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ABSTRACT

We study the degree to which small fluctuations in costs if-wel
studied potential games can impact the result of natur&liesponse
and improved-response dynamics. We call thisRhiee of Uncer-
tainty and study it in a wide variety of potential games (includ-
ing fair cost-sharing games, set-cover games, routing gaared
job-scheduling games), finding a number of surprising tesuh
particular, we show that in certain cases, even extremealihac-
tuations can cause these dynamics to spin out of control ave m
to states of much higher social cost, whereas in other chsse t
dynamics are much more stable even to large degrees of ftiariua
We also consider the resilience of these dynamics to a small
number of Byzantine players about which no assumptions atkem
We show again a contrast between different games. In cardaies
(e.g., fair cost-sharing, set-covering, job-schedulieggn a single
Byzantine player can cause best-response dynamics tdtivarie
states of substantially higher cost, whereas in others, thg class
of B-nice games which includes routing, market-sharing andyman
others) these dynamics are much more resilient.

Categories and Subject Descriptors: J.4 [Social and Behavioral
Sciences]: Economics; F.2 [Analysis of Algorithms and Peob
Complexity]

General Terms. Algorithms, Theory, Economics.

Keywords. Algorithmic Game Theory, Best Response Dynamics,
Social Cost

1. INTRODUCTION

It is widely accepted that rational agents in competitivei€en
ronments can be viewed asility maximizers Economic theory
has gone to great lengths to justify this assumption, anididgrit
from basic plausible axioms. Major milestones in this lifee
search include von-Neumann and Morgenstein [23], de Fijggtt
and Savage [19]. In essence, these results connect betgests'a
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preferences, likelihoods of events, and utility functiof\e should
remark that there is a line of work in behavioral economicscivh
challenges this approach, for example the well known works o
Kahneman and Tversky [21].) In this work we explore how small
fluctuations or uncertainties about agents’ own utilitias substan-
tially affect social welfare when players follow naturalrdymics.

In many cases we can view the agents’ utility functions asdei
based on measurements of some physical quantities. Fopéxam
in job scheduling, the speed of each machine is a physicaitiqya
which determines the load on each machine. An agent has to ap-
proximate this speed from its observation, where the sistplay
is to consider the ratio of output quantity and time. Evehéf obut-
put quantity is given, different agents might have (slighdifferent
measurements of time, which will cause them to compute tjigh
different machine speeds. Even the same agent might hygintghe
different speeds for the same machine at different times tolim-
perfection in its clock. We can model this phenomenon as\idl
We assume that each machine has an absolute speed at each
time ¢t each agent observes a speed € [s/(1+¢), s(1+¢€)], for
some uncertainty parameter> 0. This modeling of uncertainty is
reminiscent of the statistical query learning model of Ksg1.2].

In other situations, even without uncertainty in measurertae
underlying game itself may exhibit small fluctuations intcdSor
example, consider a transportation problem where eacht agen
lects a route. We might model edges as having delay functiats
are, say, linear in the amount of traffic on them, but in rgadie-
lays may also depend on external environmental factorsiwiage
been abstracted out of the model. Therefore delays would@&ot
exactly identical at two different times even if the amoufitraffic
at those times is the same. We can again view this similariyach
time ¢, resourcej has cost’ € [c;/(1 + €),¢; (1 + €)] wherec;
is the “base” cost of that resource, ani a degree-of-fluctuation
parameter. In fact, this same issue of fluctuations in agtoad-
dition to perceived) costs may occur in job scheduling as.wel

The question we are interested in is: can these fluctuations (
either perceived or actual costs) cause best-responsengnovied-
response dynamics to spin out of control and move from high-
quality states to states of much worse social welfare? Waht v
ues ofe can different well-studied games tolerate? We focus on
potential games, where such dynamics are especially hatund
define a new measure we call tReice of Uncertainty (PoU)that
models the effect these perturbations can cause. To deéirfeat
we assume at each stéan agent does a best (or improved) re-
sponse to the cost function at tinne The PoU of a given game
bounds the ratio of the initial social welfare to the socialfare
of any state that can be reached in such a dynandicsmall PoU

1As mentioned above, it could be thetual cost of resource at
timet is slightly different from its cost at time 0, or else theseico
just be differences in measurement, but either way the tefiean



implies that the system can not deteriorate due to such rbartu
tions in costs, and provides a certain degree of robustretizet
system; a large PoU means that deterioration could be seMete

that all the games we consider have only a small gap between po
tential and cost, so without any fluctuations, these dynsmvimuld
never cause social welfare to deteriorate substantiailyaddition,

all the games we consider have near-optimal equilibriair(firece

of stability is low), and they continue to do so even afteitydra-
tion: thus, the effect we are studying is not that the systeovwean

to a poor state because good equilibria no longer exist, diher
whether small perturbations can lead natural dynamicayastr

Our Results: We analyze a number of well-studied potential games
from this perspective, including cost-sharing [2], madrgiames
[1], job-scheduling [13, 8], and the class@hice games [3], prov-

ing both upper and lower bounds on how resilient they are ¢t su
perturbations under both best-response and improvedinsspdy-
namics. Our analysis shows a number of surprising distinsti

that for set cover games, a single Byzantine player can daeste
response dynamics to move from an equilibrium of €@§OPT)
to one of cost2(n - OPT). (This is as bad a situation as possible
since the Price of Anarchy in such game®ig:).) For job schedul-
ing on two unrelated machines we show that a single Byzantine
player can induce a dynamic where the cost increases fram
Q(n), and that the same is true for consensus games. For our pos-
itive results, we allow any number of Byzantine players. \Weve
that for job scheduling on identical machines the effect ptdh-
tine players is very limited. FoB-nice games, under additional
assumptions on the impact the Byzantine players can havieeon t
social cost of anygiven state, and assuming random-order best-
response dynamics, we can show that at any tintee expected
social cost can not be abogg - OPT - GAP,whereGAP bounds
the ratio between potential and cost for the game (e.g. alocbst
sharing game&AP = O(log n)).

Ourwork can be thought of as asking what kinds of fault-ttee

between these games, as well as between these two dynamics. |properties we can guarantee in multi-agent environmenhst ig,

some cases, we show even exponentially small perturbatiams
resultin drastic increases in cost; in others, polynorpiathall per-
turbations are sufficient to ensure good behavior, and firsaline
are resilient even to constant-sized fluctuations. For gamin
fair cost-sharing games with many players of each type, vogsh
that with best-response dynamics, the Price of Uncertainépn-
stant even for constant > 0. However, with improved-response
dynamics, even exponentially small fluctuations can causexa
ponentially large increase in the cost of the system. On thero

hand, with few players of each type, the game becomes less re-

silient, and constant-size fluctuations can cause everrbégsbnse
dynamics to incur a PoU dR(n), wheren is the number of play-
ers, moving from an equilibrium of cog?(OPT) to one of cost
Q(n - OPT), matching the Price of Anarchy of the game. For
set-covering games, a natural special case of fair costrghstud-

ied by [6] where players must choose which set to belong to and
split the cost with others making the same choice, we shoWw bot
best-response and improved-response dynamics have athegar
mic Price of Uncertainty foe = O(1/(mn)). However, for ma-
troid games (a broad class that generalizes set-coveritignamy
other games), while best-response dynamics continueshibiex
good behavior, improved-response dynamics again has erpon
tially large PoU even for exponentially smal(exponential in the
rank of the matroid). We also give a technically intricatevém
bound ofQ2(ey/n/ log(1/€)) on the PoU of best-response dynam-
ics for set-covering games, showing thak polylog(n)/v/n is
necessary for polylogarithmic PoU. Finally, for the clagsienice
games, which for constagtincludes congestion games with linear
(or constant-degree polynomial) latency functions, maskering
games, and many others [3], we show that for random order best
response dynamics, the price of uncertainty0i§3). However,
again for improved-response dynamics the PoU can be exponen
tial. We also present results for job scheduling on unrelata-
chines and consensus games.

We also explore a different kind of robustness, which is aisbb
ness to adversarial (Byzantine) players. This can be viesged
fault-toleranceof the system to a few misbhehaved agents. For our
lower bounds, we concentrate on the case of a single adiadrsar
(Byzantine) player, and measure to what degree can suclyerpla
can cause the system’s social welfare to deteriorate. We sho

agent’s behavior is the same. Also, in general we assumehtbat
initial state is arbitrary. It could be an equilibrium, in igh case
the PoU can be viewed as studying the stability of the equuitib.
Alternatively, the initial state might result from a charigehe sys-
tem (adding or removing a link in routing, or adding or renmayi

a machine in job scheduling). In such a case the agents dgaami
start from a more arbitrary state.

if the system is currently in a low-cost equilibrium statdyem can
we expect it to remain so even in the presence of slight peatur
tions in costs or in the presence of a small number of miskiebav
(Byzantine) players. Our analysis also points out a fragifi stan-
dard potential-function arguments in cases where the lyidgr
model is not quite perfect.

Related Work: Recent work on the “Price of Malice” and re-
lated notions have also considered the effect that Byzaplisyers
can have in several natural games [4, 18, 15]. The focus ¢f tha
work has been on the effect of such players on the quality ®f th
worst Nash or coarse-correlated equilibria. In contrast,are in-
terested in the effect of such players on an initial stateray be
much better than the worst equilibrium, for a wide class @géptal
games with a low gap between potential and cost (so that utitho
any perturbations or Byzantine players, behavior wouldenele-
grade substantially).

2. THEMODEL

A game is denoted by a tupl@ = (N, (S;), (cost;)) where
N is a set ofn players,S; is the finite action space of player
i € N, andcost; is the cost function of playei. The joint ac-
tion space of the players i§ = &1 x ... x S,. For a joint
action S € S we denote byS_; the actions of players # i,
ie., S—; = (s1,..., Si—1,8i—1,...,Sn). Furthermore we denote
by S @ s the state(s1, ..., si—1, 8}, Si—1, ---, S»). The cost func-
tion of playeri maps a joint actiort’ € S to a real non-negative
number, i.e.cost; : S — R*. Every game has associated a so-
cial cost functioncost : S — R that maps a joint action to a
real value. In the cases discussed in this paper the sodglsa
simple function of the costs of the players. In particulag eis-
cuss the sum, i.ecost(S) = > " | cost;(S), and the max, i.e.,
cost(S) = maxj_; cost;(S). (In the context of load balancing
games we call the maximum social function thekesparsocial
cost function.) The optimal social cost of a ga6iés OPT (G) =
minges cost(S). We sometimes overload notation and @GET
for a joint actionsS that achieves codPT(G).

Given a joint actionS, theBest Response (BR]J player: is the
set of actiondB R;(.S) that minimizes its cost, given the other play-
ers actionsS_;, i.e., BR;(S_;) = argmingcs, cost; (s,5_;).
Given a joint actionS, the Improved Response (IRf player: is
the set of actiong R;(.S) that have lower cost than its current ac-
tion, i.e., IR;(S) = {s € Si|costi(s,S_;) < cost(S5)}.

A joint action S € S is apure Nash Equilibrium (NEJf no
playeri € N can benefit from unilaterally deviating to another
action, namely, every player is playing a best respons®radti
S, i.e.,s; € BR;(S_;) for everyi € N. A best (improved)
response dynamids a process in which at each time step, some



player which is not playing a best response switches it®adt
a best (improved) response action, given the current jaitibm.
In this paper we will concentrate on games in which any best (i
proved) response dynamics converges to a pure Nash equilibr
(which are equivalent to the class of ordinal potential garfid,
17]). Throughout the paper we denote GAP (G, n) the maxi-
mum ratio between the cost of a given joint action and theevafu
the potential function for it, wheré&' is a game of, players.

Let V(G) be the set of Nash equilibria of the gafie ThePrice
of Anarchy(PoA) is defined as the ratio between the maximum cost
of a Nash equilibrium and the social optimum, i.enaxgcar ()
cost(S))/ OPT(G). The Price of Stability(PoS) is the ratio
between the minimum cost of a Nash equilibrium and the social
optimum, i.e.(minge nr(g) cost(S))/OPT(G).

In this paper we introduce and study tReice of Uncertainty
(PoU). We consider three different variations.

Adversarial Model: Consider a gamé&, from a given class of
games7, where the agents start at some given initial configuration
So (which might be a Nash equilibrium or not). Now we progress
in phases, where in phagethe following occurs. First, at time

t, the adversary perturbs the costs@fby a small multiplicative
factor from their initial values, so that for an§ and j we have
cost!(S) € [cost;(S)/(1+¢€), (1 + €)cost;(S)].? Then the ad-
versary picks an agemtwho performs a best (improved) response,
and the new configuration is;.

Our main concern is to upper bourdst(S:)/cost(So) as a
function of e and the class of gam&s More precisely, let us de-
fine PoUgr(e, G) = max cost(St)/cost(So), where the max
operator is over the initial configuratiofly, the number of time
stepst, and a dynamics of time steps which includes the se-
lection of a playeri € N and the selection of its best response
at each time step. For a class of gantedet PoUgr(e, G) be
maxgeg PoUgRr (€, G). We define similarlyPoU; r for improved
response.

Random Order Model: This model is similar to the adversarial
Model, except that at each time step a random agent\ is se-
lected. We now care about the expected cost at tinwde remark
that although the player is selected at random, its actiselscted
as an adversarial best (improved) response to an advéigaea
lected perturbation of its cost. In this case we denote thoe mf
uncertainty byPoUER 2

Byzantine Model: In this model, rather than perturbing costs, the
adversary instead has control over a small number of Byzanti
agents. At each time step the adversary moves the Byzantine
agents arbitrarily, and then an ageér N is selected (either adver-
sarially or at random), who then performs a best-responseis,T
while in the other models the adversary can perturb all cbgts
a small amount, in this model the adversary can influence anly
few players, but for those players it has full control. Thigpiies
that the adversary can typically influence the costs of onigva

resources at a time (those used by the Byzantine playershby a

amount that depends on the game and the current joint adtibe o
players.

the adversary can cause playeto move from its action inS to

its action inS’: for improved response dynamics, this means per-
turbing costs so thatost!(S’) < cost!(S), and for best response
dynamics this meansost}(S’) is the minimum cost of any state
playeri can reach unilaterally fron¥. Given this graph, for each
joint action S let V(.S) be the set of nodes reachable from it. The
PoU then bounds the ratio between the social cost iand the
maximum social cost of any joint action reachable fréhi.e.,
maxs maxX,cv(s) cost(v)/cost(S).

2.1 Classesof Games Studied

In this paper we extensively studyongestion gameand im-
portant sub-classes of them. A congestion gaFhis defined by
a tuple(N, R, (Si), (di)), whereN is the set ofn players,R is
the set ofm resources, the action of playeérs S; C 2R and
the goal of player is to play a strategys; that minimizes its in-
dividual costcost;. The costcost;(S) of playeri is given by
> ores,; Ar (nr(S)), wheren,(S) is the number of players shar-
ing resourcer in stateS andd, : N — N is a delay function
associated with resourge Rosenthal [17] shows that every con-
gestion game possesses at least one Nash equilibrium bidcons
ering the potential functiord(S) = > . 37 d,(i). We
call a congestion gamgymmetridf all the players share the same
set of strategies, otherwise we call it asymmetric. Specifisses
of congestion games that we study in this work are cost-spari
games, matroid congestion gamgsnice games, and consensus
games. We define all these in their corresponding secti@amely
Sections 4.1, 4.2, 5.1 and 4.3. For games Mift$) > cost(S)
we defineGAP(G, n) asmaxg ®(5)/cost(S). More generally,
for games such thab(S) € [cicost(S),cacost(S)] we define
GAP(G,n) = c2/c1, where we assumg < 1 < cz.

Another class of games we study éwad balancing gamefsee
[16]) which we define in Section 4.4.

3. PRELIMINARIES

We start with a few simple observations regarding the price o
uncertainty in general, and for congestion games in paaicEirst,
note that fore = 0 we get the “standard” best (improved) response
dynamics. In this case the PoU is simply asking by how much can
the social welfare deteriorate, assuming that all the ptagee im-
plementing best (improved) response dynamics (even thisbea
higher than the PoA, see Theorem 3.1). Our first observaditimeit
even fore = 0 the PoU is at least the Price of Stability. This fol-
lows since we can start &, as the social optimal configuration,
and any best response dynamics will reach some equilibfium

FACT 3.1. For anye > 0 we have:
PoUrr(e,G) > PoUBr(€,G) > PoUpr(0,G) > PoS(G).

For fair cost-sharing games, Fact 3.1 implie<Hiog n) bound,
due to the price of stability results [2]. Second, one sh@xect
the ratio to also depend on the magnitude: ofFor example, for

One can view the adversarial model as a directed graph, whereany given game, for sufficiently smal] the perturbations of the

the nodes are the possible joint actions. There is a direstige
from S to S’ if they differ in the action of only one player and

2\We require the adversary’s perturbations to be consistéhtthe

classG. For congestion games (see Section 2.1) this means the

adversary may perturb the costs of each resource by+a fac-
tor; for job-scheduling, the adversary may perturb the oéghe
machines. Thus, at each timethe resulting gamé;; remains a
potential game.

3For improved response, the adversarial and the random order

models are identical, since the adversary can make the mando
players select the same action until his desired playeréstasl.

adversary would have no real effect, and the agents woulglgim
follow some best (improved) response dynamics from theainit
configuration. More specifically:

FAcT 3.2. For any game clas§ there is aneg > 0 such that
foranye < €o, PoUrr(€,G) = PoUrr(0,G) and PoUgr(€,G) =
PoUgr(0,G)

Again, for fair cost sharing games, since the social costngf a
configurationS is at most a logarithmic factor from the value of
the potential function [2], this would give a@(log n) upper bound



fore =0, i.e., PoUrr(0, FCSG) = O(log n). In exact potential
games, an immediate observation is:

FAcT 3.3. In any exact potential game aftersteps the poten-
tial function increases by at mogt + €).

Clearly, Fact 3.3 implies that the potential function irases by
at most(1 + €)?~, where L is the number of configurations of
players; for congestion games, since players choose subfsd-
sourcesL < 2™"™,

It is interesting to note that there exigfssuch thatPoUgr
(0,G) is larger by a multiplicative2(log n) factor thanPoA(G).
In particular we can show the following.

THEOREM 3.1. Let G be the class of market-sharing games.
ThenPoA(G) = 2 while PoUgr(0,G) = ©(logn).

PROOF The bound on the PoA is from [22]. For the lower
bound on PoU, consider playefs, ..., n} where player can se-
lect between a dedicated siewith benefitl /i and a shared site
s1 with benefitl. Initially, each player uses its dedicated sitg,
and the social welfare benefitlis n. Now let the players perform
best response in an increasing order of the indices. Playas a
benefit of1 /i, and the benefit from moving ta is1/(i — 1), so it
prefers to move ta;. This implies that at the end of the sequence
the social welfare benefit is. The upper bound follows immedi-
ately from the fact that the gap between potential and costign
game satisfie& AP = O(logn). O

Note that in such cases we are willing to loselthen factor, and
we are interested in for what valueseaihe value ofPoUgr (¢, G)
is not much larger thaioUpr (0, G).

Finally, we point out a simple relationship between the yrert
bation and Byzantine models. Consider a class of gaghesch
that a single player cannot change the cost of any given Stave
any playeri by more than a factor af, and whose effect is mono-
tone (for example, for fair cost-sharing, a new player catuoe
the cost of a given stat€ to a player by at most a factor of 2, and
in any state it cannot increase the total cost of the othgrepi.
Then, an adversary with = /a — 1 can simulate the effect of a
Byzantine player on best-response (or improved-respahsgm-
ics. This implies that any lower bound for a single Byzanpitayer
(such as in Theorems 6.2, 6.3 and 6.5) translates to a lowardbo
on POUBR(\/E — 1, g)

4. ADVERSARIAL ORDER

In this section we present our results in the adversarialehod
and give upper and lower bound droUpr and PoU;rr for a
number of well-studied classes of games. We begin by conside
ing set-cover games, a natural type of cost-sharing gantiestu
in [6], showing that both best-response and improved-nespaly-
namics are resilient to polynomially-small fluctuationdhébrem
4.1), but that even for best-response this resilience lsrdakn for
€ > v/2/n (Theorem 4.2). We then consider two generalizations
of these games: fair cost sharing in general directed grigjhand
matroid games [1]. In both cases, we show that even expatignti
small fluctuations can cause improved-response dynamiteve
to high cost states (Lemma 4.2 and Theorems 4.5 and 4.8); how-
ever, best-response dynamics remains resilient to poliaiym
small fluctuations (Theorems 4.3, 4.4, and 4.7). We alsoepies
results for job-scheduling and consensus games.

4.1 Fair Cost Sharing Games

In this section we consider fair cost sharing games (FCSG), a
class of congestion games defined as follows. We are giveapdngr

G = (V, E), which can be directed or undirected, where each edge
e € FE has a nonnegative cost. > 0. There is a sefV =

{1, ...,n} of n players, where playeris associated with a source
s; and a sink;. The strategy set of playeris the setS; of s; — t;
paths. In an outcome of the game, each playenooses a single
pathP; € S;. Given an outcome& = (P, ..., P,), letn.(S) be

the number of agents whose path contains edga the fair cost
sharing game the cost to agens cost(S) = >_ . p. ) and

the goal of each agent is to connect its terminals with mimmu
total cost. The social cost is defined topg ., p, we.

It is well known that the price of anarchy in these games is
O(n) while the price of stability isH (n) [2], where H(n)
>, 1/i = ©(logn). A well known characterization of the po-
tential function [17] of these games [2] is the following.

LEmMMA 4.1. In fair cost sharing, for any joint actior$ € S,
we have:cost(S) < @(S) < H(n) - cost(S5).

4.1.1 Set Covering Games

Set-cover games (SCG) were considered in [6]. In a set-cover
game, there are players, andn subsets over the players. The
cost associated with sétis w;. Each player; has to choose one
of the sets that contains him and gets to split the cost of the set
with other players who choose the same set. Set-cover games a
a special case of fair cost sharing games. We begin with aarupp
bound for improved-response dynamics.

THEOREM 4.1. In the set covering game, for ary > 0 we
havePoUrr(e, SCG) < (1 4 €)*™™logn. Therefore, fore =
O(=L), we havePoU;r(e, SCG) = O(log n).

PROOF Suppose the initial configuratioty, hask; players us-
ing set/edge of costw;. Think of this as a stack df; chips, where
we label each chip with the name of its initial set and its paosi
in the stack. So the bottom chip for et labeled(i, 1), then the
one above it is labele, 2), and so on. We will give chigs, 5)

a value ofw;/j. So, the sum of values of the chips equals the
potential function of the initial configuration, which aeding to
Lemma 4.1 is at most a factor tfg n larger than the original cost,
i.e, cost(So) - logn. Now, when a player moves from some sget

to some setz, we move the top chip from stack to stackiz. The
claim is that we maintain the invariant that if chi 5) is currently

at some positioj’ on some stack’, then it must be the case that
wy /7 < (wi/g) - (1 + €)*™™. This will imply what we want,
because it means that we can pay for any new set that gets taken
using the bottom chip on its stack. (We are using here thelfatt

a chip can only be in one stack.)

The argument for the invariant is that there are at mastn
different positions a given chip can be im (stacksyn positions per
stack) so if you consider the path a chip takes from its ihitiea-
tion to its current location, this path has length at mastn (you
can remove loops in this configuration space). Since pldpdov
an improved response dynamics, each step in this move ctgses
ratio of cost of the current stack to position in the stacknréase
by at most a factof1+¢)?. So, overall, the total increase is at most
afactor of(14¢)*™™. So,cost(S;) < (1+¢€)*™"cost(So) logn
for all ¢, as desired. []

We now give a lower bound, showing that fors> log(n)/+/n,
the price of uncertainty can get large even for best-respdysam-
ics.

THEOREM 4.2. In the set covering game we ha®Ugr (¢,

S5CG) = Q(logﬁ) ).

The proof builds on a construction in Section 6 giving a lower
bound in the presence of a single Byzantine player, but gddian




extra “gadget” o (/n/e+1/¢?) players that allows the adversary
to simulate the effect of a Byzantine player even via quitalsm
fluctuations. The construction in this lower bound is fairiyricate
so we defer the proof to Appendix A.

4.1.2 Fair Cost Sharing Games in General Graphs

chosen to move to patR;, _, for a true (unperturbed) cost at most
Re—1 — 2435, In particular, 245 is a lower bound on the
savings produced by having one more player on the edges ohwhi
P, _, andP;, 1 differ (which implies the desired statement for
tr = tr—1+1) and each playef;, 4o, ..., j¢, could have moved
to pathP;, _, 1 reverting the system to statg, , (which extends

We now consider fair cost sharing games in general directed tne statement to the casg > t,_1 + 1). Therefore, since player

graphs. We show here that so long as the number of players
of each type (i.e., associated to edsh ¢;) pair) is large, then the
game is stable even for large valueseafinder best-response dy-
namics. Specifically, so long as; = Q(m) for all <, we have
a constant price of uncertainty. On the other hand, for imgde
response dynamics, then costs can grow exponentially evexx{
ponentially small values af even for the symmetric (single source,
single sink) case.

THEOREM 4.3. For fair cost sharing games, we have,
PoUgr(e, FCSG) < (1 + T—Eﬁ) , wheren,,;, = min; n;.
This implies that fomn i, = Q(m), we havePoUgr (¢, FCSG)
=0(1).

Jjt,, is performing best response to the perturbed costs, theaste
Ry, of Pt’k is at most a factof1 + 5)2 larger thanRy 1 — ﬁgjq).

For our given values af ande, and using the fact tha,_; <
Wmaz - M, iNnequality (4.1) implies thak, < Rx—1(1 — ). Since
Ri < OPT(1 + €)? and by definition ofOPT it must be that
R: > OPT/n, we get that the number of interesting time steps is
at mostU = O(< logn).

We now bound the potential in terms of the number of interest-
ing time steps. Specifically, note that player could have moved
to pathP;, ,+1, which would revert the system to staig,_, be-
causeP;, 1 =P, _,+y2,...,P, _1 = P, . Because playek,
chose pathP;, instead, which was best-response to the perturbed
costs, this mean®(S;, ) < ®(S:,_,)(1 + €)?. Therefore, the fi-

PROOF. Call an edge “marked” if it is ever used throughout the nal stateSy satisfiesb(Sr) < ®(So)(1 + €)*Y, completing the

best-response process, including those used in the istagdSo,
and letc* be the total cost of all marked edges. 8bjs an upper

bound on the cost of the current state. Any time a best-respon

argument. [

Improved response The above results give upper bounds for best

path for some(s;, ;) pair uses an unmarked edge, the total cost €Sponse in fair cost sharing games. In contrast, we now shaiv

of the unmarked edges used is at m@st/n;) - (1 + €)?, because
(c*/ni)(1 + €) is an upper bound on the perturbaderagecost

for improved-response dynamics, the price of uncertaistgxpo-
nentially large even for exponentially-small valuesepfeven for

of players of type(s;,t;) and therefore is an upper-bound on the symmetric fair cost sharing games.

perturbed cost of the best-response path for any such playes
in turn is within a(1 + €) factor of the actual cost of this path.
Thus,c* increases by at most a multiplicatiyé + (1 + €)% /n;)
factor. We can mark new edges at mpstimes, so the final cost is
at mostcost(So)(1+ (1 + 6)2/717,”'")7”, wheren,,i» = min; n;.
This implies that as long as.:» = Q(m) we havecost(S:) =
O(cost(So)), for all ¢, as desired. [

LEMMA 4.2. For symmetric fair cost sharing, for a single player
(i.e.,n = 1), the price of uncertainty for improved-response dy-
namics satisfies

PoUrr(e, SFCSG) > 14 2(2™* — 1)¢/m.

PROOF The graph consists of a line of parallel edges arranged
as follows. We have two parallel edges fram= vy to vertexwv
of cost 1 andl + ¢ respectively, then two parallel edges framto

For symmetric fair cost sharing games (SCFCSG) we can get a yertexv, of costsl and1 + 2, then two parallel edges froms to

low price of uncertainty even when the number of players ismu
smaller than the number of edges, ire g m.

THEOREM 4.4. For symmetric fair cost sharing games, where

the edge costs are in the ranfi€min, Wmaz|, We havePoUgr (e,
SFCSG) = O(lOg Tl), fore < 411‘117:::, mn(nfll) logn "

PROOF We start with some notation. We say that at timehe
best-response playgr moves from pathP; to path P/, creating
stateS;. We will say that a time is “interesting” if P,y1 # P;:
that is, if the next player movegsom a path different from the one
the current player moved to. Let us index the interestingeim
asty,ta,. ...

The argument now proceeds in two steps: we first

vs of costs 1 and + 4e, and in general fromy; to v;41 of costs 1
and1 + 2%. Finally we let sinkt = U, /2 SO We have a total af
edges. The player begins on the cheapest path, ohcgst

We can describe a path fromto ¢ by a binary numbeb =
by /2—1 - .- babibo, Where bitb; = 0 if the path uses the edge of
cost 1 fromw; to v;+1 andb,; = 1 if the path instead uses the edge
of cost1 + 2. Thus, pathb has cost exactlyn/2 + be, and the
player begins at path 0.

We now claim that using a series of perturbations and impteve
response moves, one can cause the player to repeatedlynere
moving from pathb to pathd + 1 until the player finally reaches
path2™/2? — 1, achieving the desired bound. Specifically, since the

show an upper bound on the number of interesting time steps of différence in true cost between path- 1 and pathb is exactlye,

Wmin 1

U = 0(; logn) for a = gpmin- -t We then prove that the
potential of the final stat§r satisfiesb(St) < (1 + €)?Y®(Sy).
Using the fact that < 4’5&1’; T Togn and theO(log n) gap
between potential and cost in these games, we get the desstatl

Let R, denote the true (unperturbed) cost of the p&that time
tr; thatis, Ry = costj,, (St ). We now claim that

Wmin 2
Ry, < [(Rp—1———— (1 . 4.1
N =) LA SR
Specifically, note that becausg®, , andP;, _, 1 differin at least
one edge of cost at least,;,, and becausPt’kf1+1 =P, 4o,
.. .,Pt’k,1 = P, , any of the playerg;, ,+1,...,jt, could have

it is sufficient to choose some arbitrary edge in patat is not
in pathb + 1 and increase its cost by a multiplicative faclo# ¢
to cause + 1 to be an improvement ovér(and we can similarly
decrease the cost of an edgebin- 1 that is not inb to make it a
strict improvement). [

The generalization for multiple players is straightforaiar

THEOREM 4.5. For symmetric for cost sharing, for any num-
ber of playersn, the price of uncertainty for improved-response
dynamics satisfieBoU; (e, SFCSG) > 1+ 2(2™/2 — 1)e/m.

We can use Lemma 4.2 to imply a bound also for routing games
[16] with linear (or even constant) latency functions, sirfor the
case of a single player these games are identical.



THEOREM 4.6. For routing with linear latency functions, the
price of uncertainty for improved-response dynamics fafs
PoUrr(e, ROUTING) > 14 2(2™/% — 1)¢/m.

4.2 Matroid Games

dir(5") < di(§) - (1 + €)*™™. The argument is the same as in
Theorem 4.1: there are at mostn different positions a given chip
can be in {n stacksy positions per stack) so if you look at the path
a chip takes from its initial location to its current locatjdhis path
has length at most.-n (you can remove loops in this configuration

We now analyze matroid congestion games, a broad class ofspace}. So, for allt we have®(S;) < (1 + €)*™"®(So), which

games considered in [1]. Before we give a formal definition of
such games, we briefly introduce a few standard facts about ma
troids; for a detailed discussion, we refer the reader t¢.[20

DEFINITION 4.1. AtupleM := (R,Z) is a matroid ifR is a
finite set of resources arifl is a nonempty family of subsetsef
such thatifl € ZandJ C I,thenJ € Z,and ifI,J € Z and
|J| < |I|, then there exists ahe Z such that/ U {i} € Z.

Let M := (R,Z) be a matroid. Lef C R;if I € 7 then we
call I independent, otherwise we call it dependent. It is well kmow
that all maximal independent setsbhave the same size, which is
denoted by the rankk (/) of the matroid. A maximal independent
set of M is called a basis ol It is well known that such a basis
can be found by a greedy algorithm. In the following we state t
additional useful properties of the matroids. We denote3the
set of bases of a matroid, and assume BatB; € B.

LEMMA 4.3. Letr; € Bz \ By, then there exists, € B: \ B2
such thatB; U {rz} \ {r1} € B.

We denote byG(B; A By) the bipartite graptfV, E) with V' =
(B1 \Bz) @] (B2 \ Bl) andE = {{T1,T2}|7‘1 € B1 \Bz,?“z S
By \ By, B1 U{r2}\ {r1} € B}. Thenitis known that [20].

LEMMA 4.4. There exists a perfect matching f6(B1 A Bs).

We are now ready to define matroid congestion games. A con-
gestion game is a matroid congestion game if for every player
N we have thatV/; := (R,Z;) withZ; = {I C S|S € S;}isa
matroid andS; is the set of bases dff;. We denote byk(M) =
max;en rk(M;) the rank of the matroid congestion gamgé For
example, set-cover games are matroid games of rank 1 angthark
sharing games with uniform costs are matroid games [11L@ho
even symmetric fair cost sharing need not be a matroid gavie).
now show that for best-response dynamics, matroid games hav
similar resilience to fluctuations as set-cover games; kiewdor
improved response we give an exponential lower bound.

THEOREM 4.7. In a matroid game,PoUgr (e, M atroid)
(1 4-€)*™"CGAP(Matroid, n). Thisimplies that foe = O(1/(
m)), we havePoUgr(e, Matroid) = O(GAP(Matroid, n)).

PROOF The proof proceeds as in Theorem 4.1. However, we
initially have y, _ \ rk(M;) < n - rk(M) chips and theost (So)
is within a GAP (M atroid,n) factor from the sum of the values
of the chips.

Let S be a state of the matroid congestion gaheand lets; be
a best response of playeto S according to the perturbed cast.
Consider the bipartite grapB(s; A s;) which contains a perfect
matching Py according to Lemma 4.4. Lef* = S @ s}, and
observe that for every edge, r*) € Pa with r* € s; \ s; and
r € s\ sy, dee (e (S) < dr (ne(S*)+1) < dr (nr(S))
since otherwise; is not a best response of playiawith respect to
d,

<
n-

When a player does a best response we now mk{¢€') chips
(corresponding to at mosk(G) resources), and each movement
sets up an inequality of the typg: (') < di(j) - (1 + €)%, The
claim is that we maintain the invariant that if chi 5) is currently
at some positioj’ on some stack’, then it must be the case that

implies cost(S:) < (1 + €)*™"cost(So) - GAP(Matroid,n),
which completes the proof.[]

Note: As opposed to the set-covering result (Theorem 4.1), this re
sult holds forbestresponse dynamics only. We can in fact show
that improved response is not sufficient in these games, ibvan
exponentially small in the rank of the matroid. In partiaukeven
though symmetric cost-sharing is not a matroid game, thefwb
Lemma 4.2 applies equally well to improved-response dynauifii
we replace the graph structure with a uniform matroid havinge-
sources and with rank = m /2. We therefore have the following:

THEOREM 4.8. There exists a matroid game of rank= m /2
such that the price of uncertainty for improved-responseadyics
satisfiesPoUrr (e, Matroid) > 1+ 2(2™/2 — 1)e/m.

4.3 Consensus Games

Consensus games [7] are played by users viewed as vertiaes in
connected, undirected simple grah= (N, E) with n vertices,
whereN = {1,...,n}. Each player has two actions or b, i.e.,

S; = {r,b}. A player has cost for each incident edge on which he
disagrees with his neighbotost:(S) = >_(; ;e 5 Iis;s;)- The
overall social cost is the sum of the costs of all the userss pl
i.e.,cost(S) = 14+, v cost,(S). Itis straightforward to show
that these games are congestion games [14] and that theipbten
function can be rewritten as bB(S) = (cost(S) — 1)/2. The
two social optimum solutions in a consensus game are “aé”blu
and “all red”, both of which are also a Nash equilibrium (se th
Price of Stability is 1). On the other hand, there are Nasliiega
with costQ(n?).

The above describes unweighted consensus games; in weighte
consensus, the edges have non-negative weights and thi cost
player is the total weight of edges on which it disagrees \itith
neighbors. In our model, we can show the following (for pof
see the full version [5]):

THEOREM 4.9. For any unweighted consensus game (UCG),
for anye, we havePoUgr(e, UCG) > "t Fore > 21
we can showPoUgr (e, UCG) = Q(n?).

For a weighted consensus game we can show an exponential
lower bound.

THEOREM 4.10. For any weighted consensus game (WCG), for
anye, we havePoUgr (e, WCG) > (1 +¢€)".

4.4 Job Scheduling

In this section we considgob scheduling on unrelated machines
(JSUM)(see [16]) defined byN, M, ¢) as follows. The selV is
a set ofn jobs, andM is the set ofm machines. Each player is
associated with a job, so haweplayers. Every job can impose a
load on one of the machines, so for every playés set of feasible
actions is to assign jopto some machiné € M. Each jobj € N
has associated a cast; for running on machiné € M. Given
an assignment of jobs to machines, the load of machiisethe
sum of the costs of the jobs that are assigned to that madteéne,

“Note that the dynamics can last for a long time, it’s just that
can shortcut them in the argument.



Li(S) = Xjcp,(s) ¢i Where Bi(S) is the set of jobs assigned
to machinei, i.e., B;(S) = {j : S; = i¢}. The cost of a playeyf
is the load on the machine that playeselected, i.e.cost;(s)
L, (S). For the social cost we use theakespajwhich is the load
on the most loaded machine, i.eqst(S) = max; L;(S). The
price of stability in these games 1s since there is always a pure
Nash equilibrium which is also socially optimal [10].

The Price of Uncertainty in these games can be exponentially
large, even for two machines, wheris large compared ta/n.
(For proofs, see the full version [5]):

THEOREM 4.11. For job scheduling on unrelated machines, for
M = 2 machines and any > 2/n, we havePoUgr (e, JSUM)

>+ [1-Z]+ & =1 +9)™?).

For job scheduling on identical machines (JSIM) we have a sim
ple upper bound, even for large perturbations.

THEOREM 4.12. For job scheduling on identical machines,
POU]R(JSIM, E) < 2(1 + E)

5. RANDOM ORDER

We now consider the effect of perturbations @mdom order
best-response dynamics (for improved-response dynanaiegpm
and adversarial order are equivalent since the adversargiogly
choose not to cause a player to move). Our main result is dnat f
the broad class of-nice games introduced by [3], which for con-
stantg includes congestion games with linear (or constant-degree
polynomial) latency functions, market-sharing games, arahy
others, these dynamics are resilient to fluctuations evercdo-
stante > 0. On the other hand, we give lower bounds showing that
job-scheduling and consensus games can still behave poorly

5.1 p-nice games
Let us consider an exact potential game. Eebe a profile of
the players and le$* denote the configuration produced by a best-

response move by playéraccording tocost;. For each playei
defineA;(S) = cost;(S) — cost;(S*) andA(S) = >, Ai(S).

DEFINITION 5.1. An exact potential game with a potential func-
tion @ is B —nice iff for any stateS we havecost(S) < SOPT +
2A(S).

As shown in [3] nhumber of important games aenice, for 3
equal to the price of anarchy of the game.

Here we show thaB-nice games additionally have the property
that the expected price of uncertainty in the random ordetehis
only O(8 - GAP) even for constant > 0. We start by showing
that if the true (unperturbed) cost of the current configorafS is
greater thar2s - OPT, then no matter how the adversary adjusts
the costs, the expected drop in potential is at least (5)(1/4 —
4€) /n. Fore < 1/16, thisisQ(cost(S)/n). Thatis, the adversary
may make the cost exce@dcost (So) but only temporarily’

LEMMA 5.1. For e < 1/32, if cost(S;) > 260PT then
E[®(Si41) — ®(St)] < —cost(S:)/(8n).

PROOF. As above, letS? denote the configuration produced by
a best-response move by playerccording tacost;, and letS? de-
note the configuration produced by a best-response moveaygipl
i according to the perturbed cost functiesst!. So,cost;(S*) <
cost;(5%) and costf(5%) < costf(S?). Recall thatA;(S) =
cost;(S) — costi(SY) and A(S) = >, Ai(S). We will also
need the following two quantities:

5This implies that with high probability the cost will drop below
260PT within a polynomial number of steps.

1. Ai(S) = costl(S) — costl(S?) is the improvement in per-
turbed cost of playei due to a best-response by playén
the perturbed game, with(S) = >~ A;(S), and

2. Ai(S) = cost;(S) — cost;(S?) is the improvement in un-
perturbed cost of playerdue to a best-response by player
in the perturbed game, with(S) = >, A(S).

Now, supposeost(S) > 260PT. Then by definition ofs-
nice we haveA(S) > cost(S)/4. Now we want to use this to
show thatA(S) must be large as well. Specifically, for eagh
since the improvement in perturbed cost of the best-resptnthe
perturbed game is at least the improvement in perturbed aist
the best response to the unperturbed game, we have:

Ai(S) costi(S) — cost(S")
(1 — €)cost;(S) — (1 4 €)costi(S*)
A;(S) — 2ecost;(9).
Now, summing over all we have:

A(S) > A(S) — 2ecost(S) > cost(S)(1/4 — 2e¢).

This means that when a random player moves to his “best per-
turbed response”, we have

Ei[Ai(9)] > cost(S)[1/4 — 2€]/n.

>
>
> (5.2)

Now, by a similar argument to that equation (5.2) we have:

Ai(S)

= costi(S) — cost;(S")

cost}(S) — ecost(S) — cost!(S) — ecost;(S*)
Ai(S) — 2ecosti(S) + eAi(S).

S0,A;(S) > (Ai(S)—2¢ecost;(S))/(1—e). Putting this together
with the above and using the fact that[cost;(S)] = cost(S)/n
gives us

>

Ei[Ai(S)] > cost(S)[1/4 — 4€]/n

which is the expected drop in the potent@lfor the unperturbed
game caused by a random best-response move in the perturbed
game. Ife < 1/32, we then get the desired result]

So, Lemma 5.1 shows if the true (unperturbed) cost of current
configuration$ is greater thar23 - OPT, then no matter how the
adversary adjusts the costs, the expected drop in poténéitleast
cost(S)(1/4 — 4¢)/n. A Chernoff bound argument can then be
used to say that with high probability the sum of drops in ptigs
will be close to their expectation. Note that we do not shoat th
once cost is low it will necessarily stay there forever — jinstt if
the adversary is ever able to make the cost go aboM@P T then
with high probability it will have to drop back below it in a sih
number of steps.

In the following we show a bound on the expectation that holds
for all time steps. To do so, we use the following additioeahina:

LEMMA 5.2. For any value okost(S:), E[®(St4+1) — @(St)]
< 2ecost(S)/(n(1 —¢)).

PROOF. This just follows from the statement tha,(S) >
(Ai(S) — 2ecost(S))/(1 — €), and using the fact thah;(S)
is always non-negative.[]

Assumee < 1/32. We can now use these lemmas to prove that
for 3-nice games the expected price of uncertainty in the random
order model is onyO(5 - GAP) even for constant > 0. Recall
that we defineGAP = c2/c1 wheree; < 1 < ¢ are values such
that for any state&s we have®(S) € [c1cost(S), cacost(S)].



THEOREM 5.1. For any¢ > 0, we have
E[®(S;)] < max[5c2BOPT, cacost(So)] < 5ezBcost(So).
Therefore E[cost(S;)] < 58cost(Sy) - GAP.

PrRoOOF We will show that ifE[cost(S:)] > 480PT then
E[®(S:+1)] < E[®(S:)]. This will be sufficient because Lemma
5.2 implies that the expectation can never increase by tochmu
In particular, even ifE[cost(S:)] < 430PT, by Lemma 5.2 we
still have

E[®(Si11)] — E[®(S))] < 4¢80PT/(n(1 - ¢))
< BOPT < ¢;30PT.
Specifically, suppos&[cost(S:)] > 430PT. Letp; be the
probability thatcost (S:) > 260PT. Therefore, we have:
E[cost(St)]
piE[cost(S:)|cost(Sy) > 260PT)
+(1 — pt)E[cost(St)|cost(S:) < 260PT]
< pElcost(S)|cost(S;) > 260PT] + 260PT,
so we haveE[cost(St)|cost(S:) > 260PT] > 280PT /p:.
Now, using Lemmas 5.1 and 5.2, we can write:
E[®(St41) — ®(St)]

< (_g—;) E[cost(St)|cost(S;) > 260PT]| +

%E[cost(&)lcost(&) < 260PT]
< 2B0PT/(-8n) + 250PT% <o.

Thus, as desired, E[cost(S:)] > 460PT thenE[®(S;41)] <
E[®(S:)], proving the claim. [

As shown in [3], a number of common games &rgice for con-
stant(3, including congestion games with linear latency functjons
both unweighted® = 2.5) and weighted § ~ 2.618), conges-
tion games with polynomial latency functions of constargrded
(8 = d*C—°MW)Y ‘and market-sharing games & 2).

Note: Interestingly, the guarantee in Lemma 5.1 breaks down
in the adversarial-order setting: for example, for markiearing
games, which arg-nice for 3 = 2, we have price of uncertainty
Q(log n) even fore = 0, as shown in Theorem 3.1.

5.2 Job Scheduling and Consensus games

For job scheduling we can show (see full version [5] for pg)of

THEOREM 5.2. For M = 2 machines, for any > 2/n, we
have thatPoU 35 (e, JSUM) > en/8.

We can similarly adapt our lower bounds for consensus games t

best-response dynamics is resilient to Byzantine plag@ga lower
bound for set-covering games, showing that in these gamas-an
versary can increase the cost of the normal players by arfatto
Q(n) even with justbneByzantine player. We also give results for
job-scheduling and consensus games as well.

6.1 p-nice games

Earlier, we showed that-nice games are resilient to cost per-
turbations in the random order model. Here we show they & al
resilient to the addition of Byzantine players. For this,make two
additional reasonable assumptions about the game and tigenu
of Byzantine players:
Assumption 1 (monctonicity): We assume that adding new play-
ers into the game can only increase the cost incurred by amngi
player (e.g., as in linear congestion games).
Assumption 2 (low direct impact of Byzantine players): config-
uration S, the social cost o with Byzantine players removed is
atleastr/8 of the social cost of with Byzantine players included.
In other words, the Byzantine players cannot change theotasty
givenstate by more than a small constant factor.

We will consider random best-response dynamics. Recdlitha
this model, Byzantine players may move arbitrarily betwéga
moves of the normal (non-Byzantine) players. The key to tfed-a
ysis is that we will track the cost and potential of the configu
tion minus the Byzantine players, viewing the Byzantineypta
as merely perturbations to the perceived costs of the noptagt
ers, causing them to act in an unusual way. We then will follogy
main steps of the analysis gfnice games in Section 5.1. However,
note that now the Byzantine players can affect the perceaigstiof
anygivennormal player substantially, even though by Assumption
2 they cannot change the aggregate cost by too much.

Specifically, let playerd, . .., n be the normal players, and we
will index the Byzantine players as + 1,...,n + k. Given a
configurationS at time ¢, definecost(S) to be the social cost
of S with Byzantine players removed, and definsst’(S) to be
the social cost ofS with Byzantine players included. Similarly,
definecost;(S) and costi(S) to be the cost incurred by player
1 with Byzantine players removed or included, respectivebp,
cost(S) = Y1, cost;(S) andcost’(S) = Z?:lk costi(9).
Also, by Assumptions 1 and 2 we havest‘(S) > cost(S) >
Zcost!(9).

Define the potential(S) to be the standard potential function
for configurationS but with Byzantine players removed, and 5t
denote the state at tinte(counting each move of a non-Byzantine
player as one time step). We now prove the following lemma.

LEMMA 6.1. If cost‘(S:) > 2BOPT then we have
E[®(Si41) — B(S:)] < —cost(S,)/(8n).

PROOF. Given configuratiorns, let S* denote the configuration

the random order model. For a weighted consensus game we carfesulting from playeti performing best-response to the perceived

show an exponential lower bound.

THEOREM 5.3. For any weighted consensus game (WCG), for
anye, we havePoUZ5 g (e, WCG) > (14 €)"/?71,

6. BYZANTINE PLAYERS

We now consider the case that, rather than perturbing weight
the adversary instead controls a certain number of Byzaumtiay-
ers who can move arbitrarily between best-response movéiseby
ordinary (non-Byzantine) players. Our main results in thisdel
are an upper bound fg#-nice games, showing that random-order

costs (i.e., with Byzantine players included).  Lét
S [costi(S) — cost;(SY)]. In other words,A/n is the ex-
pected drop in the potentidl caused by a random non-Byzantine
player performing best-response to the costs with Byzantiny-

ers included.

LetA = Z?:lk [cost!(S) — costi(S)] = cost’(S) — Z?:lk
cost!(S"). This is a somewhat strange quantity since the Byzan-
tine players are not actually performing best response. el
less, by the definition of3-nice, if cost’(S) > 230PT then
we haveA(S) > cost’(S)/4. This impliesy_ 7"/ cost!(S*) <

3cost’(S), and therefore surely"" | cost}(S") < 2cost’(S)



as well. Putting this together, we now have:

A(S) n | n _
= cost(9) — Z cost;(S*) > cost(S) — Z cost{(S)
i=1 i=1
3 t 7 t 3 t
> cost(S) — Jcost (S) > gcost (S) — Zeost (S)
> cost’(9)/8,

where the first inequality follows by monotonicity and thesed
to last follows by Assumptio2. SinceA/n is the expected drop
in @, this concludes the proof.[]

the players of type Il to move to their sefs in that order. Specifi-
cally, at the time playek of type Il moves, the set; has a cost to
itof (n—1)/k, whereas sefy, has cost (with the Byzantine player)

of n/(2k).
Now the Byzantine player moves to sef causing the players
kof type ll fork = 2,3,...,n — 2 to move one after the other to

s2 as well. Specifically, at the time playgmoves, set, has cost
(n — 1)/k which is lower than the cost/k of f,. At the end of
this step we have the same configuration of type-Il playeis t®
initial state, except witl, rather thans;. The entire process then
repeats for player 2 of type I, and so on, until each playartype

| is on its own sets;. Finally, sinces™ is now empty, none of the
type-I players wish to move so we are at an equilibriurfi]

To analyze the expected costs, we now need an analog of Lemma

5.2, showing that even ifost’(S;) is low, the expected value of
the potential will not increase too quickly.

LEMMA 6.2. For any value otost®(S:), we haveE[®(Si11)—
®(S;)] < cost?(S:)/(8n).

PROOF Let S = S;. Using the notation from the proof of
Lemma 6.1 we have
A(S) 0 - n
cost(S) — cost; SY > ~costi(S) — cost; St
(5) ; (5 2 ¢ (S) ; (")

n+k

(S) = > costi(S) = A(S)

=1

7
> —cost!

8
This is at least-g cost’(5) as desired. O]

Putting these together we can now show the following anafog o
Theorem 5.1, fof3-nice games satisfying Assumptions 1 and 2.

THEOREM 6.1. For any¢ > 0, E[®(S:)] < max[66OPT,
cost(So)] < 68cost(So).

Finally, note that if there is a bounded valGeAP maxs
[cost?(S)/®(S)] then the above result implies that for alt> 0,
E[costt(St)] < max[660OPT, cost’(Sy)] - GAP.

6.2 Set-covering games

We now consider set-cover games and give a construction-show
ing that just one Byzantine player can cause best-respomserd
ics to move from an equilibrium of cog?2(OPT) to an equilib-
rium of costQ(n - OPT). Note that this is the largest gap possible
since the Price of Anarchy for this gameris

THEOREM 6.2. For set-cover games, a single Byzantine player
can cause best-response dynamics to move from a Nash eiquilib
of costO(n) to a Nash equilibrium of cog2(n?).

PrROOF Considern players of type |, where each playehas
two sets to choose from: a common sétof costn, and a ses;
of costn — 1. There are additionally. — 2 players of type Il, such
that playerk of type Il may either choose any of the setsr else
its own setf;, of costn/k, fork € {2,...,n—1}. In addition, we
have one Byzantine player who may choose any of the sets, for a
total of 2n. — 1 players total. The initial state is all players of type
Iin sets™ and all players of type Il in sef;, for a total cosO(n).

The Byzantine player and type-Il players will now slowly éur
all type-I players into the sets, increasing the cost of the system
to n(n — 1). First the Byzantine player moves to sgtcausing
player 1 of type | to move from™ (whose cost to the player is 1) to
s1 (whose cost to the player (& — 1)/n). The Byzantine player
then sequentially moves to each ggt 1, fn—2, ..., f2, causing

As pointed out in Section 3, Theorem 6.2 immediately implies
that in the perturbation model we hat®Ugsr(v/2 — 1, SCG) =
Q(n). Note that in Theorem 4.2 we extend this construction to the

more delicate case of small valueseais low as,/2/n.

6.3 Job scheduling and consensus games

We begin with a simple lower bound for job scheduling in the
presence of a single Byzantine job.

THEOREM 6.3. For two machines and one Byzantine job, the
cost can increase fromto Q(n), even in the random-order model.

PrROOF Consider two machines arith + 1 good jobs,n of
type | with cost(1/n, 1) andn of type Il with cost(1,1/n), and
one Byzantine job with cod{l, 1). Initially, jobs of type | are on
machinel and jobs of type are on maching, this is the optimal
assignment for the good jobs. The Byzantine job goes to machi
1, then a job of type | moves to machir2e since this is its best
response. Now, the Byzantine job moves to machirfeote that
the Byzantine job increased its load). Then, a job of typedies
from 2 to 1. This way we increase the cost from 2itot 1.

As in Theorem 5.2, this construction extends immediatetéo
random order model, with just a constant factor loss in thiera
by analyzing the Markov chain produced as a result of the @abov
adversary strategy. Specifically, so long as the system lwe m
jobs with costl /n on their current machine than jobs with cost 1
on their current machine, the system is more likely to trémsiin
the forward direction (increasing the number of high-cobs) than
in the reverse direction. Thus, ®(n) steps, with high probability
the system reaches a state of C@ét). O

On the other hand, for job scheduling on identical machinas,
less the Byzantine players by themselves have substargighty
they cannot cause the system to reach a high-cost state.

THEOREM 6.4. For job scheduling on identical machines, the
makespan is at moQOPT + W,, whereW, is the sum of the
weights of the Byzantine jobs.

PROOF LetT, be the weight of the Byzantine players &aig
the weight of the good players. Each time a good play@oves
it has a best response whose cost is at idst + W,)/m + w;,
wherew; is the good job cost. Note th&PT' > max{W/m,w;}
and thus the result follows.[]

We end with a simple observation that for unweighted consgns
a single Byzantine player can cause cost to increase by arfact

THEOREM 6.5. For the unweighted consensus game, a single
Byzantine player can increase cost frarto Q2(n).

PROOF The network is simply a line networl , . .., v,. The
Byzantine player is the player at one end of the line. Assume



we start with all players beindg? and then the Byzantine player
switches toB. Playerwv; is indifferent betweenR and B so it
switches taB, and then player; switches back t&. Then, player
vs switches toB, playerv, switches toR and player; switches
to B. In phasek, we start withvy, .. ., vy alternating betweerk
and B, such that,, plays B. During phasek, first ve,1 switches
to B, and then playersy, . . . v1 switch their action. At the end we
have all players alternating betwe&nand B, at cost2(n). [

7. OPEN QUESTIONS

In terms of specific open questions, it would be interestmg t

close some of the gaps that remain in the adversarial orddemo
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APPENDIX
A. SET COVERING GAMES

For example, can one extend the upper bound of Theorem 4.4 toTheorem 4.2 In the set covering game we haiteUs r (¢, SCG)

non-symmetric cost-sharing games or extend the lower badind

Theorem 4.2 to symmetric cost sharing games? In the Byzantin

model, can one get better upper-bounds for set-cover anddsi-

= U5ehyg) fore > 2/y/n.

PROOF The constructichbuilds on that in the proof of Theo-

sharing games if we assume random order dynamics? More-gener iem 6.2, LetV = n/4. ConsiderN players of Type I, indexed by

ally, for all the classes of games studied, can one get hapieer

pairs (i, j) for 1 < 4,5 < /n. Type-l player(i, j) has three sets

bounds in the random order model in the case where the parturb 5 choose from: a set’ of COStNN, @ Sets,crive,; Of COStN, and

tions are not completely adversarial, but instead chosan fome
distribution of bounded magnitude?
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a private sets; ; of costN. Initially, all Type-I players begin on
the setss} for a total cost ofNv/N. We also haveV + /N — 2
players of Type Il as follows. Fde = 3, ..., N, we have a Type-I|
player who may choose any of the sefs;i..,; (for 1 < j < v/N)
or else its own sef. Fork = 2 we havey/N Type-Il players in-
dexed by pairg2, j) for 1 < j < /N who may choose only the
Setsactive,; OF their own setfs ;. The setsf, and fi, ; have costs
as follows: fork € [2,1/¢], the set has costN/k; for k > 1/,
the set has cosV/k. However, fork € [2,1/¢], we havel /e — 1
“helper” players in setfy, (or set fx,;) whose alternative options
will be described in more detail below. Thus, with helpesymrs
included, cost of each s¢t (or fi ;) to type-Il playerk (or (k, 7))
is N/k. The Type-II players begin in their sefs (or fx_;).

As in the proof of Theorem 6.2, the Type-Il players will now
slowly lure all Type-I players into the private sets;, increas-
ing their overall cost fromN+/N to N2. Specifically, fori =
1,2,...,+/N, the following occurs. First, for each= 1,2,...,
VN in sequence, Type-l playét, j) is lured ontas,tive,; as fol-
lows. First, Type-Il playeK2, j) is moved to Sebqctive,; by hav-
ing its helper-players temporarily raise the effectivetaof f>,;
from N/2 to N (using a process described in the paragraph be-
low) so that the adversary can cause it to movedQiye,; With
an arbitrarily small additional perturbation. Next, Tyfeplayers
k = 3,4,... are made to follow along t@active,;. IN the case
of k = 3,...,1/e, this is done by having the helper-players again
temporarily raise the effective cost ¢ from N/k to 2N/k, mak-
ing the player prefegactive,; t0 fi. In the case ok > 1/e, this
can be done without helper players, since the ratio of thé¢ as
Sactive,; t0 the cost offy isk/(k — 1) < 1 + ¢, so perturbations
are sufficient. (Note that Type-Il play€2, j) would have preferred
Sqetive,j’ TOr §° < j 1O Sactive,; DECaAUSE that set already has a
Type-| player on it, but that is not one of its allowed setspdill
playerk = 3 is indifferent (so can be made to move as desired
with arbitrarily small perturbations) and Type-Il playédrs> 3 will
strictly prefersqctive,j 10 Sqcrive,; fOr 3 < j.) Now, player(s, 5)
of Type | moves froms; (whose cost to the player is at leagiVv
10 Sactive; (Whose cost to the player i§. Finally, the players of
Type Il, in order fromk = N down to 2, sequentially move back to
their setsf, (or fx,;). In particular, at the time playér of type Il
moves, the Selactive, has a cost to it ofV/k, which is equal to the
cost of setfy (so with arbitrarily small perturbations, the adversary

5We thank Florin Constantin and Steven Ehrlich for pointing @
bug in an earlier construction.



can easily cause these players to move). After the aboveegsoc
has been completed for all = 1,2,...,v/N (so thats; is now
empty for the current value aj, the Type-I playerg:, j) are now
indifferent between all sets to which they are eligible. ey can
each be made to move to their private sgts via arbitrarily small
perturbations. We then incrementnd repeat the entire process
above.

To finish the argument, we need to describe how the helper-
players raise the effective cost ¢f (or f ;). This proceeds as
follows. For eachk, the jth helper-player has a private set of cost
k(l—fl’je). By perturbing costs, adversary can cause these players for
j=1,2,...,1/(2¢) to move in order to their private sets. Specifi-
cally, at the time thgth player is to move, the ratio of the cost of its
private set to the cost of is 772~ - bellfecitl) = 1(de <
14+ 2¢ < (1 4 €)% This then raises the cost ¢f. as desired.
Once playelk of type Il has moved off of sefy, the helper players
return back tofy, in the order; = 1/(2¢),...,2,1 (they are now
indifferent between the two sets, so the adversary can dhese
to move via arbitrarily small perturbations) bringirfg back to its
initial state. This completes the construction.

The total number of players is upper bounded2by+ %(\/N+
1). Fore > 1/v/N andN = n/4, this is at most. The total cost
of the initial state iS)(N®/% + N*/2 /e + (N/e) log(1/¢)) and the
final state has co$t(N?), giving the ratio desired. [J




