio between the maximum cost
of a Nash equilibrium and the social optimum, i.e.,(maxS∈N (G)

cost(S))/ OPT(G). The Price of Stability(PoS) is the ratio
between the minimum cost of a Nash equilibrium and the social
optimum, i.e.,(minS∈N (G) cost(S))/OPT(G).

In this paper we introduce and study thePrice of Uncertainty
(PoU). We consider three different variations.
Adversarial Model: Consider a gameG, from a given class of
gamesG, where the agents start at some given initial configuration
S0 (which might be a Nash equilibrium or not). Now we progress
in phases, where in phaset the following occurs. First, at time
t, the adversary perturbs the costs ofG by a small multiplicative
factor from their initial values, so that for anyS and j we have
cost

t
j(S) ∈ [costj(S)/(1 + ǫ), (1 + ǫ)costj(S)].2 Then the ad-

versary picks an agenti who performs a best (improved) response,
and the new configuration isSt.

Our main concern is to upper boundcost(St)/cost(S0) as a
function of ǫ and the class of gamesG. More precisely, let us de-
fine PoUBR(ǫ, G) = max cost(St)/cost(S0), where the max
operator is over the initial configurationS0, the number of time
stepst, and a dynamics oft time steps which includes the se-
lection of a playeri ∈ N and the selection of its best response
at each time step. For a class of gamesG, let PoUBR(ǫ, G) be
maxG∈G PoUBR(ǫ, G). We define similarlyPoUIR for improved
response.
Random Order Model: This model is similar to the adversarial
Model, except that at each time step a random agenti ∈ N is se-
lected. We now care about the expected cost at timet. We remark
that although the player is selected at random, its action isselected
as an adversarial best (improved) response to an adversarially se-
lected perturbation of its cost. In this case we denote the price of
uncertainty byPoUR

BR.3

Byzantine Model: In this model, rather than perturbing costs, the
adversary instead has control over a small number of Byzantine
agents. At each time stept, the adversary moves the Byzantine
agents arbitrarily, and then an agenti ∈ N is selected (either adver-
sarially or at random), who then performs a best-response. Thus,
while in the other models the adversary can perturb all costsby
a small amount, in this model the adversary can influence onlya
few players, but for those players it has full control. This implies
that the adversary can typically influence the costs of only afew
resources at a time (those used by the Byzantine players) by an
amount that depends on the game and the current joint action of the
players.

One can view the adversarial model as a directed graph, where
the nodes are the possible joint actions. There is a directededge
from S to S′ if they differ in the action of only one playeri, and

2We require the adversary’s perturbations to be consistent with the
classG. For congestion games (see Section 2.1) this means the
adversary may perturb the costs of each resource by a1 + ǫ fac-
tor; for job-scheduling, the adversary may perturb the costof the
machines. Thus, at each timet, the resulting gameGt remains a
potential game.
3For improved response, the adversarial and the random order
models are identical, since the adversary can make the random
players select the same action until his desired player is selected.

the adversary can cause playeri to move from its action inS to
its action inS′: for improved response dynamics, this means per-
turbing costs so thatcostt

i(S
′) ≤ cost

t
i(S), and for best response

dynamics this meanscostt
i(S

′) is the minimum cost of any state
playeri can reach unilaterally fromS. Given this graph, for each
joint actionS let V (S) be the set of nodes reachable from it. The
PoU then bounds the ratio between the social cost inS and the
maximum social cost of any joint action reachable fromS, i.e.,
maxS maxv∈V (S) cost(v)/cost(S).

2.1 Classes of Games Studied
In this paper we extensively studycongestion gamesand im-

portant sub-classes of them. A congestion gameG is defined by
a tuple(N, R, (Si), (di)), whereN is the set ofn players,R is
the set ofm resources, the action of playeri is Si ⊆ 2R, and
the goal of playeri is to play a strategySi that minimizes its in-
dividual costcosti. The costcosti(S) of player i is given by
P

r∈Si
dr (nr(S)), wherenr(S) is the number of players shar-

ing resourcer in stateS anddr : N → N is a delay function
associated with resourcer. Rosenthal [17] shows that every con-
gestion game possesses at least one Nash equilibrium by consid-
ering the potential functionΦ(S) =

P

r∈R

Pnr(S)
i=1 dr(i). We

call a congestion gamesymmetricif all the players share the same
set of strategies, otherwise we call it asymmetric. Specificclasses
of congestion games that we study in this work are cost-sharing
games, matroid congestion games,β-nice games, and consensus
games. We define all these in their corresponding sections, namely
Sections 4.1, 4.2, 5.1 and 4.3. For games withΦ(S) ≥ cost(S)
we defineGAP(G, n) asmaxS Φ(S)/cost(S). More generally,
for games such thatΦ(S) ∈ [c1cost(S), c2cost(S)] we define
GAP(G, n) = c2/c1, where we assumec1 ≤ 1 ≤ c2.

Another class of games we study areload balancing games(see
[16]) which we define in Section 4.4.

3. PRELIMINARIES
We start with a few simple observations regarding the price of

uncertainty in general, and for congestion games in particular. First,
note that forǫ = 0 we get the “standard” best (improved) response
dynamics. In this case the PoU is simply asking by how much can
the social welfare deteriorate, assuming that all the players are im-
plementing best (improved) response dynamics (even this can be
higher than the PoA, see Theorem 3.1). Our first observation is that
even forǫ = 0 thePoU is at least the Price of Stability. This fol-
lows since we can start atS0 as the social optimal configuration,
and any best response dynamics will reach some equilibriumSt.

FACT 3.1. For anyǫ ≥ 0 we have:

PoUIR(ǫ, G) ≥ PoUBR(ǫ,G) ≥ PoUBR(0,G) ≥ PoS(G).

For fair cost-sharing games, Fact 3.1 implies anΩ(log n) bound,
due to the price of stability results [2]. Second, one shouldexpect
the ratio to also depend on the magnitude ofǫ. For example, for
any given game, for sufficiently smallǫ, the perturbations of the
adversary would have no real effect, and the agents would simply
follow some best (improved) response dynamics from the initial
configuration. More specifically:

FACT 3.2. For any game classG there is anǫ0 > 0 such that
for anyǫ < ǫ0, PoUIR(ǫ,G) = PoUIR(0,G) andPoUBR(ǫ,G) =
PoUBR(0,G)

Again, for fair cost sharing games, since the social cost of any
configurationS is at most a logarithmic factor from the value of
the potential function [2], this would give anO(log n) upper bound



for ǫ = 0, i.e.,PoUIR(0, FCSG) = O(log n). In exact potential
games, an immediate observation is:

FACT 3.3. In any exact potential game aftert steps the poten-
tial function increases by at most(1 + ǫ)2t.

Clearly, Fact 3.3 implies that the potential function increases by
at most(1 + ǫ)2L, whereL is the number of configurations of
players; for congestion games, since players choose subsets of re-
sources,L ≤ 2mn.

It is interesting to note that there existsG such thatPoUBR

(0, G) is larger by a multiplicativeΩ(log n) factor thanPoA(G).
In particular we can show the following.

THEOREM 3.1. Let G be the class of market-sharing games.
ThenPoA(G) = 2 whilePoUBR(0,G) = Θ(log n).

PROOF. The bound on the PoA is from [22]. For the lower
bound on PoU, consider players{2, . . . , n} where playeri can se-
lect between a dedicated sitesi with benefit1/i and a shared site
s1 with benefit1. Initially, each playeri uses its dedicated sitesi,
and the social welfare benefit isln n. Now let the players perform
best response in an increasing order of the indices. Playeri has a
benefit of1/i, and the benefit from moving tos1 is 1/(i− 1), so it
prefers to move tos1. This implies that at the end of the sequence
the social welfare benefit is1. The upper bound follows immedi-
ately from the fact that the gap between potential and cost inthis
game satisfiesGAP = O(log n).

Note that in such cases we are willing to lose thelog n factor, and
we are interested in for what values ofǫ the value ofPoUBR(ǫ,G)
is not much larger thanPoUBR(0,G).

Finally, we point out a simple relationship between the pertur-
bation and Byzantine models. Consider a class of gamesG such
that a single player cannot change the cost of any given stateS to
any playeri by more than a factor ofα, and whose effect is mono-
tone (for example, for fair cost-sharing, a new player can reduce
the cost of a given stateS to a player by at most a factor of 2, and
in any state it cannot increase the total cost of the other players).
Then, an adversary withǫ =

√
α − 1 can simulate the effect of a

Byzantine player on best-response (or improved-response)dynam-
ics. This implies that any lower bound for a single Byzantineplayer
(such as in Theorems 6.2, 6.3 and 6.5) translates to a lower bound
onPoUBR(

√
α − 1,G).

4. ADVERSARIAL ORDER
In this section we present our results in the adversarial model

and give upper and lower bound onPoUBR and PoUIR for a
number of well-studied classes of games. We begin by consider-
ing set-cover games, a natural type of cost-sharing game studied
in [6], showing that both best-response and improved-response dy-
namics are resilient to polynomially-small fluctuations (Theorem
4.1), but that even for best-response this resilience breaks down for
ǫ ≥

p

2/n (Theorem 4.2). We then consider two generalizations
of these games: fair cost sharing in general directed graphs[2], and
matroid games [1]. In both cases, we show that even exponentially
small fluctuations can cause improved-response dynamics tomove
to high cost states (Lemma 4.2 and Theorems 4.5 and 4.8); how-
ever, best-response dynamics remains resilient to polynomially-
small fluctuations (Theorems 4.3, 4.4, and 4.7). We also present
results for job-scheduling and consensus games.

4.1 Fair Cost Sharing Games
In this section we consider fair cost sharing games (FCSG), a

class of congestion games defined as follows. We are given a graph

G = (V, E), which can be directed or undirected, where each edge
e ∈ E has a nonnegative costwe ≥ 0. There is a setN =
{1, ..., n} of n players, where playeri is associated with a source
si and a sinkti. The strategy set of playeri is the setSi of si − ti

paths. In an outcome of the game, each playeri chooses a single
pathPi ∈ Si. Given an outcomeS = (P1, ..., Pn), let ne(S) be
the number of agents whose path contains edgee. In the fair cost
sharing game the cost to agenti is costi(S) =

P

e∈Pi

we

ne(S)
and

the goal of each agent is to connect its terminals with minimum
total cost. The social cost is defined to be

P

e∈∪iPi
we.

It is well known that the price of anarchy in these games is
Θ(n) while the price of stability isH(n) [2], where H(n) =
Pn

i=1 1/i = Θ(log n). A well known characterization of the po-
tential function [17] of these games [2] is the following.

LEMMA 4.1. In fair cost sharing, for any joint actionS ∈ S ,
we have:cost(S) ≤ Φ(S) ≤ H(n) · cost(S).

4.1.1 Set Covering Games
Set-cover games (SCG) were considered in [6]. In a set-cover

game, there aren players, andm subsets over the players. The
cost associated with seti is wi. Each playerj has to choose one
of the setsi that contains him and gets to split the cost of the set
with other players who choose the same set. Set-cover games are
a special case of fair cost sharing games. We begin with an upper
bound for improved-response dynamics.

THEOREM 4.1. In the set covering game, for anyǫ > 0 we
have,PoUIR(ǫ, SCG) ≤ (1 + ǫ)2mn log n. Therefore, forǫ =
O( 1

nm
), we havePoUIR(ǫ, SCG) = O(log n).

PROOF. Suppose the initial configurationS0 haski players us-
ing set/edgei of costwi. Think of this as a stack ofki chips, where
we label each chip with the name of its initial set and its position
in the stack. So the bottom chip for seti is labeled(i, 1), then the
one above it is labeled(i, 2), and so on. We will give chip(i, j)
a value ofwi/j. So, the sum of values of the chips equals the
potential function of the initial configuration, which according to
Lemma 4.1 is at most a factor oflog n larger than the original cost,
i.e,cost(S0) · log n. Now, when a player moves from some seti1
to some seti2, we move the top chip from stacki1 to stacki2. The
claim is that we maintain the invariant that if chip(i, j) is currently
at some positionj′ on some stacki′, then it must be the case that
wi′/j′ ≤ (wi/j) · (1 + ǫ)2mn. This will imply what we want,
because it means that we can pay for any new set that gets taken
using the bottom chip on its stack. (We are using here the factthat
a chip can only be in one stack.)

The argument for the invariant is that there are at mostm · n
different positions a given chip can be in (m stacks,n positions per
stack) so if you consider the path a chip takes from its initial loca-
tion to its current location, this path has length at mostm · n (you
can remove loops in this configuration space). Since playersfollow
an improved response dynamics, each step in this move causesthe
ratio of cost of the current stack to position in the stack to increase
by at most a factor(1+ǫ)2. So, overall, the total increase is at most
a factor of(1+ǫ)2mn. So,cost(St) ≤ (1+ǫ)2mn

cost(S0) log n
for all t, as desired.

We now give a lower bound, showing that forǫ ≫ log(n)/
√

n,
the price of uncertainty can get large even for best-response dynam-
ics.

THEOREM 4.2. In the set covering game we havePoUBR(ǫ,

SCG) = Ω( ǫ
√

n
log(1/ǫ)

).

The proof builds on a construction in Section 6 giving a lower
bound in the presence of a single Byzantine player, but adding in an



extra “gadget” ofΘ(
√

n/ǫ+1/ǫ2) players that allows the adversary
to simulate the effect of a Byzantine player even via quite small
fluctuations. The construction in this lower bound is fairlyintricate
so we defer the proof to Appendix A.

4.1.2 Fair Cost Sharing Games in General Graphs
We now consider fair cost sharing games in general directed

graphs. We show here that so long as the number of playersni

of each type (i.e., associated to each(si, ti) pair) is large, then the
game is stable even for large values ofǫ under best-response dy-
namics. Specifically, so long asni = Ω(m) for all i, we have
a constant price of uncertainty. On the other hand, for improved-
response dynamics, then costs can grow exponentially even for ex-
ponentially small values ofǫ, even for the symmetric (single source,
single sink) case.

THEOREM 4.3. For fair cost sharing games, we have,

PoUBR(ǫ, FCSG) ≤
“

1 + (1+ǫ)2

nmin

”m

, wherenmin = mini ni.

This implies that fornmin = Ω(m), we havePoUBR(ǫ, FCSG)
= O(1).

PROOF. Call an edge “marked” if it is ever used throughout the
best-response process, including those used in the initialstateS0,
and letc∗ be the total cost of all marked edges. So,c∗ is an upper
bound on the cost of the current state. Any time a best-response
path for some(si, ti) pair uses an unmarked edge, the total cost
of the unmarked edges used is at most(c∗/ni) · (1 + ǫ)2, because
(c∗/ni)(1 + ǫ) is an upper bound on the perturbedaveragecost
of players of type(si, ti) and therefore is an upper-bound on the
perturbed cost of the best-response path for any such player. This
in turn is within a(1 + ǫ) factor of the actual cost of this path.
Thus,c∗ increases by at most a multiplicative(1 + (1 + ǫ)2/ni)
factor. We can mark new edges at mostm times, so the final cost is
at mostcost(S0)(1+ (1 + ǫ)2/nmin)m, wherenmin = mini ni.
This implies that as long asnmin = Ω(m) we havecost(St) =
O(cost(S0)), for all t, as desired.

For symmetric fair cost sharing games (SCFCSG) we can get a
low price of uncertainty even when the number of players is much
smaller than the number of edges, i.e.,n ≪ m.

THEOREM 4.4. For symmetric fair cost sharing games, where
the edge costs are in the range[wmin, wmax], we havePoUBR(ǫ,
SFCSG) = O(log n), for ǫ < wmin

4wmax

1
mn(n−1) log n

.

PROOF. We start with some notation. We say that at timet, the
best-response playerjt moves from pathPt to pathP ′

t , creating
stateSt. We will say that a timet is “interesting” if Pt+1 6= P ′

t :
that is, if the next player movesfrom a path different from the one
the current player moved to. Let us index the interesting times
as t1, t2, . . .. The argument now proceeds in two steps: we first
show an upper bound on the number of interesting time steps of
U = O( 1

α
log n) for α = wmin

8wmax

1
n(n−1)m

. We then prove that the

potential of the final stateST satisfiesΦ(ST ) ≤ (1 + ǫ)2UΦ(S0).
Using the fact thatǫ < wmin

4wmax

1
mn(n−1) log n

and theO(log n) gap
between potential and cost in these games, we get the desiredresult.

Let Rk denote the true (unperturbed) cost of the pathP ′
tk

at time
tk; that is,Rk = costjtk

(Stk
). We now claim that

Rk ≤
„

Rk−1 − wmin

n(n − 1)

«

(1 + ǫ)2. (4.1)

Specifically, note that becauseP ′
tk−1

andPtk−1+1 differ in at least
one edge of cost at leastwmin, and becauseP ′

tk−1+1 = Ptk−1+2,

. . . , P ′
tk−1 = Ptk

, any of the playersjtk−1+1, . . . , jtk
could have

chosen to move to pathP ′
tk−1

for a true (unperturbed) cost at most
Rk−1 − wmin

n(n−1)
. In particular, wmin

n(n−1)
is a lower bound on the

savings produced by having one more player on the edges in which
P ′

tk−1
andPtk−1+1 differ (which implies the desired statement for

tk = tk−1+1) and each playerjtk−1+2, . . . , jtk
could have moved

to pathPtk−1+1 reverting the system to stateStk−1
(which extends

the statement to the casetk > tk−1 + 1). Therefore, since player
jtk

is performing best response to the perturbed costs, the truecost
Rk of P ′

tk
is at most a factor(1 + ǫ)2 larger thanRk−1 − wmin

n(n−1)
.

For our given values ofα andǫ, and using the fact thatRk−1 ≤
wmax ·m, inequality (4.1) implies thatRk ≤ Rk−1(1−α). Since
R1 ≤ OPT(1 + ǫ)2 and by definition ofOPT it must be that
Rt ≥ OPT/n, we get that the number of interesting time steps is
at mostU = O( 1

α
log n).

We now bound the potential in terms of the number of interest-
ing time steps. Specifically, note that playerjtk

could have moved
to pathPtk−1+1, which would revert the system to stateStk−1

be-
causeP ′

tk−1+1 = Ptk−1+2, . . . , P
′
tk−1 = Ptk

. Because playerjtk

chose pathP ′
tk

instead, which was best-response to the perturbed
costs, this meansΦ(Stk

) ≤ Φ(Stk−1
)(1 + ǫ)2. Therefore, the fi-

nal stateST satisfiesΦ(ST ) ≤ Φ(S0)(1 + ǫ)2U , completing the
argument.

Improved response The above results give upper bounds for best
response in fair cost sharing games. In contrast, we now showthat
for improved-response dynamics, the price of uncertainty is expo-
nentially large even for exponentially-small values ofǫ, even for
symmetric fair cost sharing games.

LEMMA 4.2. For symmetric fair cost sharing, for a single player
(i.e., n = 1), the price of uncertainty for improved-response dy-
namics satisfies

PoUIR(ǫ, SFCSG) ≥ 1 + 2(2m/2 − 1)ǫ/m.

PROOF. The graph consists of a line of parallel edges arranged
as follows. We have two parallel edges froms = v0 to vertexv1

of cost 1 and1 + ǫ respectively, then two parallel edges fromv1 to
vertexv2 of costs1 and1 + 2ǫ, then two parallel edges fromv2 to
v3 of costs 1 and1 + 4ǫ, and in general fromvi to vi+1 of costs 1
and1 + 2iǫ. Finally we let sinkt = vm/2 so we have a total ofm
edges. The player begins on the cheapest path, of costm/2.

We can describe a path froms to t by a binary numberb =
bm/2−1 . . . b2b1b0, where bitbi = 0 if the path uses the edge of
cost 1 fromvi to vi+1 andbi = 1 if the path instead uses the edge
of cost1 + 2iǫ. Thus, pathb has cost exactlym/2 + bǫ, and the
player begins at path 0.

We now claim that using a series of perturbations and improved-
response moves, one can cause the player to repeatedly increment,
moving from pathb to pathb + 1 until the player finally reaches
path2m/2 − 1, achieving the desired bound. Specifically, since the
difference in true cost between pathb + 1 and pathb is exactlyǫ,
it is sufficient to choose some arbitrary edge in pathb that is not
in pathb + 1 and increase its cost by a multiplicative factor1 + ǫ
to causeb + 1 to be an improvement overb (and we can similarly
decrease the cost of an edge inb + 1 that is not inb to make it a
strict improvement).

The generalization for multiple players is straightforward.

THEOREM 4.5. For symmetric for cost sharing, for any num-
ber of playersn, the price of uncertainty for improved-response
dynamics satisfiesPoUIR(ǫ, SFCSG) ≥ 1 + 2(2m/2 − 1)ǫ/m.

We can use Lemma 4.2 to imply a bound also for routing games
[16] with linear (or even constant) latency functions, since for the
case of a single player these games are identical.



THEOREM 4.6. For routing with linear latency functions, the
price of uncertainty for improved-response dynamics satisfies
PoUIR(ǫ, ROUTING) ≥ 1 + 2(2m/2 − 1)ǫ/m.

4.2 Matroid Games
We now analyze matroid congestion games, a broad class of

games considered in [1]. Before we give a formal definition of
such games, we briefly introduce a few standard facts about ma-
troids; for a detailed discussion, we refer the reader to [20].

DEFINITION 4.1. A tupleM := (R, I) is a matroid ifR is a
finite set of resources andI is a nonempty family of subsets ofR
such that ifI ∈ I and J ⊆ I , thenJ ∈ I, and if I, J ∈ I and
|J | ≤ |I |, then there exists ani ∈ I such thatJ ∪ {i} ∈ I.

Let M := (R,I) be a matroid. LetI ⊂ R; if I ∈ I then we
call I independent, otherwise we call it dependent. It is well known
that all maximal independent sets ofI have the same size, which is
denoted by the rankrk(M) of the matroid. A maximal independent
set ofM is called a basis ofM . It is well known that such a basis
can be found by a greedy algorithm. In the following we state two
additional useful properties of the matroids. We denote byB the
set of bases of a matroid, and assume thatB1, B2 ∈ B.

LEMMA 4.3. Letr2 ∈ B2 \B1, then there existsr1 ∈ B1 \B2

such thatB1 ∪ {r2} \ {r1} ∈ B.

We denote byG(B1 △B2) the bipartite graph(V, E) with V =
(B1 \ B2) ∪ (B2 \ B1) andE = {{r1, r2}|r1 ∈ B1 \ B2, r2 ∈
B2 \ B1, B1 ∪ {r2} \ {r1} ∈ B}. Then it is known that [20].

LEMMA 4.4. There exists a perfect matching forG(B1 △ B2).

We are now ready to define matroid congestion games. A con-
gestion game is a matroid congestion game if for every playeri ∈
N we have thatMi := (R, Ii) with Ii = {I ⊆ S|S ∈ Si} is a
matroid andSi is the set of bases ofMi. We denote byrk(M) =
maxi∈N rk(Mi) the rank of the matroid congestion gameM . For
example, set-cover games are matroid games of rank 1 and market-
sharing games with uniform costs are matroid games [11] (though
even symmetric fair cost sharing need not be a matroid game).We
now show that for best-response dynamics, matroid games have
similar resilience to fluctuations as set-cover games; however, for
improved response we give an exponential lower bound.

THEOREM 4.7. In a matroid game,PoUBR(ǫ, Matroid) ≤
(1 +ǫ)2mnGAP(Matroid, n). This implies that forǫ = O(1/(n ·
m)), we havePoUBR(ǫ, Matroid) = O(GAP(Matroid, n)).

PROOF. The proof proceeds as in Theorem 4.1. However, we
initially have

P

i∈N rk(Mi) ≤ n · rk(M) chips and thecost(S0)
is within aGAP(Matroid, n) factor from the sum of the values
of the chips.

Let S be a state of the matroid congestion gameM and lets∗i be
a best response of playeri to S according to the perturbed costd̃r.
Consider the bipartite graphG(s∗i △ si) which contains a perfect
matchingPM according to Lemma 4.4. LetS∗ = S ⊕ s∗i , and
observe that for every edge(r, r∗) ∈ PM with r∗ ∈ s∗i \ si and
r ∈ si \ s∗i , d̃r∗ (nr∗(S∗)) ≤ d̃r (nr(S

∗) + 1) ≤ d̃r (nr(S))
since otherwises∗i is not a best response of playeri with respect to
d̃r.

When a player does a best response we now moverk(G) chips
(corresponding to at mostrk(G) resources), and each movement
sets up an inequality of the typedi′(j

′) ≤ di(j) · (1 + ǫ)2. The
claim is that we maintain the invariant that if chip(i, j) is currently
at some positionj′ on some stacki′, then it must be the case that

di′(j
′) ≤ di(j) · (1 + ǫ)2mn. The argument is the same as in

Theorem 4.1: there are at mostm·n different positions a given chip
can be in (m stacks,n positions per stack) so if you look at the path
a chip takes from its initial location to its current location, this path
has length at mostm·n (you can remove loops in this configuration
space).4 So, for allt we haveΦ(St) ≤ (1 + ǫ)2mnΦ(S0), which
impliescost(St) ≤ (1 + ǫ)2mn

cost(S0) · GAP(Matroid, n),
which completes the proof.

Note: As opposed to the set-covering result (Theorem 4.1), this re-
sult holds forbestresponse dynamics only. We can in fact show
that improved response is not sufficient in these games, evenif ǫ is
exponentially small in the rank of the matroid. In particular, even
though symmetric cost-sharing is not a matroid game, the proof of
Lemma 4.2 applies equally well to improved-response dynamics if
we replace the graph structure with a uniform matroid havingm re-
sources and with rankr = m/2. We therefore have the following:

THEOREM 4.8. There exists a matroid game of rankr = m/2
such that the price of uncertainty for improved-response dynamics
satisfiesPoUIR(ǫ, Matroid) ≥ 1 + 2(2m/2 − 1)ǫ/m.

4.3 Consensus Games
Consensus games [7] are played by users viewed as vertices ina

connected, undirected simple graphG = (N, E) with n vertices,
whereN = {1, ..., n}. Each playeri has two actionsr or b, i.e.,
Si = {r, b}. A player has cost1 for each incident edge on which he
disagrees with his neighbor.costi(S) =

P

(i,j)∈E I(si 6=sj). The
overall social cost is the sum of the costs of all the users, plus 1,
i.e.,cost(S) = 1+

P

i∈N costi(S). It is straightforward to show
that these games are congestion games [14] and that the potential
function can be rewritten as beΦ(S) = (cost(S) − 1)/2. The
two social optimum solutions in a consensus game are “all blue”
and “all red”, both of which are also a Nash equilibrium (so the
Price of Stability is 1). On the other hand, there are Nash equilibria
with costΩ(n2).

The above describes unweighted consensus games; in weighted-
consensus, the edges have non-negative weights and the costto a
player is the total weight of edges on which it disagrees withits
neighbors. In our model, we can show the following (for proofs,
see the full version [5]):

THEOREM 4.9. For any unweighted consensus game (UCG),
for anyǫ, we havePoUBR(ǫ, UCG) ≥ (n−1)ǫ+1

1+ǫ
. For ǫ >

√
2−1

we can showPoUBR(ǫ, UCG) = Ω(n2).

For a weighted consensus game we can show an exponential
lower bound.

THEOREM 4.10. For any weighted consensus game (WCG), for
anyǫ, we havePoUBR(ǫ, WCG) ≥ (1 + ǫ)n.

4.4 Job Scheduling
In this section we considerjob scheduling on unrelated machines

(JSUM)(see [16]) defined by(N, M, c) as follows. The setN is
a set ofn jobs, andM is the set ofm machines. Each player is
associated with a job, so haven players. Every job can impose a
load on one of the machines, so for every playerj its set of feasible
actions is to assign jobj to some machinei ∈ M . Each jobj ∈ N
has associated a costci,j for running on machinei ∈ M . Given
an assignment of jobs to machines, the load of machinei is the
sum of the costs of the jobs that are assigned to that machine,i.e.,

4Note that the dynamics can last for a long time, it’s just thatwe
can shortcut them in the argument.



Li(S) =
P

j∈Bi(S) ci,j whereBi(S) is the set of jobs assigned
to machinei, i.e.,Bi(S) = {j : Sj = i}. The cost of a playerj
is the load on the machine that playerj selected, i.e.,costj(s) =
Lsj

(S). For the social cost we use themakespan, which is the load
on the most loaded machine, i.e.,cost(S) = maxi Li(S). The
price of stability in these games is1, since there is always a pure
Nash equilibrium which is also socially optimal [10].

The Price of Uncertainty in these games can be exponentially
large, even for two machines, whenǫ is large compared to1/n.
(For proofs, see the full version [5]):

THEOREM 4.11. For job scheduling on unrelated machines, for
M = 2 machines and anyǫ > 2/n, we havePoUBR(ǫ, JSUM)

≥ (1 + ǫ)n/2
ˆ

1 − 2
ǫn

˜

+ 2
ǫn

= Ω((1 + ǫ)n/2).

For job scheduling on identical machines (JSIM) we have a sim-
ple upper bound, even for large perturbations.

THEOREM 4.12. For job scheduling on identical machines,
PoUIR(JSIM, ǫ) ≤ 2(1 + ǫ)

5. RANDOM ORDER
We now consider the effect of perturbations onrandomorder

best-response dynamics (for improved-response dynamics,random
and adversarial order are equivalent since the adversary can simply
choose not to cause a player to move). Our main result is that for
the broad class ofβ-nice games introduced by [3], which for con-
stantβ includes congestion games with linear (or constant-degree
polynomial) latency functions, market-sharing games, andmany
others, these dynamics are resilient to fluctuations even for con-
stantǫ > 0. On the other hand, we give lower bounds showing that
job-scheduling and consensus games can still behave poorly.

5.1 β-nice games
Let us consider an exact potential game. LetS be a profile of

the players and letSi denote the configuration produced by a best-
response move by playeri according tocosti. For each playeri
define∆i(S) = costi(S) − costi(S

i) and∆(S) =
P

i ∆i(S).

DEFINITION 5.1. An exact potential game with a potential func-
tionΦ isβ−nice iff for any stateS we havecost(S) ≤ βOPT+
2∆(S).

As shown in [3] number of important games areβ-nice, forβ
equal to the price of anarchy of the game.

Here we show thatβ-nice games additionally have the property
that the expected price of uncertainty in the random order model is
only O(β · GAP) even for constantǫ > 0. We start by showing
that if the true (unperturbed) cost of the current configuration S is
greater than2β · OPT, then no matter how the adversary adjusts
the costs, the expected drop in potential is at leastcost(S)(1/4 −
4ǫ)/n. Forǫ < 1/16, this isΩ(cost(S)/n). That is, the adversary
may make the cost exceed2βcost(S0) but only temporarily.5

LEMMA 5.1. For ǫ < 1/32, if cost(St) ≥ 2βOPT then
E[Φ(St+1) − Φ(St)] ≤ −cost(St)/(8n).

PROOF. As above, letSi denote the configuration produced by
a best-response move by playeri according tocosti, and letS̃i de-
note the configuration produced by a best-response move by player
i according to the perturbed cost functioncostt

i. So,costi(S
i) ≤

costi(S̃
i) andcostt

i(S̃
i) ≤ cost

t
i(S

i). Recall that∆i(S) =
costi(S) − costi(S

i) and ∆(S) =
P

i ∆i(S). We will also
need the following two quantities:
5This implies that with high probability the cost will drop tobelow
2βOPT within a polynomial number of steps.

1. ∆̃i(S) = cost
t
i(S)− cost

t
i(S̃

i) is the improvement in per-
turbed cost of playeri due to a best-response by playeri in
the perturbed game, with̃∆(S) =

P

i ∆̃i(S), and

2. ∆̂i(S) = costi(S) − costi(S̃
i) is the improvement in un-

perturbed cost of playeri due to a best-response by playeri

in the perturbed game, witĥ∆(S) =
P

i ∆̂i(S).

Now, supposecost(S) > 2βOPT. Then by definition ofβ-
nice we have∆(S) > cost(S)/4. Now we want to use this to
show that∆̂(S) must be large as well. Specifically, for eachi,
since the improvement in perturbed cost of the best-response to the
perturbed game is at least the improvement in perturbed costs of
the best response to the unperturbed game, we have:

∆̃i(S) ≥ cost
t
i(S) − cost

t
i(S

i)

≥ (1 − ǫ)costi(S) − (1 + ǫ)costi(S
i)

≥ ∆i(S) − 2ǫcosti(S). (5.2)

Now, summing over alli we have:

∆̃(S) ≥ ∆(S) − 2ǫcost(S) ≥ cost(S)(1/4 − 2ǫ).

This means that when a random player moves to his “best per-
turbed response”, we have

Ei[∆̃i(S)] ≥ cost(S)[1/4 − 2ǫ]/n.

Now, by a similar argument to that equation (5.2) we have:

∆̂i(S) = costi(S) − costi(S̃
i)

≥ cost
t
i(S) − ǫcosti(S) − cost

t
i(S̃

i) − ǫcosti(S̃
i)

= ∆̃i(S) − 2ǫcosti(S) + ǫ∆̂i(S).

So,∆̂i(S) ≥ (∆̃i(S)−2ǫcosti(S))/(1−ǫ). Putting this together
with the above and using the fact thatEi[costi(S)] = cost(S)/n
gives us

Ei[∆̂i(S)] ≥ cost(S)[1/4 − 4ǫ]/n

which is the expected drop in the potentialΦ for the unperturbed
game caused by a random best-response move in the perturbed
game. Ifǫ < 1/32, we then get the desired result.

So, Lemma 5.1 shows if the true (unperturbed) cost of current
configurationS is greater than2β · OPT, then no matter how the
adversary adjusts the costs, the expected drop in potentialis at least
cost(S)(1/4 − 4ǫ)/n. A Chernoff bound argument can then be
used to say that with high probability the sum of drops in potential
will be close to their expectation. Note that we do not show that
once cost is low it will necessarily stay there forever – justthat if
the adversary is ever able to make the cost go above2βOPT then
with high probability it will have to drop back below it in a small
number of steps.

In the following we show a bound on the expectation that holds
for all time steps. To do so, we use the following additional lemma:

LEMMA 5.2. For any value ofcost(St), E[Φ(St+1)−Φ(St)]
≤ 2ǫcost(S)/(n(1 − ǫ)).

PROOF. This just follows from the statement that̂∆i(S) ≥
(∆̃i(S) − 2ǫcosti(S))/(1 − ǫ), and using the fact that̃∆i(S)
is always non-negative.

Assumeǫ < 1/32. We can now use these lemmas to prove that
for β-nice games the expected price of uncertainty in the random
order model is onlyO(β · GAP) even for constantǫ > 0. Recall
that we defineGAP = c2/c1 wherec1 ≤ 1 ≤ c2 are values such
that for any stateS we haveΦ(S) ∈ [c1cost(S), c2cost(S)].



THEOREM 5.1. For anyt > 0, we have

E[Φ(St)] ≤ max[5c2βOPT, c2cost(S0)] ≤ 5c2βcost(S0).

Therefore,E[cost(St)] ≤ 5βcost(S0) · GAP.

PROOF. We will show that ifE[cost(St)] ≥ 4βOPT then
E[Φ(St+1)] ≤ E[Φ(St)]. This will be sufficient because Lemma
5.2 implies that the expectation can never increase by too much.
In particular, even ifE[cost(St)] ≤ 4βOPT, by Lemma 5.2 we
still have

E[Φ(St+1)] − E[Φ(St)] ≤ 4ǫβOPT/(n(1 − ǫ))

< βOPT ≤ c2βOPT.

Specifically, supposeE[cost(St)] ≥ 4βOPT. Let pt be the
probability thatcost(St) ≥ 2βOPT. Therefore, we have:

E[cost(St)]

= ptE[cost(St)|cost(St) ≥ 2βOPT]

+(1 − pt)E[cost(St)|cost(St) ≤ 2βOPT]

≤ ptE[cost(St)|cost(St) ≥ 2βOPT] + 2βOPT,

so we haveE[cost(St)|cost(St) ≥ 2βOPT] ≥ 2βOPT/pt.
Now, using Lemmas 5.1 and 5.2, we can write:

E[Φ(St+1) − Φ(St)]

≤
“

− pt

8n

”

E[cost(St)|cost(St) ≥ 2βOPT] +

2ǫ(1 − pt)

n(1 − ǫ)
E[cost(St)|cost(St) < 2βOPT]

≤ 2βOPT/(−8n) + 2βOPT
2ǫ

n(1 − ǫ)
≤ 0.

Thus, as desired, ifE[cost(St)] ≥ 4βOPT thenE[Φ(St+1)] ≤
E[Φ(St)], proving the claim.

As shown in [3], a number of common games areβ-nice for con-
stantβ, including congestion games with linear latency functions,
both unweighted (β = 2.5) and weighted (β ≈ 2.618), conges-
tion games with polynomial latency functions of constant degreed
(β = dd(1−o(1))), and market-sharing games (β = 2).

Note: Interestingly, the guarantee in Lemma 5.1 breaks down
in the adversarial-order setting: for example, for market-sharing
games, which areβ-nice forβ = 2, we have price of uncertainty
Ω(log n) even forǫ = 0, as shown in Theorem 3.1.

5.2 Job Scheduling and Consensus games
For job scheduling we can show (see full version [5] for proofs):

THEOREM 5.2. For M = 2 machines, for anyǫ > 2/n, we
have thatPoUR

BR(ǫ, JSUM) ≥ ǫn/8.

We can similarly adapt our lower bounds for consensus games to
the random order model. For a weighted consensus game we can
show an exponential lower bound.

THEOREM 5.3. For any weighted consensus game (WCG), for
anyǫ, we havePoUR

BR(ǫ, WCG) ≥ (1 + ǫ)n/2−1.

6. BYZANTINE PLAYERS
We now consider the case that, rather than perturbing weights,

the adversary instead controls a certain number of Byzantine play-
ers who can move arbitrarily between best-response moves bythe
ordinary (non-Byzantine) players. Our main results in thismodel
are an upper bound forβ-nice games, showing that random-order

best-response dynamics is resilient to Byzantine players,and a lower
bound for set-covering games, showing that in these games anad-
versary can increase the cost of the normal players by a factor of
Ω(n) even with justoneByzantine player. We also give results for
job-scheduling and consensus games as well.

6.1 β-nice games
Earlier, we showed thatβ-nice games are resilient to cost per-

turbations in the random order model. Here we show they are also
resilient to the addition of Byzantine players. For this, wemake two
additional reasonable assumptions about the game and the number
of Byzantine players:
Assumption 1 (monotonicity): We assume that adding new play-
ers into the game can only increase the cost incurred by any given
player (e.g., as in linear congestion games).
Assumption 2 (low direct impact of Byzantine players): config-
urationS, the social cost ofS with Byzantine players removed is
at least7/8 of the social cost ofS with Byzantine players included.
In other words, the Byzantine players cannot change the costof any
givenstate by more than a small constant factor.

We will consider random best-response dynamics. Recall that in
this model, Byzantine players may move arbitrarily betweentwo
moves of the normal (non-Byzantine) players. The key to the anal-
ysis is that we will track the cost and potential of the configura-
tion minus the Byzantine players, viewing the Byzantine players
as merely perturbations to the perceived costs of the normalplay-
ers, causing them to act in an unusual way. We then will followthe
main steps of the analysis ofβ-nice games in Section 5.1. However,
note that now the Byzantine players can affect the perceivedcost of
anygivennormal player substantially, even though by Assumption
2 they cannot change the aggregate cost by too much.

Specifically, let players1, . . . , n be the normal players, and we
will index the Byzantine players asn + 1, . . . , n + k. Given a
configurationS at time t, definecost(S) to be the social cost
of S with Byzantine players removed, and definecostt(S) to be
the social cost ofS with Byzantine players included. Similarly,
definecosti(S) andcostt

i(S) to be the cost incurred by player
i with Byzantine players removed or included, respectively.So,
cost(S) =

Pn
i=1 costi(S) andcostt(S) =

Pn+k
i=1 cost

t
i(S).

Also, by Assumptions 1 and 2 we havecostt(S) ≥ cost(S) ≥
7
8
cost

t(S).
Define the potentialΦ(S) to be the standard potential function

for configurationS but with Byzantine players removed, and letSt

denote the state at timet (counting each move of a non-Byzantine
player as one time step). We now prove the following lemma.

LEMMA 6.1. If cost
t(St) ≥ 2βOPT then we have

E[Φ(St+1) − Φ(St)] ≤ −cost
t(St)/(8n).

PROOF. Given configurationS, let Si denote the configuration
resulting from playeri performing best-response to the perceived
costs (i.e., with Byzantine players included). Let̂∆ =
Pn

i=1[costi(S) − costi(S
i)]. In other words,∆̂/n is the ex-

pected drop in the potentialΦ caused by a random non-Byzantine
player performing best-response to the costs with Byzantine play-
ers included.

Let ∆̃ =
Pn+k

i=1 [costt
i(S)− cost

t
i(S

i)] = cost
t(S)−Pn+k

i=1

cost
t
i(S

i). This is a somewhat strange quantity since the Byzan-
tine players are not actually performing best response. Nonethe-
less, by the definition ofβ-nice, if costt(S) ≥ 2βOPT then
we have∆̃(S) ≥ cost

t(S)/4. This implies
Pn+k

i=1 cost
t
i(S

i) ≤
3
4
cost

t(S), and therefore surely
Pn

i=1 cost
t
i(S

i) ≤ 3
4
cost

t(S)



as well. Putting this together, we now have:

∆̂(S)
= cost(S) −

n
X

i=1

costi(S
i) ≥ cost(S) −

n
X

i=1

cost
t
i(S

i)

≥ cost(S) − 3

4
cost

t(S) ≥ 7

8
cost

t(S) − 3

4
cost

t(S)

≥ cost
t(S)/8,

where the first inequality follows by monotonicity and the second
to last follows by Assumption2. Since∆̂/n is the expected drop
in Φ, this concludes the proof.

To analyze the expected costs, we now need an analog of Lemma
5.2, showing that even ifcostt(St) is low, the expected value of
the potential will not increase too quickly.

LEMMA 6.2. For any value ofcostt(St), we haveE[Φ(St+1)−
Φ(St)] ≤ cost

t(St)/(8n).

PROOF. Let S = St. Using the notation from the proof of
Lemma 6.1 we have

∆̂(S)

= cost(S) −
n

X

i=1

costi(S
i) ≥ 7

8
cost

t(S) −
n

X

i=1

costi(S
i)

≥ 7

8
cost

t(S) −
n+k
X

i=1

cost
t
i(S

i) = ∆̃(S) − 1

8
cost

t(S).

This is at least− 1
8
cost

t(S) as desired.

Putting these together we can now show the following analog of
Theorem 5.1, forβ-nice games satisfying Assumptions 1 and 2.

THEOREM 6.1. For any t > 0, E[Φ(St)] ≤ max[6βOPT,
cost(S0)] ≤ 6βcost(S0).

Finally, note that if there is a bounded valueGAP = maxS

[costt(S)/Φ(S)] then the above result implies that for allt > 0,
E[costt(St)] ≤ max[6βOPT, costt(S0)] · GAP.

6.2 Set-covering games
We now consider set-cover games and give a construction show-

ing that just one Byzantine player can cause best-response dynam-
ics to move from an equilibrium of costO(OPT) to an equilib-
rium of costΩ(n ·OPT). Note that this is the largest gap possible
since the Price of Anarchy for this game isn.

THEOREM 6.2. For set-cover games, a single Byzantine player
can cause best-response dynamics to move from a Nash equilibrium
of costO(n) to a Nash equilibrium of costΩ(n2).

PROOF. Considern players of type I, where each playeri has
two sets to choose from: a common sets∗ of costn, and a setsi

of costn − 1. There are additionallyn − 2 players of type II, such
that playerk of type II may either choose any of the setssi or else
its own setfk of costn/k, for k ∈ {2, . . . , n− 1}. In addition, we
have one Byzantine player who may choose any of the sets, for a
total of 2n − 1 players total. The initial state is all players of type
I in sets∗ and all players of type II in sets1, for a total costO(n).

The Byzantine player and type-II players will now slowly lure
all type-I players into the setssi, increasing the cost of the system
to n(n − 1). First the Byzantine player moves to sets1 causing
player 1 of type I to move froms∗ (whose cost to the player is 1) to
s1 (whose cost to the player is(n − 1)/n). The Byzantine player
then sequentially moves to each setfn−1, fn−2, . . . , f2, causing

the players of type II to move to their setsfk in that order. Specifi-
cally, at the time playerk of type II moves, the sets1 has a cost to
it of (n−1)/k, whereas setfk has cost (with the Byzantine player)
of n/(2k).

Now the Byzantine player moves to sets2, causing the players
k of type II for k = 2, 3, . . . , n − 2 to move one after the other to
s2 as well. Specifically, at the time playerk moves, sets2 has cost
(n − 1)/k which is lower than the costn/k of fk. At the end of
this step we have the same configuration of type-II players asin the
initial state, except withs2 rather thans1. The entire process then
repeats for player 2 of type I, and so on, until each playeri of type
I is on its own setsi. Finally, sinces∗ is now empty, none of the
type-I players wish to move so we are at an equilibrium.

As pointed out in Section 3, Theorem 6.2 immediately implies
that in the perturbation model we havePoUBR(

√
2− 1, SCG) =

Ω(n). Note that in Theorem 4.2 we extend this construction to the
more delicate case of small values ofǫ as low as

p

2/n.

6.3 Job scheduling and consensus games
We begin with a simple lower bound for job scheduling in the

presence of a single Byzantine job.

THEOREM 6.3. For two machines and one Byzantine job, the
cost can increase from2 to Ω(n), even in the random-order model.

PROOF. Consider two machines and2n + 1 good jobs,n of
type I with cost(1/n, 1) andn of type II with cost(1, 1/n), and
one Byzantine job with cost(1, 1). Initially, jobs of type I are on
machine1 and jobs of type2 are on machine2, this is the optimal
assignment for the good jobs. The Byzantine job goes to machine
1, then a job of type I moves to machine2, since this is its best
response. Now, the Byzantine job moves to machine2 (note that
the Byzantine job increased its load). Then, a job of type II moves
from 2 to 1. This way we increase the cost from 2 ton + 1.

As in Theorem 5.2, this construction extends immediately tothe
random order model, with just a constant factor loss in the ratio,
by analyzing the Markov chain produced as a result of the above
adversary strategy. Specifically, so long as the system has more
jobs with cost1/n on their current machine than jobs with cost 1
on their current machine, the system is more likely to transition in
the forward direction (increasing the number of high-cost jobs) than
in the reverse direction. Thus, inO(n) steps, with high probability
the system reaches a state of costΩ(n).

On the other hand, for job scheduling on identical machines,un-
less the Byzantine players by themselves have substantial weight,
they cannot cause the system to reach a high-cost state.

THEOREM 6.4. For job scheduling on identical machines, the
makespan is at most2OPT + Wb, whereWb is the sum of the
weights of the Byzantine jobs.

PROOF. LetWb be the weight of the Byzantine players andWg

the weight of the good players. Each time a good playeri moves
it has a best response whose cost is at most(Wg + Wb)/m + wi,
wherewi is the good job cost. Note thatOPT ≥ max{W/m, wi}
and thus the result follows.

We end with a simple observation that for unweighted consensus,
a single Byzantine player can cause cost to increase by a factor
Ω(n).

THEOREM 6.5. For the unweighted consensus game, a single
Byzantine player can increase cost from1 to Ω(n).

PROOF. The network is simply a line networkv1, . . . , vn. The
Byzantine player is the playerv1 at one end of the line. Assume



we start with all players beingR and then the Byzantine player
switches toB. Playerv2 is indifferent betweenR and B so it
switches toB, and then playerv1 switches back toR. Then, player
v3 switches toB, playerv2 switches toR and playerv1 switches
to B. In phasek, we start withv1, . . . , vk alternating betweenR
andB, such thatvk playsB. During phasek, first vk+1 switches
to B, and then playersvk, . . . v1 switch their action. At the end we
have all players alternating betweenR andB, at costΩ(n).

7. OPEN QUESTIONS
In terms of specific open questions, it would be interesting to

close some of the gaps that remain in the adversarial order model.
For example, can one extend the upper bound of Theorem 4.4 to
non-symmetric cost-sharing games or extend the lower boundof
Theorem 4.2 to symmetric cost sharing games? In the Byzantine
model, can one get better upper-bounds for set-cover and fair cost-
sharing games if we assume random order dynamics? More gener-
ally, for all the classes of games studied, can one get betterupper
bounds in the random order model in the case where the perturba-
tions are not completely adversarial, but instead chosen from some
distribution of bounded magnitude?

Acknowledgements: We would like to thank Heiko Röglin for a
number of helpful discussions about matroid congestion games.
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APPENDIX

A. SET COVERING GAMES
Theorem 4.2 In the set covering game we havePoUBR(ǫ, SCG)

= Ω( ǫ
√

n
log(1/ǫ)

) for ǫ ≥ 2/
√

n.

PROOF. The construction6 builds on that in the proof of Theo-
rem 6.2. LetN = n/4. ConsiderN players of Type I, indexed by
pairs(i, j) for 1 ≤ i, j ≤ √

n. Type-I player(i, j) has three sets
to choose from: a sets∗i of costN , a setsactive,j of costN , and
a private setsi,j of costN . Initially, all Type-I players begin on
the setss∗i for a total cost ofN

√
N . We also haveN +

√
N − 2

players of Type II as follows. Fork = 3, . . . , N , we have a Type-II
player who may choose any of the setssactive,j (for 1 ≤ j ≤

√
N )

or else its own setfk. Fork = 2 we have
√

N Type-II players in-
dexed by pairs(2, j) for 1 ≤ j ≤

√
N who may choose only the

setsactive,j or their own setf2,j . The setsfk andfk,j have costs
as follows: fork ∈ [2, 1/ǫ], the set has cost1

ǫ
N/k; for k > 1/ǫ,

the set has costN/k. However, fork ∈ [2, 1/ǫ], we have1/ǫ − 1
“helper” players in setfk (or setfk,j ) whose alternative options
will be described in more detail below. Thus, with helper-players
included, cost of each setfk (or fk,j ) to type-II playerk (or (k, j))
is N/k. The Type-II players begin in their setsfk (or fk,j ).

As in the proof of Theorem 6.2, the Type-II players will now
slowly lure all Type-I players into the private setssi,j , increas-
ing their overall cost fromN

√
N to N2. Specifically, fori =

1, 2, . . . ,
√

N , the following occurs. First, for eachj = 1, 2, . . . ,√
N in sequence, Type-I player(i, j) is lured ontosactive,j as fol-

lows. First, Type-II player(2, j) is moved to setsactive,j by hav-
ing its helper-players temporarily raise the effective cost of f2,j

from N/2 to N (using a process described in the paragraph be-
low) so that the adversary can cause it to move tosactive,j with
an arbitrarily small additional perturbation. Next, Type-II players
k = 3, 4, . . . are made to follow along tosactive,j . In the case
of k = 3, . . . , 1/ǫ, this is done by having the helper-players again
temporarily raise the effective cost offk from N/k to 2N/k, mak-
ing the player prefersactive,j to fk. In the case ofk > 1/ǫ, this
can be done without helper players, since the ratio of the cost of
sactive,j to the cost offk is k/(k − 1) ≤ 1 + ǫ, so perturbations
are sufficient. (Note that Type-II player(2, j) would have preferred
sactive,j′ for j′ < j to sactive,j because that set already has a
Type-I player on it, but that is not one of its allowed sets; Type-II
playerk = 3 is indifferent (so can be made to move as desired
with arbitrarily small perturbations) and Type-II playersk > 3 will
strictly prefersactive,j to sactive,j′ for j′ < j.) Now, player(i, j)
of Type I moves froms∗i (whose cost to the player is at least

√
N

to sactivej
(whose cost to the player is1). Finally, the players of

Type II, in order fromk = N down to 2, sequentially move back to
their setsfk (or fk,j ). In particular, at the time playerk of type II
moves, the setsactivej

has a cost to it ofN/k, which is equal to the
cost of setfk (so with arbitrarily small perturbations, the adversary

6We thank Florin Constantin and Steven Ehrlich for pointing out a
bug in an earlier construction.



can easily cause these players to move). After the above process
has been completed for allj = 1, 2, . . . ,

√
N (so thats∗i is now

empty for the current value ofi), the Type-I players(i, j) are now
indifferent between all sets to which they are eligible. So,they can
each be made to move to their private setssi,j via arbitrarily small
perturbations. We then incrementi and repeat the entire process
above.

To finish the argument, we need to describe how the helper-
players raise the effective cost offk (or fk,j). This proceeds as
follows. For eachk, thejth helper-player has a private set of cost

N
k(1−jǫ)

. By perturbing costs, adversary can cause these players for
j = 1, 2, . . . , 1/(2ǫ) to move in order to their private sets. Specifi-
cally, at the time thejth player is to move, the ratio of the cost of its
private set to the cost offk is N

k(1−jǫ)
· kǫ(1/ǫ−j+1)

N
= 1−(j−1)ǫ

1−jǫ
≤

1 + 2ǫ < (1 + ǫ)2. This then raises the cost offk as desired.
Once playerk of type II has moved off of setfk, the helper players
return back tofk in the orderj = 1/(2ǫ), . . . , 2, 1 (they are now
indifferent between the two sets, so the adversary can causethem
to move via arbitrarily small perturbations) bringingfk back to its
initial state. This completes the construction.

The total number of players is upper bounded by2N + 1
ǫ
(
√

N +
1
ǫ
). Forǫ ≥ 1/

√
N andN = n/4, this is at mostn. The total cost

of the initial state isO(N3/2 +N3/2/ǫ+(N/ǫ) log(1/ǫ)) and the
final state has costΩ(N2), giving the ratio desired.


