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A common approach to clustering data is to view data objects as points in a metric space, and then to optimize
a natural distance-based objective such as the k-median, k-means, or min-sum score. For applications such
as clustering proteins by function or clustering images by subject, the implicit hope in taking this approach
is that the optimal solution for the chosen objective will closely match the desired “target” clustering (e.g.,
a correct clustering of proteins by function or of images by who is in them). However, most distance-based
objectives, including those above, are NP-hard to optimize. So, this assumption by itself is not sufficient,
assuming P 6= NP, to achieve clusterings of low-error via polynomial time algorithms.

In this paper, we show that we can bypass this barrier if we slightly extend this assumption to ask that for
some small constant c, not only the optimal solution, but also all c-approximations to the optimal solution,
differ from the target on at most some ε fraction of points—we call this (c, ε)-approximation-stability. We
show that under this condition, it is possible to efficiently obtain low-error clusterings even if the property
holds only for values c for which the objective is known to be NP-hard to approximate. Specifically, for any
constant c > 1, (c, ε)-approximation-stability of k-median or k-means objectives can be used to efficiently
produce a clustering of error O(ε) with respect to the target clustering, as can stability of the min-sum objec-
tive if the target clusters are sufficiently large. Thus, we can perform nearly as well in terms of agreement
with the target clustering as if we could approximate these objectives to this NP-hard value.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General;
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1. INTRODUCTION
Overview. Problems of clustering data are ubiquitous throughout science. They arise
in many different fields, from computational biology where such problems include clus-
tering protein sequences by function, to computer vision where one may want to clus-
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ter images by subject, to information retrieval, including problems of clustering docu-
ments or search results by topic, just to name a few.

A commonly used approach for data clustering is objective-based clustering where we
first represent data as points in a metric space and then choose a particular distance-
based objective function (e.g., k-median or k-means) to optimize. However, in many
of the clustering applications mentioned above there is an unknown desired or target
clustering, and while the distance information among data points is merely heuristi-
cally defined, the real goal in these applications is to minimize the clustering error with
respect to the target (e.g., the true clustering of protein sequences by function). From
a modeling point of view, the implicit hope (or inductive bias) in using objective-based
clustering to solve such problems is that the optimal solution to the chosen objective
is close to—i.e., has small error with respect to—the target clustering. Unfortunately,
however, most distance based objectives are NP-hard to optimize, so this assumption
by itself is not sufficient (assuming P 6= NP) to achieve clusterings of low-error via
polynomial time algorithms. In this paper we argue that a better inductive bias is to
assume that not only the optimal solution, but also all approximately optimal solu-
tions to the distance based objective in fact have low error to the target – we call this
approximation-stability. We analyze the implications of the approximation-stability
assumption in the context of three well studied distance-based objectives and provide
algorithms for finding low-error clusterings. Surprisingly, we show it is possible to ob-
tain low-error clusterings even if approximation-stability holds only for approximation
factors that are known to be NP-hard to achieve!

Problem setup and results. We assume that data is represented as a set S of points
in some metric space and consider three commonly studied objective functions: k-
median, k-means, and min-sum. In the k-median problem, the goal is to partition S
into k clusters Ci, assigning each a center ci, to minimize the sum of the distances
between each datapoint and the center of its cluster. In the k-means problem, the goal
is to partition S into k clusters Ci, assigning each a center ci, to minimize the sum of
squares of distances between each datapoint and the center of its cluster. In min-sum
clustering, the goal is to partition S into k clusters Ci that minimize the sum of all
intra-cluster pairwise distances. These objectives are all NP-hard to optimize exactly
especially when k is large and not a constant [Sahni and Gonzalez 1976; Megiddo and
Supowit 1984; Mahajan et al. 2009]. As a result, from a theoretical point of view, sub-
stantial research has focused on the design of approximation algorithms: polynomial-
time algorithms guaranteed to produce a solution at most some factor c larger than the
optimum. For the k-median and k-means problems the best approximation guarantees
known are constant factors of 2.7 or larger [Arya et al. 2004; Kanungo et al. 2004; Li
and Svensson 2012] and for min-sum the best known result for general metric spaces
is an O(log1+δ n)-approximation [Bartal et al. 2001]; all these approximation guaran-
tees do not match the known hardness results, and much effort is spent on obtaining
tighter approximation ratios (see Related Work).

In this work we particularly focus on clustering instances with the property that
near-optimal solutions are guaranteed to be close, as clusterings, to optimal solutions.
As argued earlier, this is especially relevant for problems where there is some unknown
correct “target” clustering (e.g., a correct clustering of proteins by their function or
a correct clustering of images by who is in them) and the underlying goal is not to
minimize some function of the distances, but rather to match this target as closely
as possible (see Related Work for further discussion). Formally, the key property we
introduce and study is (c, ε)-approximation-stability; a clustering instance (i.e., a data
set) satisfies (c, ε)-approximation-stability with respect to a given objective Φ (such as
k-median, k-means, or min-sum) and an unknown target clustering CT , if it has the
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property that every c-approximation to Φ is ε-close to CT in terms of the fraction of
mis-clustered points. That is, for any c-approximation to Φ, at most an ε fraction of
points would have to be reassigned in that clustering to make it perfectly match CT .

Clearly, if the (c, ε)-approximation-stability condition is true for a value of c such
that a c-approximation is known for these problems, then we could simply use the as-
sociated approximation algorithm. As mentioned above, however, existing results for
approximating the three objectives we consider would require fairly large constant
values of c, or even c = ω(log n) in the case of the min-sum objective. What we show
in this paper is that we can do much better. In particular, we show that we can effi-
ciently produce a clustering that is O(ε)-close to the target even if stability holds only
for values c for which obtaining a c-approximation is provably NP-hard. Specifically,
we achieve this guarantee for any constant c > 1 for the k-median and k-means ob-
jectives, as well as for any constant c > 1 for the min-sum objective when the target
clusters are sufficiently large compared to εn

c−1 . Moreover, if the target clusters are
sufficiently large compared to εn

c−1 , for k-median we can actually get ε-close (rather
than O(ε)-close) to the target.1 Furthermore, we achieve these guarantees without
necessarily approximating the associated objective; in fact, we show that achieving
a c-approximation for instances satisfying (c, ε)-approximation-stability is as hard as
achieving a c-approximation in general. Note that one should view k and ε here as pa-
rameters and not as constants: our algorithms will run in time polynomial in the num-
ber of points n and the number of clusters k. Indeed, in many of the types of scenarios
motivating this work such as clustering protein sequences by function or clustering
images by who is in them, k can be quite large.

Our algorithms operate by exploiting the structure of instances satisfying the (c, ε)-
approximation-stability condition. We begin by showing that approximation-stability,
even for a constant c such as 1.01, implies that most data points are well-behaved with
respect to the optimal solution for the given objective, which itself (by assumption) is
close to the target. Specifically, all but an O(ε) fraction of data points will be a constant
factor closer to their own center of the optimal solution than to their second-closest
center (for min-sum, the condition is a bit different). We then use this property to
design algorithms that are able to correctly cluster these “good” points without being
misled by the (unknown) subset of “bad” points. This in turn requires algorithms that
are especially robust to outliers. Since a 1− O(ε) fraction of points are good, this then
leads to ourO(ε) error guarantees. Finally, in the case that the target clusters are large,
for the k-median objective we are able to recover nearly all the bad points through a
second re-clustering step that can be viewed as an outlier-resistant form of a 2-stage
Lloyd’s k-means algorithm. This allows us to produce a clustering of error at most ε:
exactly as low as if we had a generic c-approximation algorithm.

Overall, our results bring together approximation (of distance-based objectives) and
accuracy (of clusterings), and show that one can achieve polynomial-time accuracy
guarantees under substantially weaker assumptions than would seem to be required
given the worst-case approximability of these objectives. Our results also show that
there is an interesting computational difference between assuming that the optimal
solution to, say, the k-median objective is ε-close to the target, and assuming that every
approximately optimal solution is ε-close to the target, even for approximation factor
c = 1.01 (say). In the former case, the problem of finding a solution that is O(ε)-close to
the target remains computationally hard (see Section 2.4 and Theorem A.3), and yet
for the latter case we give efficient algorithms.

1Results in this paper for both k-means and min-sum objectives are strengthened over those in the confer-
ence version of this work [Balcan et al. 2009].
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From a broader theoretical perspective, our results can be viewed in the context
of work such as Ostrovsky et al. [2006] (see also Sections 1.1 and 7.4) showing that
one can bypass worst-case hardness barriers if one makes certain natural stability
assumptions on the data. In our case, the stability assumptions we consider are espe-
cially motivated by the relation between objective functions and accuracy: in particu-
lar, they allow us to conclude that we can perform nearly as well in terms of accuracy
as if we had a generic PTAS for the associated objective.

Subsequent work has also demonstrated the practicality of our approach for real
world clustering problems. For example, Voevodski et al. [2010; 2012] show that a
variant of the algorithm we propose for the k-median problem provides state of the
art results for clustering biological datasets. Our work has inspired a number of other
subsequent developments and we discuss these further in Section 7.

1.1. Related Work
Work on recovering a target clustering. Accuracy in matching a target cluster-
ing is commonly used to compare different clustering algorithms experimentally, e.g.,
[Brohée and van Helden 2006; Manning et al. 2008; Yan et al. 2009].

In theoretical work, much of the research on analyzing clustering accuracy has been
in the context of clustering or learning with mixture models [Devroye et al. 1996; Das-
gupta 1999; Duda et al. 2001; Vempala and Wang 2004; Arora and Kannan 2005; Kan-
nan et al. 2005; Achlioptas and McSherry 2005; Belkin and Sinha 2010; Moitra and
Valiant 2010]. That work, like ours, has an explicit notion of a correct ground-truth
clustering; however, it makes strong probabilistic assumptions about how data points
are generated. In particular, probabilistic models typically assume much more about
the uniformity of clusters, though they may assume less about their separation, and
formally are incomparable to the approximation-stability condition.

Balcan et al. [2008] investigate the goal of approximating a desired target clustering
without probabilistic assumptions. They analyze what properties of a pairwise similar-
ity function allow one to produce a tree such that the target is close to some pruning of
the tree, or a small list of clusterings such that the target is close to at least one cluster-
ing in the list. Regarding assumptions related to approximate optimization, they show
that for k-median, the assumption that any 2-approximation is ε-close to the target can
be used to construct a hierarchical clustering such that the target clustering is close
to some pruning of the hierarchy. Inspired by their approach, in this paper we initiate
a systematic investigation of the consequences of such assumptions in the context of
commonly-used distance-based objective functions as well as their connections to ap-
proximation algorithms. Moreover, the goals in this paper are stronger — we want to
output a single approximately correct clustering (as opposed to a list of clusterings or
a hierarchy), and we want to succeed for any c > 1.

Work on approximation algorithms. The study of approximation algorithms for
distance-based clustering objectives such as k-median, k-means, and min-sum is a very
active area, with a large number of algorithmic results.

For k-median, O(1)-approximations were first given by Charikar et al. [1999], Jain
and Vazirani [2001], Charikar and Guha [1999], and Arya et al. [2004], and the best ap-
proximation guarantee known is 1+

√
3+ε due to Li and Svensson [2012]. A straightfor-

ward reduction from max-k-coverage shows (1+1/e)-hardness of approximation [Guha
and Khuller 1999; Jain et al. 2002]. The k-median problem on constant-dimensional
Euclidean spaces admits a PTAS [Arora et al. 1999].

For k-means in general metric spaces a constant-factor approximation is known [Ka-
nungo et al. 2004], and an approximation-hardness of 1 + 3/e follows from the ideas
of [Guha and Khuller 1999; Jain et al. 2002]. This problem is very often studied in Eu-
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clidean space, where a near-linear time (1 + ε)-approximation algorithm is known for
the case of constant k and ε [Kumar et al. 2004]. Arthur and Vassilvitskii [2007] show a
fast randomized seeding approach gives an O(log k) approximation for general values
of k, which they then use as a starting point for Lloyd’s local search algorithm [Lloyd
1982]. An interesting extension of the k-means objective to clusters lying in different
subspaces is given in [Agarwal and Mustafa 2004].

Min-sum k-clustering in general metric spaces admits a PTAS for the case of con-
stant k [Fernandez de la Vega et al. 2003] (see also Indyk [1999]). For the case of ar-
bitrary k there is an O(δ−1 log1+δ n)-approximation algorithm running in time nO(1/δ)

due to Bartal et al. [2001]. The problem has also been studied in geometric spaces for
constant k by Schulman [2000] who gave an algorithm for (Rd, `22) that either outputs
a (1 + ε)-approximation, or a solution that agrees with the optimum clustering on a
(1− ε)-fraction of the points (but could have much larger cost than optimum); the run-
time is O(nlog logn) in the worst case and linear for sublogarithmic dimension d. More
recently, Czumaj and Sohler [2007] have developed a (4 + ε)-approximation algorithm
for the case when k is small compared to log n/ log log n.

Clustering under natural stability conditions. Motivated by the fact that
heurstics such as Lloyd’s k-means local search algorithm [Lloyd 1982] are often used
in practice despite poor worst-case performance, Ostrovsky et al. [2006] analyze clus-
tering under a natural stability condition they call ε-separation. They show that under
this condition, an appropriate seeding of Lloyd’s algorithm will result in solutions with
provable approximation guarantees. Their ε-separation condition has an interesting
relation to approximation-stability, which we discuss more fully in Section 6. Essen-
tially, it is a stronger assumption than ours; however, their goal is different—they want
to approximate the objective whereas we want to approximate the target clustering.

More recently, Bilu and Linial [2010], Kumar and Kannan [2010], Awasthi et al.
[2010], Awasthi et al. [2012], Balcan and Liang [2012], and Awasthi and Sheffet [2012]
consider other stability conditions; we discuss these further in Section 7.4.

Other theoretical directions in clustering. There is a large body of work on other
theoretical topics in clustering such as defining measures of clusterability of data sets,
on formulating definitions of good clusterings [Gollapudi et al. 2006], and on axiomatiz-
ing clustering (in the sense of postulating what natural axioms a “good clustering algo-
rithm” should satisfy), both with possibility and impossibility results [Kleinberg 2002].
There has also been significant work on approaches to comparing clusterings [Meila
2003; 2005], and on efficiently testing if a given data set has a clustering satisfying
certain properties [Alon et al. 2000]. The main difference between this type of work
and ours is that we have an explicit notion of a correct ground-truth clustering of the
data points, and indeed the results we are trying to prove are quite different. The work
of Meila [2006] is complementary to ours: it shows sufficient conditions under which
k-means instances satisfy the property that near-optimal solutions are ε-close to the
optimal k-means solution.

2. DEFINITIONS, PRELIMINARIES & FORMAL STATEMENT OF MAIN RESULTS
The clustering problems in this paper fall into the following general framework: we are
given a metric spaceM = (X, d) with point setX and a distance function d :

(
X
2

)
→ R≥0

satisfying the triangle inequality—this is the ambient space. We are also given the
actual point set S ⊆ X we want to cluster; we use n to denote the cardinality of S.
A k-clustering C is a partition of S into k sets C1, C2, . . . , Ck. In this paper, we always
assume that there is an (unknown) true or target k-clustering CT for the point set S.
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2.1. The Objective Functions
Commonly used clustering objectives provide a distance-based cost to any given clus-
tering that algorithms then seek to minimize. In all the objectives we consider, the
cost of a clustering C = {C1, . . . , Ck} is a sum of costs on the individual clusters Ci. The
k-median clustering objective defines the cost of a cluster Ci to be the total distance of
all points in Ci to the best “median” point ci ∈ X for that cluster; that is,

Φ1(C) =

k∑
i=1

min
ci∈X

∑
x∈Ci

d(x, ci).

The k-means objective defines the cost of a cluster Ci to be the sum of squared distances
to the best center ci ∈ X for that cluster:

Φ2(C) =

k∑
i=1

min
ci∈X

∑
x∈Ci

d(x, ci)
2.

Finally, the min-sum objective defines the cost of a cluster to be the sum of all pairwise
intra-cluster distances:

ΦΣ(C) =

k∑
i=1

∑
x∈Ci

∑
y∈Ci

d(x, y).

Given a function Φ and instance (M, S, k), let OPTΦ = minC Φ(C), where the minimum
is over all k-clusterings of S. We will typically use C∗ to denote the optimal clustering
for the given objective, and will simply write an instance as (M, S) when k is clear
from context.

2.2. Distance between Clusterings
In order to define the notion of approximation-stability, we need to specify what it
means for a clustering to be close to the target CT . Formally, we define the distance
dist(C, C′) between two k-clusterings C = {C1, C2, . . . , Ck} and C′ = {C ′1, C ′2, . . . , C ′k} of
a point set S as the fraction of points in S on which they disagree under the optimal
matching of clusters in C to clusters in C′; i.e.,

dist(C, C′) = min
σ∈Sk

1

n

k∑
i=1

|Ci − C ′σ(i)|,

where Sk is the set of bijections σ : [k] → [k]. Equivalently, dist(C, C′) is the number of
mistakes, or 0/1-loss, of C with respect to C′ if we view each as a k-way classifier, under
the best matching between their k class labels.2

We say that two clusterings C and C′ are ε-close if dist(C, C′) < ε. Note that if C and
C′ are ε-close and all clusters Ci have size at least 2εn, then the bijection σ minimizing

2There are other reasonable notions of distance between clusterings that one can also consider. For example,
one could remove the restriction that σ be a permutation (see Lemma B.1 in Appendix B for analysis of this
notion). Alternatively, one could count the fraction of pairs x, y such that the clusterings disagree on whether
or not x and y belong to the same cluster. Note, however, that if k is large and all clusters are about the same
size, then any two clusterings will be fairly close (distance ≤ 2/k) under the pair-based measure, since most
pairs x, y belong to different clusters, so it is not very discriminative. In contrast, under the point-based
misclassification measure, two random k-clusterings would have distance approximately 1−1/k. See [Meila
2012] for further discussion of various notions of distance between clusterings and how they relate. We
also wish to emphasize that dist(., .) is a distance between clusterings, whereas d(., .) is a distance between
points.
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1
n

∑k
i=1 |Ci − C ′σ(i)| has the property that for all i, |Ci ∩ C ′σ(i)| ≥ |Ci| − (εn − 1) > 1

2 |Ci|.
This implies for instance that such σ is unique, in which case we call this the optimal
bijection and we say that C and C′ agree on x if x ∈ Ci ∩ C ′σ(i) for some i, and C and C′
disagree on x otherwise.

2.3. (c, ε)-approximation-stability
We now present our main definition whose implications we study throughout this pa-
per:

Definition 2.1 ((c, ε)-approximation-stability). Given an objective function Φ (such
as k-median, k-means, or min-sum), we say that instance (M, S) satisfies (c, ε)-approx-
imation-stability for Φ with respect to (unknown) target clustering CT if all clusterings
C with Φ(C) ≤ c ·OPTΦ are ε-close to CT .

As mentioned above, if we have an instance satisfying (c, ε)-approximation-stability
for c large enough that we have a polynomial-time c-approximation algorithm for Φ,
then we could simply use that algorithm to achieve a clustering ε-close to CT . However,
our key interest will be in values of c that are significantly smaller. In particular, since
we will be thinking of c as being only slightly larger than 1 (e.g., assuming that all
1.1-approximations to the k-median objective are ε-close to CT ), we will often write c
as 1 + α and look at the implications in terms of the parameters α and ε. Additionally,
we will typically drop the phrase “with respect to the (unknown) target clustering CT ”
when this is clear from context.

It is important to note that 1/ε, 1/α, and k need not be constants. For example, we
might have that CT consists of n0.1 clusters of size n0.9, ε = 1/n0.2 and α = 1/n0.09 (this
would correspond to the “large clusters case” of Theorem 3.8).

Note that for any c > 1, (c, ε)-approximation-stability does not require that the tar-
get clustering CT exactly coincide with the optimal clustering C∗ under objective Φ.
However, it does imply the following simple facts (where part (b) below follows from
the fact that the distance between k-clusterings itself is a metric):

FACT 2.2. If (M, S) satisfies (c, ε)-approximation-stability for Φ with respect to tar-
get clustering CT , then:

(a) The target clustering CT , and the optimal clustering C∗ for Φ are ε-close.
(b) (M, S) satisfies (c, ε + ε∗)-approximation-stability for Φ with respect to the optimal

clustering C∗, where ε∗ = dist(C∗, CT ).

Thus, we can act as if the optimal clustering is indeed the target up to a constant
factor loss in the error rate.

Finally, we will often want to take some clustering C, reassign some ε̃n points to
different clusters to produce a new clustering C′, and then argue that dist(C, C′) = ε̃. As
mentioned above, if all clusters of C have size at least 2ε̃n, then it is clear that no matter
how ε̃n points are reassigned, the optimal bijection σ between the original clusters and
the new clusters is the identity mapping, and therefore dist(C, C′) = ε̃. However, this
need not be so when small clusters are present: for instance, if we reassign all points
in Ci to Cj and all points in Cj to Ci then dist(C, C′) = 0. Instead, in this case we will
use the following convenient lemma.

LEMMA 2.3. Let C = {C1, . . . , Ck} be a k-clustering in which each cluster is
nonempty, and let R = {(x1, j1), (x2, j2), . . . , (xt, jt)} be a set of t reassignments of points
xi to clusters Cji (assume that xi 6∈ Cji for all i). Then there must exist a set R′ ⊆ R
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of size at least t/3 such that the clustering C′ produced by reassigning points in R′ has
distance exactly 1

n |R
′| from C.

PROOF. See Appendix A.1.

2.4. Intuition and Challenges
Before proceeding to our results, we first present some challenges in using the (c, ε)-
approximation-stability condition to achieve low-error clusterings, which also provide
intuition into what this condition does and does not imply.

First, suppose that (c, ε)-approximation-stability for some objective Φ implied, say,
(2c, 2ε)-approximation-stability. Then it would be sufficient to simply apply an O(c) ap-
proximation in order to have error O(ε) with respect to the target. However, it turns
out that for any c1 < c2 and any ε > 0, for each of the three objectives we consider
(k-median, k-means, and min-sum), there exists a family of metric spaces and tar-
get clusterings that are (c1, ε)-approximation-stable for that objective, and yet have a
c2-approximation with error 49% with respect to the target (see Appendix, Theorem
A.1). Thus, a direct application of an arbitrary c2-approximation would not achieve our
goals.3

Second, one might hope that (c, ε)-approximation-stability would imply structure
that allows one to more easily find a c-approximation. However, this is not the case
either: for any c > 1 and ε > 0, the problem of finding a c-approximation to any of the
three objectives we consider under (c, ε)-approximation-stability is as hard as finding
a c-approximation in general (Theorem A.2). Thus, we want to aim directly towards
achieving low error rather than necessarily aiming to get a good approximation to the
objective. Note that this reduction requires small clusters. Indeed, as pointed out by
[Schalekamp et al. 2010], our k-median algorithm for the large-clusters case is, as a
byproduct, a c-approximation.

It is also interesting to note that results of the form we are aiming for are not pos-
sible given only (1, ε)-approximation-stability. Indeed, because the standard hardness-
of-approximation proof for k-median produces a metric in which all pairwise distances
lie in a bounded range, the proof also implies that it is NP-hard, given a data set with
only the guarantee that the optimal solution is ε-close to the target, to find a clustering
of error O(ε); see Theorem A.3.

2.5. Main results and organization of this paper
We present our analysis of the k-median objective in Section 3, the k-means objective
in Section 4, and the min-sum objective in Section 5. Our main results for each of
these objectives are as follows. (Theorems are numbered according to their location in
the main body.)

THEOREM 3.8 (k-Median, Large Clusters Case) There is an efficient algorithm such
that if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the k-
median objective, and each cluster in CT has size at least (4+15/α)εn+2, the algorithm
will produce a clustering that is ε-close to CT .

THEOREM 3.9 (k-Median: General Case) There is an efficient algorithm such that if
the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the k-median
objective, the algorithm will produce a clustering that is O(ε+ ε/α)-close to CT .

3Balcan and Braverman [2009] show that interestingly a relationship of this form does hold for the
correlation-clustering problem.
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THEOREM 4.3 (k-Means: General Case) There is an efficient algorithm such that if
the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the k-means
objective, the algorithm will produce a clustering that is O(ε+ ε/α)-close to CT .

THEOREM 5.4 (Min-sum: Large Clusters Case) There is an efficient algorithm such
that if the given instance (M, S) satisfies (1 +α, ε)-approximation-stability for the min-
sum objective and each cluster in CT has size greater than (6 + 120/α)εn, the algorithm
will produce a clustering that is O(ε+ ε/α)-close to CT .

We emphasize that our algorithms run in time polynomial in n and k with no depen-
dence on α and ε; in particular, 1/α and 1/ε (and k) need not be constants.

For the “large-cluster” case of k-means, we also have a weaker version of Theorem
3.8, where we mark some O(εn/α) points as “don’t know” and cluster the rest with
error at most ε. That is, while the total error in this case may be more than ε, we
can explicitly point out all but εn of the points we may err on (see Theorem 4.4). As
noted earlier, we only give results for the large-cluster case of min-sum clustering,
though Balcan and Braverman [2009] have recently extended Theorem 5.4 to the case
of general cluster sizes; in particular, they achieve the analogue of Theorem 3.9 if a
(good approximation to) the optimum objective value is provided to the algorithm, else
a list of at most O(log log n) clusterings such that at least one is O(ε+ ε/α)-close to CT
if such a value is not provided.

3. THE K-MEDIAN PROBLEM
We now study clustering instances satisfying (c, ε)-approximation-stability for the k-
median objective. Our main results are that for any constant c > 1, (1) if all clusters are
“large”, then this property allows us to efficiently find a clustering that is ε-close to the
target clustering, and (2) for any cluster sizes, we can efficiently find a clustering that
is O(ε)-close to the target. To prove these results, we first investigate the implications
of (c, ε)-approximation-stability in Section 3.1. We then give our algorithm for the case
that all clusters are large in Section 3.2, and our algorithm for arbitrary cluster sizes
in Section 3.3.

3.1. Implications of (c, ε)-approximation-stability

Given a clustering instance specified by a metric spaceM = (X, d) and a set of points
S ⊆ X, fix an optimal k-median clustering C∗ = {C∗1 , . . . , C∗k}, and let c∗i be the center
point (a.k.a. “median”) for C∗i . For x ∈ S, define

w(x) = min
i
d(x, c∗i )

to be the contribution of x to the k-median objective in C∗ (i.e., x’s “weight”), and let
w2(x) be x’s distance to the second-closest center point among {c∗1, c∗2, . . . , c∗k}. Also,
define

wavg =
1

n

n∑
i=1

w(x) =
OPT

n

to be the average weight of the points. Finally, let ε∗ = dist(CT , C∗). As noted in Fact
2.2, approximation-stability implies ε∗ < ε.

LEMMA 3.1. If the instance (M, S) satisfies (1+α, ε)-approximation-stability for the
k-median objective, then

(a) If each cluster in CT has size at least 2εn, then less than (ε − ε∗)n points x ∈ S on
which CT and C∗ agree have w2(x)− w(x) <

αwavg
ε .
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(a’) For general cluster sizes in CT , less than 6εn points x ∈ S have w2(x)−w(x) <
αwavg

2ε .

Also, for any t > 0 we have:

(b) At most t(εn/α) points x ∈ S have w(x) ≥ αwavg
tε .

PROOF. To prove Property (a), assume to the contrary. Then one could take C∗
and move (ε − ε∗)n points x on which CT and C∗ agree to their second-closest clus-
ters, increasing the objective by at most αOPT. Moreover, this new clustering C′ =
{C ′1, . . . , C ′k} has distance at least ε from CT , because we begin at distance ε∗ from CT
and each move increases this distance by 1

n (here we use the fact that because each
cluster in CT has size at least 2εn, the optimal bijection between CT and C′ remains the
same as the optimal bijection between CT and C∗). Hence we have a clustering that is
not ε-close to CT with cost only (1 + α)OPT, a contradiction.

For Property (a’), we use Lemma 2.3. Specifically, assuming for contradiction that
6εn points satisfy (a’), Lemma 2.3 states that we can find a subset of 2εn of them
such that starting from C∗, for each one that we move to its second-closest cluster,
the distance from C∗ increases by 1

n . Therefore, we can create a clustering C′ that is
distance at least 2ε from C∗ while increasing the objective by at most αOPT; by Fact
2.2(b) this clustering C′ is not ε-close to CT , thus contradicting (1+α, ε)-approximation-
stability. Property (b) simply follows from the definition of the average weight wavg,
and Markov’s inequality.

Notation. For the case that each cluster in CT has size at least 2εn, define the critical
distance dcrit =

αwavg
5ε , else define dcrit =

αwavg
10ε ; note that these quantities are 1/5

times the values in properties (a) and (a’) respectively of Lemma 3.1.

Definition 3.2. Define point x ∈ S to be good if both w(x) < dcrit and w2(x)−w(x) ≥
5dcrit, else x is called bad. Let Xi ⊆ C∗i be the good points in the optimal cluster C∗i ,
and let B = S \ (∪Xi) be the bad points.

PROPOSITION 3.3. If the instance (M, S) satisfies (1+α, ε)-approximation-stability
for the k-median objective, then

(i) If each cluster in CT has size at least 2εn, then |B| < (1 + 5/α)εn.
(ii) For the case of general cluster sizes in CT , |B| < (6 + 10/α)εn.

PROOF. By Lemma 3.1(a), the number of points on which C∗ and CT agree where
w2(x)− w(x) < 5dcrit is at most (ε− ε∗)n, and there can be at most ε∗n additional such
points where C∗ and CT disagree. Setting t = 5 in Lemma 3.1(b) bounds the number of
points that have w(x) ≥ dcrit by (5ε/α)n, proving (i). The proof of (ii) similarly follows
from Lemma 3.1(a’), and applying Lemma 3.1(b) with t = 10.

Definition 3.4 (Threshold Graph). Define the τ -threshold graph Gτ = (S,Eτ ) to be
the graph produced by connecting all pairs {x, y} ∈

(
S
2

)
with d(x, y) < τ .

LEMMA 3.5 (THRESHOLD GRAPH LEMMA). For an instance satisfying (1 + α, ε)-
approximation-stability and τ = 2dcrit, the threshold graph Gτ has the following prop-
erties:

(i) For all x, y in the same Xi, the edge {x, y} ∈ E(Gτ ).
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(ii) For x ∈ Xi and y ∈ Xj 6=i, {x, y} 6∈ E(Gτ ). Moreover, such points x, y do not share
any neighbors in Gτ .

PROOF. For part (i), since x, y are both good, they are at distance less than dcrit to
their common cluster center c∗i , by definition. Hence, by the triangle inequality, the
distance d(x, y) satisfies

d(x, y) ≤ d(x, c∗i ) + d(c∗i , y) < 2× dcrit = τ.

For part (ii), note that the distance from any good point x to any other cluster cen-
ter, and in particular to y’s cluster center c∗j , is at least 5dcrit. Again by the triangle
inequality,

d(x, y) ≥ d(x, c∗j )− d(y, c∗j ) ≥ 5dcrit − dcrit = 2τ.

Since each edge in Gτ is between points at distance less than τ , the points x, y cannot
share any common neighbors.

Hence, the graph Gτ for the above value of τ is fairly simple to describe: each Xi

forms a clique, and its neighborhood NGτ (Xi) \ Xi lies entirely in the bad set B with
no edges going between Xi and Xj 6=i, or between Xi and NGτ (Xj 6=i). We now show how
we can use this structure to find a clustering of error at most ε if the size of each Xi

is large (Section 3.2) and how we can get error O(ε) for general cluster sizes (Section
3.3).

3.2. An algorithm for Large Clusters
We begin with the following lemma.

LEMMA 3.6. There is a deterministic polynomial-time algorithm that given a graph
G = (S,E) satisfying properties (i), (ii) of Lemma 3.5 and given b ≥ |B| such that each
|Xi| ≥ b+ 2, outputs a k-clustering with each Xi contained in a distinct cluster.

PROOF. Construct a graph H = (S,E′) where we place an edge {x, y} ∈ E′ if x and y
have at least b common neighbors inG. By property (i), eachXi is a clique of size≥ b+2
in G, so each pair x, y ∈ Xi has at least b common neighbors in G and hence {x, y} ∈ E′.
Now consider x ∈ Xi∪NG(Xi), and y 6∈ Xi∪NG(Xi): we claim there is no edge between
x, y in this new graph H. Indeed, by property (ii), x and y cannot share neighbors that
lie in Xi (since y 6∈ Xi ∪ NG(Xi)), nor in some Xj 6=i (since x 6∈ Xj ∪ NG(Xj)). Hence
the common neighbors of x, y all lie in B, which has size at most b. Moreover, at least
one of x and y must itself belong to B for them to have any common neighbors at all
(again by property (ii))—hence, the number of distinct common neighbors is at most
b− 1, which implies that {x, y} 6∈ E′.

Thus each Xi is contained within a distinct component of the graph H. Note that
the component containing some Xi may also contain some vertices from B; moreover,
there may also be components in H that only contain vertices from B. But since the
Xi’s are larger than B, we can obtain the claimed clustering by taking the largest k
components in H, and adding the vertices of all other smaller components in H to any
of these, using this as the k-clustering.

We now show how we can use Lemma 3.6 to find a clustering that is ε-close to CT
when all clusters are large. For simplicity, we begin by assuming that we are given the
value of wavg = OPT

n , and then we show how this assumption can be removed.
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THEOREM 3.7 (LARGE CLUSTERS, KNOWN wavg). There is an efficient algorithm
such that if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for
the k-median objective and each cluster in CT has size at least (3 + 10/α)εn + 2, then
given wavg it will find a clustering that is ε-close to CT .

PROOF. Let us define b := (1 + 5/α)εn. By assumption, each cluster in the target
clustering has at least (3+10/α)εn+2 = 2b+ εn+2 points. Since the optimal k-median
clustering C∗ differs from the target clustering by at most ε∗n ≤ εn points, each cluster
C∗i in C∗ must have at least 2b+2 points. Moreover, by Proposition 3.3(i), the bad points
B have |B| ≤ b, and hence for each i,

|Xi| = |C∗i \B| ≥ b+ 2.

Now, given wavg, we can construct the graph Gτ with τ = 2dcrit (which we can com-
pute from the given value of wavg), and apply Lemma 3.6 to find a k-clustering C′ where
each Xi is contained within a distinct cluster. Note that this clustering C′ differs from
the optimal clustering C∗ only in the bad points, and hence, dist(C′, CT ) ≤ ε∗ + |B|/n ≤
O(ε+ ε/α). However, our goal is to get ε-close to the target, which we do as follows.

Call a point x “red” if it satisfies condition (a) in Lemma 3.1 (i.e., w2(x) − w(x) <
5dcrit), “yellow” if it is not red but satisfies condition (b) in Lemma 3.1 with t = 5
(i.e., w(x) ≥ dcrit), and “green” otherwise. So, the green points are those in the sets
Xi, and we have partitioned the bad set B into red points and yellow points. Let C′ =
{C ′1, . . . , C ′k} and recall that C′ agrees with C∗ on the green points, so without loss of
generality we may assume Xi ⊆ C ′i. We now construct a new clustering C′′ that agrees
with C∗ on both the green and yellow points. Specifically, for each point x and each
cluster C ′j , compute the median distance dmedian(x,C ′j) between x and all points in C ′j ;
then insert x into the cluster C ′′i for i = argminjdmedian(x,C ′j). Since each non-red point
x satisfies w2(x)− w(x) ≥ 5dcrit, and all green points g satisfy w(g) < dcrit, this means
that any non-red point x must satisfy the following two conditions: (1) for a green point
g1 in the same cluster as x in C∗ we have

d(x, g1) ≤ w(x) + dcrit,

and (2) for a green point g2 in a different cluster than x in C∗ we have

d(x, g2) ≥ w2(x)− dcrit ≥ w(x) + 4dcrit.

Therefore, d(x, g1) < d(x, g2). Since each cluster in C′ has a strict majority of green
points (even with point x removed) all of which are clustered as in C∗, this means that
for a non-red point x, the median distance to points in its correct cluster with respect to
C∗ is less than the median distance to points in any incorrect cluster. Thus, C′′ agrees
with C∗ on all non-red points. Finally, since there are at most (ε − ε∗)n red points on
which CT and C∗ agree by Lemma 3.1—and C′′ and CT might disagree on all these
points—this implies

dist(C′′, CT ) ≤ (ε− ε∗) + ε∗ = ε

as desired. For convenience, the above procedure is given as Algorithm 1 below.

We now extend the above argument to the case where we are not given the value of
wavg.

THEOREM 3.8 (LARGE CLUSTERS, UNKNOWN wavg). There is an efficient algo-
rithm such that if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability
for the k-median objective, and each cluster in CT has size at least (4 + 15/α)εn+ 2, the
algorithm will produce a clustering that is ε-close to CT .
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Algorithm 1 k-median Algorithm: Large Clusters (given a guess w of wavg)
Input: w, ε ≤ 1, α > 0, k.
Step 1: Construct the τ -threshold graph Gτ with τ = 2dcrit = 1

5
αw
ε .

Step 2: Apply the algorithm of Lemma 3.6 to find an initial clustering C′. Specifically,
construct graphH by connecting x, y if they share at least b = (1+5/α)εn neighbors
in Gτ and let C ′1, . . . , C ′k be the k largest components of H.

Step 3: Produce clustering C′′ by reclustering according to smallest median distance
in C′. That is, C′′i = {x : i = argminjdmedian(x,C ′j)}.

Step 4: Output the k clusters C′′1 , . . . , C′′k .

PROOF. The algorithm for the case that we are not given the value wavg is the fol-
lowing: we run Steps 1 and 2 of Algorithm 1 repeatedly for different guesses w of wavg,
starting with w = 0 (so the graph Gτ is empty) and at each step increasing w to the
next value such that Gτ contains at least one new edge (so we have at most n2 different
guesses to try). If the current value of w causes the k largest components of H to miss
more than b := (1 + 5/α)εn points, or if any of these components has size ≤ b, then we
discard this guess w, and try again with the next larger guess for w. Otherwise, we run
Algorithm 1 to completion and let C′′ be the clustering produced.

Note that we still might have w < wavg, but this just implies that the resulting
graphs Gτ and H can only have fewer edges than the corresponding graphs for the
correct wavg. Hence, some of the Xi’s might not have fully formed into connected com-
ponents inH. However, if the k largest components together miss at most b points, then
this implies we must have at least one component for each Xi, and therefore exactly
one component for each Xi. So, we never misclassify the good points lying in these
largest components. We might misclassify all the bad points (at most b of these), and
might fail to cluster at most b of the points in the actual Xi’s (i.e., those not lying in the
largest k components), but this nonetheless guarantees that each cluster C′i contains
at least |Xi|− b ≥ b+2 correctly clustered green points (with respect to C∗) and at most
b misclassified points. Therefore, as shown in the proof of Theorem 3.7, the resulting
clustering C′′ will correctly cluster all non-red points as in C∗ and so is at distance at
most (ε− ε∗) + ε∗ = ε from CT . For convenience, this procedure is given as Algorithm 2
below.

Algorithm 2 k-median Algorithm: Large Clusters (unknown wavg)
Input: ε ≤ 1, α > 0, k.
For j = 1, 2, 3 . . . do:

Step 1: Let τ be the jth smallest pairwise distance in S. Construct τ -threshold
graph Gτ .

Step 2: Run Step 2 of Algorithm 1 to construct graph H and clusters C ′1, . . . , C ′k.
Step 3: If min(|C ′1|, . . . , |C ′k|) > b and |C ′1 ∪ . . . ∪ C ′k| ≥ n(1− ε− 5ε/α), run Step 3 of
Algorithm 1 and output the clusters C ′′1 , . . . , C ′′k produced.

3.3. An Algorithm for the General Case
The algorithm in the previous section required the minimum cluster size in the tar-
get to be large (of size Ω(εn)). In this section, we show how this requirement can be
removed using a different algorithm that finds a clustering that is O(ε/α)-close to the
target; while the algorithm is just as simple, we need to be a bit more careful in the
analysis.
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Algorithm 3 k-median Algorithm: General Case
Input: ε ≤ 1, α > 0, k.
Initialization: Run a constant-factor k-median approximation algorithm to compute

a value w ∈ [wavg, βwavg] for, say, β = 4.
Step 1: Construct the τ -threshold graph Gτ with τ = 1

5
αw
βε .

Step 2: For j = 1 to k do:
Identify the vertex vj of highest degree in Gτ .
Remove vj and its neighborhood from Gτ and call this cluster C(vj).

Step 3: Output the k clusters C(v1), . . . , C(vk−1), S − ∪k−1
i=1 C(vi).

THEOREM 3.9 (k-MEDIAN: GENERAL CASE). There is an efficient algorithm such
that if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the k-
median objective, the algorithm will produce a clustering that is O(ε + ε/α)-close to
CT .

PROOF. The algorithm is as given above in Algorithm 3. First, if we are not given
the value of wavg, we run a constant-factor k-median approximation algorithm (e.g.,
[Arya et al. 2004]) to compute an estimate ŵ ∈ [wavg, βwavg] for, say, β = 4.4 Redefining
d̂crit = αŵ

10βε ≤
αwavg

10ε , as in the proof of Proposition 3.3(ii), but using Lemma 3.1(b) with
t = 10β, we have that the set B = {x ∈ S | w(x) ≥ d̂crit or w2(x) − w(x) < 5d̂crit}
of bad points has size |B| ≤ (6 + 10β/α)εn. If we again define Xi = C∗i \ B, we note
that Lemma 3.5 continues to hold with τ = 2d̂crit: the graph Gτ satisfies properties
(i),(ii) that all pairs of points in the same Xi are connected by an edge and all pairs of
points in different Xi, Xj have no edge and no neighbors in common. In summary, the
situation is much as if we knew wavg exactly, except that the number of bad points is
slighly greater.

We now show that the greedy method of Step 2 above correctly captures most of the
cliques X1, X2, . . . , Xk in Gτ—in particular, we show there is a bijection σ : [k] → [k]
such that

∑
i |Xσ(i)\C(vi)| = O(b), where b = |B|. Since the b bad points may potentially

all be misclassified, this gives an additional error of b.
Let us think of each cliqueXi as initially “unmarked”, and then “marking” it the first

time we choose a cluster C(vj) that intersects it. We now consider two cases. If the jth
cluster C(vj) intersects some unmarked clique Xi, we will assign σ(j) = i. (Note that
it is not possible for C(vj) to intersect two cliques Xi and Xj 6=i, since by Lemma 3.5(ii)
these cliques have no common neighbors.) If C(vj) misses ri points from Xi, then since
the vertex vj defining this cluster had maximum degree and Xi is a clique, C(vj) must
contain at least ri elements from B. Therefore the total sum of these ri can be at most
b = |B|, and hence

∑
j |Xσ(j) \ C(vj)| ≤ b, where the sum is over j’s that correspond to

the first case.
The other case is if C(vj) intersects a previously marked clique Xi. In this case we

assign σ(j) to any arbitrary clique Xi′ that is not marked by the end of the process.
Note that the total number of points in such C(vj)’s must be at most the number of
points remaining in the marked cliques (i.e.,

∑
j rj), and possibly the bad points (at

most b of them). Since the cliques Xi′ were unmarked at the end, the size of any such
Xi′ must be bounded by the sizes of its matched C(vj)—else we would have picked

4The reason we need to do this, rather than simply increasing an initial low guess of wavg as in the proof of
Theorem 3.8, is that we might split some large cluster causing substantial error, and not be able to recognize
our mistake (because we only miss small clusters which do not result in very many points being left over).
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a vertex from this clique rather than picking vj . Hence the total size of such Xi′ is
bounded by |B|+

∑
i ri ≤ 2b; in turn, this shows that

∑
j |Xσ(j) \ C(vj)| ≤

∑
j |Xσ(j)| ≤

2b, where this sum is over j’s that correspond to the second case. Therefore, overall,
the total error over all C(vj) with respect to the k-median optimal is the two sums
above, plus potentially the bad points, which gives us at most 4b points. Adding in the
extra ε∗n to account for the distance between the k-median optimum and the target
clustering yields the claimed 4b+ ε∗n = O(ε+ ε/α)n result.

4. THE K-MEANS PROBLEM
Algorithm 3 in Section 3.3 for the k-median problem can be easily altered to work for
the k-means problem as well. Indeed, if we can prove the existence of a structure like
that promised by Lemma 3.1 and Lemma 3.5 (albeit with different parameters), the
same algorithm and proof would give a good clustering for any objective function.

Given some optimal solution for k-means define w(x) = mini d(x, ci) to be the dis-
tance of x to its center, which is the square root of x’s contribution to the k-means
objective function; hence OPT =

∑
x w(x)2. Again, let w2(x) = minj 6=i d(x, cj) be the

distance to the second-closest center, and let ε∗ = dist(CT , C∗).

LEMMA 4.1. If the instance (M, S) satisfies (1+α, ε)-approximation-stability for the
k-means objective, then

(a) If each cluster in CT has size at least 2εn, then less than (ε − ε∗)n points x ∈ S on
which CT and C∗ agree have w2(x)2 − w(x)2 < αOPT

εn .
(a’) For the case of general cluster sizes in CT , less than 6εn points x ∈ S have w2(x)2 −

w(x)2 < αOPT
2εn .

Also, for any t > 0 we have:

(b) at most t(εn/α) points x ∈ S have w(x)2 ≥ αOPT
tεn .

The proof is identical to the proof for Lemma 3.1, and is omitted here. We now
give some details for what changes are needed to make Algorithm 2 from Section 3.3
work here. Again, we use a β-approximation to k-means for some constant β to get
ÔPT ∈ [OPT, βOPT]. Define the critical distance d̂crit as (αÔPT25εβn )1/2 in the case of large

clusters, or (αÔPT50εβn )1/2 in the case of general cluster sizes—these are at most 1/5 times
the square-roots of the expressions in (a) and (a’) above. Call point x ∈ S good if both
w(x) < dcrit and w2(x) ≥ 5dcrit, and bad otherwise; let B be the bad points. The follow-
ing proposition has a proof very similar to Proposition 3.3(b).

PROPOSITION 4.2. If the instance (M, S) satisfies (1+α, ε)-approximation-stability
for the k-means objective, then |B| < (6 + 50β/α)εn.

Now the rest of the proof for Theorem 3.9 goes through unchanged in the k-means
case as well; indeed, first we note that Lemma 3.5 is true, because it only relies on the
good points being at distance < dcrit to their center, and being at distance ≥ 5dcrit to
any other center, and the rest of the proof only relies on the structure of the threshold
graph. The fraction of points we err on is again ε∗+ 4|B|/n = O(ε+ ε/α). Summarizing,
we have the following result.

THEOREM 4.3 (k-MEANS: GENERAL CASE). There is an efficient algorithm such
that if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the k-
means objective, the algorithm will produce a clustering that is O(ε+ ε/α)-close to CT .
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4.1. An Algorithm for Large Clusters
Unfortunately, the argument for exact ε-closeness for k-median in the case of large
target clusters does not extend directly, because Lemma 4.1(a) is weaker than Lemma
3.1(a)—the latter gives us bounds on the difference in distances, whereas the former
only gives us bounds on the difference in the squared distances. Instead, however, we
will use the same algorithm style to identify most of the bad points (by outputting
“don’t know” on some O(ε/α) of the points) and output a clustering on the remaining
1−O(ε/α) fraction of the points which makes at most εn errors on these points.

THEOREM 4.4. There is an efficient algorithm such that if the given instance (M, S)
satisfies (1 +α, ε)-approximation-stability for the k-means objective, and each cluster in
CT has size at least (4 + 75/α)εn+ 2, the algorithm will produce a clustering in which at
most O(εn/α) points are labeled as “don’t know”, and on the remainder the clustering
is ε-close to CT .

PROOF. Let us first assume that we know the value of OPT; we will discharge this
assumption later. Define the critical distance dcrit := 1

5 (αOPT
εn )1/2. As in Theorem 3.7,

we categorize the points in a more nuanced fashion: a point x ∈ S is called “red” if it
satisfies condition (a) of Lemma 4.1 (i.e., if w2(x)2 − w(x)2 < 25d2

crit), “yellow” if it is
not red and has w(x) ∈ [dcrit, 5dcrit], “orange” if it is not red and has w(x) > 5dcrit, and
“green” otherwise. Hence, Lemma 4.1(a) tells us that there are at most (ε− ε∗)n points
on which C∗ and CT agree, and that are red; at most 25ε/α fraction are either yellow
or orange (by setting t = 25); at most ε/α fraction of the points are orange (by setting
t = 1); the rest are green. Let all the non-green points be called bad, and denoted by
the set B. Let us define b := (1 + 25/α)εn; note that |B| ≤ b.

Now, as in Theorem 3.7, if the cluster sizes in the target clustering are at least
2b + εn + 2, then constructing the threshold graph Gτ with τ = 2dcrit and applying
Lemma 3.6 we can find a k-clustering C′ where each Xi := C∗i \ B is contained with
a distinct cluster, and only the O(ε + ε/α) bad (i.e., non-green) points are possibly in
the wrong clusters. We now want to label some points as “don’t knows”, and construct
another clustering C′′ where we correctly cluster the green and yellow points.

Again, this is done as in the k-median case: for each point x and each cluster C ′j ,
compute the median distance dmed(x,C ′j) from x to the points in C ′j . If the minimum
median distance minj∈[k] dmed(x,C

′
j) is greater than 4dcrit, then label the point x as

“don’t know”; else insert x into the cluster C ′′i for i = argminjdmed(x,C
′
j).

First, we claim that the points labeled “don’t know” contain all the orange points.
Indeed, for any orange point x, the distance to each optimal cluster center is at least
5dcrit; moreover, since the target clusters are large, a majority of the points in each
cluster C ′j are green, which are all within distance dcrit of the optimal cluster center.
Using the triangle inequality, the median distance of an orange point to every cluster
center will be at least 4dcrit, and hence it will be classified as “don’t know”. There may
be more points classified this, but using a similar argument we can deduce that all
such points must have w(x) ≥ 3dcrit, and Lemma 4.1(b) implies that there are at most
25εn
9α such “don’t know” points.
Next, we show that the yellow and green points will be correctly classified. Note that

each non-red point x satisfies w2(x)2 − w(x)2 ≥ 25d2
crit, all yellow/green points satisfy

w(x)2 ≤ 25d2
crit, and all green points g satisfy w(g) < dcrit. We show that this means

that any yellow/green point x must satisfy the property that for a green point g1 in the
same cluster as x in C∗, and for a green point g2 in a different cluster than x in C∗, we
have d(x, g1) < d(x, g2). Indeed, d(x, g1) < w(x) + dcrit and d(x, g2) > w2(x) − dcrit, and
hence it suffices to show that w2(x) ≥ w(x) + 2dcrit for x being yellow or green. To show
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this, note that

w2(x)2 ≥ w(x)2 + 25d2
crit

≥ w(x)2 + 4d2
crit + 4 · dcrit · (5dcrit)

≥ w(x)2 + 4d2
crit + 4 · dcrit · w(x)

≥ (w(x) + 2dcrit)
2

where we use the fact that w(x) ≤ 5dcrit for green and yellow points. Again, since each
yellow or green point is closer to a strict majority of green points in their “correct”
cluster in C′, we will correctly classify them. Finally, we finish the argument as before:
ignoring the O(εn/α) “don’t knows”, C′′ may disagree with C∗ on only the (ε − ε∗)n red
points where C∗ and CT agree, and the ε∗n points where C∗ and CT disagree, which is
εn as claimed.

One loose end remains: we assumed we knew OPT and hence dcrit. To remove this
assumption, we can again try multiple guesses for the value of dcrit as in Theorem 3.8.
The argument in that theorem continues to hold, as long as the size of the clusters in
the target clustering is at least 3b+εn+2 = (4+75/α)εn+2, which is what we assumed
here.

5. THE MIN-SUM CLUSTERING PROBLEM
Recall that the min-sum k-clustering problem asks to find a k-clustering C =
{C1, C2, . . . , Ck} to minimize the objective function

Φ(C) =

j∑
i=1

∑
x∈Ci

∑
y∈Ci

d(x, y).

In this section, we show how assuming (1 + α, ε)-approximation-stability for the min-
sum clustering problem, and assuming that all the clusters in the target are “large”,
allows us to find a clustering that is O(ε)-close to the target clustering.

5.1. The high-level idea
As one might expect, the general plan is to extend the basic techniques from the previ-
ous sections, though the situation is now a bit more delicate. While we can still argue
that there cannot be too many points that could be cheaply reassigned to different
clusters (since that would violate our basic assumption, though we have to be careful
about the somewhat messy issue of multiple reassignments), now the cost of reassign-
ing a point x to cluster Cj is proportional to the number of points in Cj . In particular,
the net effect of this cost structure is that unlike the k-median and k-means objectives,
there is no longer a uniform threshold or critical distance. Many points in some cluster
Ci could be quite close to another cluster Cj if Cj is large. On the other hand, one can
show the (good) points in Cj will be even closer to each other. Thus, by slowly growing
a threshold distance, we will be able to find the clusters in the order from largest to
smallest. We then argue that we can identify points in time when the size of the largest
component found is large enough compared to the current threshold to have captured
the cluster, allowing us to pull those clusters out before they have had the chance to
mistakenly connect to smaller ones. This argument will require an assumption that
all clusters are large. (See subsequent work of [Balcan and Braverman 2009] for an
algorithm that allows for general cluster sizes).
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5.2. Properties of Min-Sum Clustering
Let the min-sum optimal clustering be C∗ = {C∗1 , . . . , C∗k} with objective function value
OPT = Φ(C∗). For x ∈ C∗i , define

w(x) =
∑
y∈C∗i

d(x, y)

so that OPT =
∑
x w(x), and let wavg = avgxw(x) = OPT

n . Define

w2(x) = min
j 6=i

∑
y∈C∗j

d(x, y).

A useful fact, following immediately from the triangle inequality, is the following:

FACT 5.1. For two points x and y, and any cluster C∗j ,∑
z∈C∗j

(d(x, z) + d(y, z)) ≥ |C∗j | d(x, y).

We now prove the following lemma.

LEMMA 5.2. If the given instance (M, S) satisfies (1 +α, ε)-approximation-stability
for the min-sum objective and each cluster in CT has size at least 2εn, then:

(a) less than (ε− ε∗)n points x ∈ S on which CT and C∗ agree have w2(x) <
αwavg

4ε , and
(b) at most 60εn/α points x ∈ S have w(x) >

αwavg
60ε .

PROOF. To prove Property (a), assume to the contrary. Then one could take C∗ and
move a set S′ of (ε−ε∗)n points x that have w2(x) <

αwavg
4ε and on which CT and C∗ agree

to the clusters that define their w2 value. We now argue that the resulting increase in
min-sum objective value is less than αOPT.

Let the new clustering be C′ = (C ′1, . . . , C
′
k), where |C ′i \ C∗i | = δin, so that

∑
i δi =

ε − ε∗. Also, let C2(x) denote the cluster C∗i that point x ∈ S′ is moved to. Then, for
each point x ∈ S′ moved, the increase to the min-sum objective is at most 2w2(x) +∑
y∈S′:C2(y)=C2(x) d(x, y)—here the factor of two arises because the min-sum objective

counts each pair of points in a cluster twice, once from each end. From Fact 5.1, we
know that if C2(y) = C2(x) then d(x, y) ≤ 1

|C2(x)| (w2(x) + w2(y)). Thus, we can replace
the term d(x, y) in the cost charged to point x with 2

|C2(x)|w2(x), yielding a total cost
charged to point x moved to cluster C∗i of

2w2(x) + 2w2(x)
δin

|C∗i |
.

Summing over all points x moved to all clusters, and using the fact that w2(x) <
αwavg

4ε
for all x ∈ S′, we have a total cost increase of less than∑

i

(δin)
2αwavg

4ε

[
1 +

δin

|C∗i |

]
≤ εn

αwavg
2ε

+
αwavg

2ε

∑
i

δ2
i n

2

|C∗i |

≤ α

2
OPT +

αwavg
2ε

ε2n2

mini |C∗i |

≤ α

2
OPT +

α

4
OPT < αOPT.

Finally, property (b) follows immediately from Markov’s inequality.
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Let us define the critical value vcrit :=
αwavg

60ε . We call point x good if it satisfies both
w(x) ≤ vcrit and w2(x) ≥ 15vcrit, else x is called bad; let Xi be the good points in the
optimal cluster C∗i , and let B = S \ ∪iXi be the bad points.

LEMMA 5.3 (STRUCTURE OF MIN-SUM OPTIMUM). If the given instance (M, S)
satisfies (1 + α, ε)-approximation-stability for the min-sum objective then as long as
the minimum cluster size is at least 2εn we have:

(i) For all x, y in the same Xi, we have d(x, y) < 2vcrit
|C∗i |

,
(ii) For x ∈ Xi and y ∈ Xj 6=i, we have d(x, y) > 14 vcrit

min(|C∗i |,|C∗j |)
, and

(iii) The number of bad points |B| = |S \ ∪iXi| is at most b := (1 + 60/α)εn.

PROOF. For part (i), note that Fact 5.1 implies that

d(x, y) ≤ 1

|C∗i |
∑
z∈C∗i

(d(x, z) + d(y, z)) =
1

|C∗i |
(w(x) + w(y)).

Since x, y ∈ Xi are both good, we have w(x), w(y) ≤ vcrit, so part (i) follows.
For part (ii), assume without loss of generality that |C∗j | ≤ |C∗i |. Since both

x ∈ C∗i , y ∈ C∗j are good, we have w2(x) =
∑
z∈C∗j

d(x, z) ≥ 15vcrit and w(x) =∑
z∈C∗j

d(y, z) ≤ vcrit. By the triangle inequality d(x, y) ≥ d(x, z)− d(y, z), we have

|C∗j | d(x, y) ≥
∑
z∈C∗j

(d(x, z)− d(y, z)) = w2(x)− w(y) ≥ 14vcrit.

Finally, part (iii) follows from Lemma 5.2 and a trivial union bound.

While Lemma 5.3 is similar in spirit to Lemma 3.5, there is a crucial difference: the
distance between the good points in Xi and those in Xj is no longer bounded below
by some absolute value τ , but rather the bound depends on the sizes of Xi and Xj .
However, a redeeming feature is that the separation is large compared to the sizes of
both Xi and Xj ; we will use this feature crucially in our algorithm.

5.3. The Algorithm for Min-Sum Clustering
For the algorithm below, define critical thresholds τ0, τ1, τ2, . . . as: τ0 = 0 and τi is the
ith smallest distinct distance d(x, y) for x, y ∈ S. Thus, Gτ0 , Gτ1 , . . . are the only distinct
threshold graphs possible.

THEOREM 5.4. If the given instance (M, S) satisfies (1 + α, ε)-approximation-
stability for the min-sum objective and we are given the value of wavg, then so long
as each cluster in CT has size greater than (5 + 120/α)εn, Algorithm 4 produces a clus-
tering that is O(ε/α)-close to the target. If we are not given wavg, there is an efficient
algorithm that uses Algorithm 4 as a subroutine and on any such instance will produce
a clustering that is O(ε/α)-close to the target.

PROOF. Since each cluster in the target clustering has more than (5 + 120/α)εn =
2b+ 3εn points by the assumption, and the optimal min-sum clustering C∗ must differ
from the target clustering by fewer than εn points, each cluster in C∗ must have more
than 2b+ 2εn points. Moreover, by Lemma 5.2(iii), the bad points B constitute at most
b points, and hence each |Xi| = |C∗i \B| > b+ 2εn ≥ b+ 2.

Analysis under the assumption that wavg is given. Consider what happens in
the execution of the algorithm: as we increase τ , the sizes of the H-components in-
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Algorithm 4 Min-sum Algorithm
Input: (M, S), wavg, ε ≤ 1, α > 0, k, b := (1 + 60/α)εn.
Let the initial threshold τ = τ0.

Step 1: If k = 0 or S = ∅, stop.
Step 2: Construct the τ -threshold graph Gτ on the current set S of points.
Step 3: Create a new graph H by connecting two points in S by an edge if they share

at least b neighbors in common in Gτ .
Step 4: Let C be largest connected component in H. If |C| ≥ 3vcrit/τ ,

then output C as a cluster, set k ← k − 1, S ← S \ C, and go to Step 1,
else increase τ to the next critical threshold and go to Step 1.

crease (since we are adding more edges in Gτ ). This happens until the largest H-
component is “large enough” (i.e., the condition in Step 4 gets satisfied) and we output
a component whose size is large enough; and then we go back to raising τ .

We claim that every time we output a cluster in Step 4, this cluster completely con-
tains some Xi and includes no points in any Xj 6=i. More specifically, we show that as
we increase τ , the condition in Step 4 will be satisfied after all the good points in the
some cluster have been fully connected, but before any edges appear between good
points in different clusters. It suffices to show that the first cluster output by the al-
gorithm contains some Xi entirely; the claim for the subsequent output clusters is
the same. Assume that |C∗1 | ≥ |C∗2 | ≥ . . . ≥ |C∗k |. Define di = 2vcrit

|C∗i |
and recall that

maxx,y∈Xi d(x, y) ≤ di by Lemma 5.3(i).
We first claim that as long as τ ≤ 3 d1, no two points belonging to different Xi’s can

lie in the same H-component. By Lemma 5.3(ii) the distance between points in any
Xi and Xj 6=i is strictly greater than 14vcrit

min(|C∗i |,|C∗j |)
, which is strictly greater than 2τ for

any τ ≤ 3 d1. Hence every x ∈ Xi and y ∈ Xj share no common neighbors, and by an
argument identical to that in Lemma 3.6, the nodes x, y belong to different components
of H.

Next, we claim that for values of τ < min{di, 3d1}, the H-component containing
points from Xi cannot be output by Step 4. Indeed, since τ < 3d1, no Xi and Xj be-
long to the same H-component by the argument in the previous paragraph, and hence
any H-component containing points from Xi has size at most |C∗i | + |B| <

3|C∗i |
2 ; here

we used the fact that each |C∗i | > 2b due to the large cluster assumption. However, the
minimum size bound 3vcrit

τ in Step 4 is equal to 3 di |C∗i |
2τ ≥ 3|C∗i |

2 for values of τ < di,
where we used the definition of di, and that di > τ . Hence the condition of Step 4 is not
satisfied and the H-component will not be output. Moreover, note that when τ ≥ di, all
the points of Xi lie in the same H-component.

The above two paragraphs show that nothing bad happens: no incorrect components
are constructed or components outputted prematurely. We finally show that something
good happens—in particular, that the condition in Step 4 becomes true for some H-
component fully containing some Xi for some value τ = [d1, 3d1]. (By the argument
in the previous paragraph, τ ≥ di, and hence the output component will fully contain
Xi.) For the sake of contradiction, suppose not. But note at time τ = 3d1, at least the
H-component containing X1 has size at least |C∗1 | − |B| > |C∗1 |/2 and will satisfy the
minimum-size condition (which at time τ = 3d1 requires a cluster of size 3vcrit

τ = vcrit
d1

=

|C∗1 |/2), giving the contradiction.
To recap, we showed that by time 3d1 none of the clusters have merged together, and

the Step 4 condition was satisfied for at least the component containing X1 (and hence
for the largest component) at some time prior to that. Moreover, this largest component
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must fully contain some set Xi and no points in Xj 6=i. Finally, we can now iterate this
argument on remaining set of points to complete the proof for the case that we know
wavg.

Analysis if wavg is not given. In this case, we do not want to use a β-approximation
algorithm for min-sum to obtain a clustering that is O(βε/α)-close to the target, be-
cause the minsum clustering problem only has a logarithmic approximation for arbi-
trary k, and hence our error would blow up by a logarithmic factor. Instead, we use
the idea of trying increasing values of wavg. Specifically, the approximation algorithm
gives us upper and lower bounds for wavg that differ by a logarithmic factor, hence we
can start at the lower bound for wavg, and try increasing powers of 2: this ensures that
we would try the process only O(log log n) times before we reach the correct value of
wavg. Since we don’t really know this correct value, we stop the first time we output k
clusters that cover at least n− b = (1−O(ε/α))n points in S. Clearly, if we reached the
correct value of wavg we would succeed in covering all the good n− b points using our k
clusters; we now argue that we will never mistakenly output a high-error clustering.

The argument is as follows. Let us say we mark Xi the first time we output a clus-
ter containing at least one point from it. There are three possible sources of mistakes:
(a) we may output a cluster prematurely: it may contain some but not all points from
Xi, (b) we may output a cluster which contains points from one or more previously
marked sets Xj (but no unmarked Xi), or (c) we may output a cluster with points from
an unmarked Xi and one or more previously marked Xj . In case (a), if we end up clus-
tering all but an O(ε/α)-fraction of the points, we did not miss too many points from
the Xi’s, so our error is O(ε/α). In case (b), such an event would use up an additional
cluster and therefore would end with missing some Xi completely, which would result
in more than b unclustered points, and we would try a larger guess for wavg. The dan-
gerous case is case (c), but we claim case (c) in fact cannot happen. Indeed, the value of
τ at which we would form connected components containing points from both Xi and
Xj is a constant times larger than the value τ at which all of Xi would be in a single
H-component. Moreover, since our guess for wavg is too small, this H-component would
certainly satisfy the condition of Step 4 and be output as a cluster instead.

6. RELATIONSHIP TO ε-SEPARATION CONDITION
Ostrovsky et al. [2006] consider k-means clustering in Euclidean spaces, and define
and analyze a very interesting separation condition that provides a notion of how
“naturally clustered” a given dataset is. Specifically, they call a k-means instance ε-
separated if the optimal k-means cost is at most ε2 times the cost of the optimal (k−1)-
means solution. Under this assumption on the input, they show how to seed Lloyd’s
method to obtain a 1 + f(ε) approximation in d-dimensional Euclidean space in time
O(nkd+k3d), and a (1+δ)-PTAS with run-time nd2k(1+ε2)/δ. This notion of ε-separation,
namely that any (k − 1)-means solution is substantially more expensive than the op-
timal k-means solution, is in fact related to (c, ε)-approximation-stability. Indeed, in
Theorem 5.1 of their paper, they show that their ε-separatedness assumption implies
that any near-optimal solution to k-means is O(ε2)-close to the k-means optimal clus-
tering. However, the converse is not necessarily the case: an instance could satisfy
approximation-stability without being ε-separated.5 We present here a specific exam-
ple with c = 2, in fact of a point set in Euclidean space. Consider k = 2 where target

5[Ostrovsky et al. 2006] shows an implication in this direction (Theorem 5.2); however, this implication
requires a substantially stronger condition, namely that data satisfy (c, ε)-approximation-stability for c =
1/ε2 (and that target clusters be large). In contrast, our primary interest is in the case where c is below the
threshold for existence of worst-case approximation algorithms.
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cluster C1 has (1 − δ)n points and target cluster C2 has δn points, with δ a param-
eter to be fixed later. Suppose that any two points inside the same cluster Ci have
distance 1 and any two points inside different clusters have distance 1 + 1/ε. Choosing
any δ ∈ (ε, 1 − ε), the resulting example satisfies (2, ε)-approximation-stability for k-
median, and choosing any δ ∈ (ε2, 1− ε2), the resulting example satisfies (2, ε2)-approx-
imation-stability for k-means. However, it need not satisfy the ε-separation property:
for δ = 2ε, the optimal 2-median solution has cost n − 2, but the optimal 1-median
solution picks a center at any point in the cluster of size (1 − 2ε)n and hence has cost
(1−2ε)n−1+(2εn)(1+1/ε) = 3n−1. Likewise for δ = 2ε2, the optimal 2-means solution
has cost n − 2, but the optimal 1-means solution has cost less than (3 + 4ε)n. Thus, in
both cases the ratio of costs between k = 1 and k = 2 is not so large.

In fact, for the case that k is much larger than 1/ε, the difference between the two
properties can be more substantial. Suppose ε is a small constant, and consider a clus-
tering instance in which the target consists of k =

√
n clusters with

√
n points each,

such that all points in the same cluster have distance 1 and all points in different
clusters have distance D + 1 where D is a large constant. Then, merging two clusters
increases the cost additively by Θ(

√
n), since D is a constant. Consequently, the opti-

mal (k − 1)-means/median solution is just a factor 1 + O(1/
√
n) more expensive than

the optimal k-means/median clustering. However, for D sufficiently large compared to
1/ε, this example satisfies (2, ε)-approximation-stability or even (1/ε, ε)-approximation-
stability (for proof, see Appendix B).

7. SUBSEQUENT WORK
In this section we describe work subsequent to the initial conference publication of
our results [Balcan et al. 2009] that has gone on to further expand understanding
of the algorithmic implications of approximation-stability, explore relaxations of the
approximation-stability condition, and use approximation-stability to develop fast, ef-
fective algorithms for clustering biological data. Additionally, we discuss subsequent
work exploring other deterministic stability and separation conditions.

7.1. Algorithmic Results under Approximation-Stability
Further guarantees for min-sum clustering. Balcan and Braverman [2009] fur-
ther analyze the min-sum problem and show how to handle the presence of small tar-
get clusters. To achieve this they derive new structural properties implied by (1 +α, ε)-
approximation-stability. In the case where k is small compared to log n/ log log n they
output a single clustering that is O(ε/α)-close to the target, while in the general case
their algorithm outputs a small list of clusterings with the property that the target
clustering is close to one of those in the list. They further show that if all target clus-
ters are large (of size at least 100εn/α2), they can reduce the approximation error from
O(ε/α) down to O(ε).
Further guarantees for k-median and k-means clustering. Schalekamp et
al. [2010] show that Algorithm 1 additionally achieves a good approximation to the
k-median objective in the case that target clusters are large. We note that our ap-
proximation hardness result for clustering under (c, ε)-approximation-stability (which
appears as Theorem A.2 in Appendix A) requires the target to have small clusters.
They also discuss implementation issues and perform a number of experimental com-
parisons between various algorithms.

Awasthi et al. [2010] go further and provide a PTAS for k-median, as well as for k-
means in Euclidean space, when all target clusters have size greater than εn and α > 0
is a constant. One implication of this is that when α > 0 is a constant, they improve the
“largeness” condition needed to efficiently get ε-close for k-median from O((1 + 1/α)εn)
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to εn. Another implication is that they are able to get the same guarantee for k-means
as well, when points lie in Rn, improving on the guarantees in Section 4.1 for points in
Euclidean space. Note that while α does not appear in the “largeness” condition, their
algorithm has running time that depends exponentially on 1/α, whereas ours does not
depend on 1/α at all.

Agarwal et al. [2013] give guarantees for the popular kmeans++ algorithm under
approximation-stability. Specifically they show that if all target clusters are large,
then the kmeans++ algorithm achieves a constant-factor approximation with proba-
bility Ω(1/k) for data satisfying (1 + α, ε)-approximation-stability. They also give an
example showing that the algorithm may not achieve a good approximation when tar-
get clusters are small.
Correlation clustering. Balcan and Braverman [2009] also analyze the correlation
clustering problem under the (c, ε)-approximation-stability assumption. For correla-
tion clustering, the input is a graph with edges labeled +1 or −1 and the goal is to find
a partition of the nodes that best matches the signs of the edges [Blum et al. 2004].
Usually, two versions of this problem are considered: minimizing disagreements and
maximizing agreements. In the former case, the goal is to minimize the number of −1
edges inside clusters plus the number of +1 edges between clusters, while in the lat-
ter case the goal is to maximize the number of +1 edges inside the cluster plus the
number of −1 edges between. These are equivalent at optimality but differ in their
difficulty of approximation. Balcan and Braverman [2009] show that for the objective
of minimizing disagreements, (1 + α, ε)-approximation-stability implies (2.5, O(ε/α))-
approximation-stability, so one can use a state-of-the-art 2.5-approximation algorithm
for minimizing disagreements in order to achieve an accurate clustering.6 This con-
trasts sharply with the case of objectives such as k-median, k-means and min-sum (see
Theorem A.1).

7.2. Relaxations of Approximation-Stability
Stability with noise and outliers. Balcan, Roeglin, and Teng [2009] consider a re-
laxation of (c, ε)-approximation-stability that allows for the presence of noisy data—
data points for which the (heuristic) distance measure does not reflect cluster member-
ship well—that could cause stability over the full dataset to be violated. Specifically,
they define (ν, c, ε)-approximation-stability, which requires that the data satisfies (c, ε)-
approximation-stability only after a ν fraction of the data points have been removed.
Balcan et al. [2009] show that in the case where the target clusters are large (have
size Ω((ε/α+ν)n)) the large-clusters algorithm we present in this paper can be used to
output a clustering that is (ν + ε)-close to the target clustering. They also show that in
the more general case there can be multiple significantly different clusterings that can
satisfy (ν, c, ε)-approximation-stability (since two different sets of outliers could result
in two different clusterings satisfying the condition). However, if most of the points
come from large clusters, they show one can in polynomial time output a small list of
k-clusterings such that any clustering that satisfies the property is close to one of the
clusterings in the list.
Deletion-stability. Awasthi et al. [2010] consider instances satisfying the condition
that deleting any center in the k-median/k-means-optimal solution, and reassigning
its points to one of the k− 1 other centers, raises the objective value by at least a 1 +α
factor. This can be viewed as a relaxation of (1 + α, ε)-approximation-stability in the
event that target clusters have size greater than εn (since in that case no solution with

6Note that the maximizing agreement version of correlation clustering is less interesting in our framework
since it admits a PTAS.
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k − 1 clusters can be ε-close to the target). It also can be viewed as a relaxation of
the condition of [Ostrovsky et al. 2006]. They then show how to obtain a PTAS under
this condition when α > 0 is a constant. Note, however, that their running time is
exponential in 1/α; in contrast, our algorithms have running times polynomial in n
and k and independent of 1/α.
The Inductive model. Balcan et al. [2009] and Balcan and Braverman [2009] also
show how to cluster well under approximation-stability in the inductive clustering set-
ting. Here, rather than being given the entire set S up front, the algorithm is provided
only a small random sample S̃ of it. Our goal is then to use S̃ to produce a hypothesis
h : X → Y which implicitly represents a clustering of the whole set S and which has
low error on it. Balcan et al. [2009] show how in the large clusters case the analysis
in our paper can be adapted to the inductive model for k-median and k-means, and
Balcan and Braverman [2009] have shown how to adapt their minsum algorithm to
the inductive setting as well.

7.3. Practical Application of Approximation-Stability
Motivated by clustering applications in computational biology, Voevodski et al. [2010;
2012] analyze (c, ε)-approximation-stability in a model with unknown distance infor-
mation where one can only make a limited number of one versus all queries. They
design an algorithm that, assuming (c, ε)-approximation-stability for the k-median ob-
jective, finds a clustering that is ε-close to the target by using only O(k) one-versus-
all queries in the large cluster case, and in addition is faster than the algorithm we
present here. In particular, the algorithm for the large clusters case we describe in
Section 3 can be implemented in O(|S|3) time, while the one proposed in [Voevodski
et al. 2010; 2012] runs in time O(|S|k(k + log |S|)). They then use their algorithm to
cluster biological datasets in the Pfam [Finn et al. 2010] and SCOP [Murzin et al.
1995] databases, where the points are proteins and distances are inversely propor-
tional to their sequence similarity. This setting nicely fits the one-versus all queries
model because one can use a fast sequence database search program to query a se-
quence against an entire dataset. The Pfam [Finn et al. 2010] and SCOP [Murzin
et al. 1995] databases are used in biology to observe evolutionary relationships be-
tween proteins and to find close relatives of particular proteins. Voevodski et al. [2010;
2012] show that their algorithms are not only fast on these datasets, but also achieve
high accuracy. In particular, for one of these sources they obtain clusterings that al-
most exactly match the given classification, and for the other, the accuracy of their
algorithm comparable to that of the best known (but slower) algorithms using the full
distance matrix.

7.4. Other Deterministic Separation Conditions
There has also been subsequent work exploring the problem of clustering under other
deterministic stability and separation conditions.

Bilu and Linial [2009; 2010] consider inputs satisfying the condition that the op-
timal solution to the objective remains optimal even after bounded perturbations to
the input weight matrix. They give an algorithm for maxcut (which can be viewed
as a 2-clustering problem) under the assumption that the optimal solution is stable
to (roughly) O(n2/3)-factor multiplicative perturbations to the edge weights. Awasthi
et al. [2012] consider this condition for center-based clustering objectives such as k-
median and k-means, and give an algorithm that finds the optimal solution when the
input is stable to only factor-3 perturbations. This factor is improved to 1 +

√
2 by Bal-

can and Liang [2012], who also design algorithms under a relaxed (c, ε)-stability to
perturbations condition in which the optimal solution need not be identical on the
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c-perturbed instance, but may change on an ε fraction of the points (in this case,
the algorithms require c = 2 +

√
7). Note that for the k-median and min-sum objec-

tives, (c, ε)-approximation-stability with respect to C∗ implies (c, ε)-stability to pertur-
bations because an optimal solution in a c-perturbed instance is guaranteed to be a c-
approximation on the original instance;7 so, (c, ε)-stability to perturbations is a weaker
condition. Similarly, for k-means, (c, ε)-stability to perturbations is implied by (c2, ε)-
approximation-stability. However, as noted above, the values of c known to lead to
efficient clustering in the case of stability to perturbations are larger than for approx-
imation-stability, where any constant c > 1 suffices.

Kumar and Kannan [2010] consider the problem of recovering a target clustering
under deterministic separation conditions that are motivated by the k-means objective
and by Gaussian and related mixture models. They consider the setting of points in
Euclidean space, and show that if the projection of any data point onto the line join-
ing the mean of its cluster in the target clustering to the mean of any other cluster
of the target is Ω(k) standard deviations closer to its own mean than the other mean,
then they can recover the target clusters in polynomial time. This condition was fur-
ther analyzed and reduced by work of Awasthi and Sheffet [2012]. This separation
condition is formally incomparable to approximation-stability (even restricting to the
case of k-means with points in Euclidean space). In particular, if the dimension is low
and k is large compared to 1/ε, then this condition can require more separation than
approximation-stability (e.g., with k well-spaced clusters of unit radius, similar to the
example of Appendix B, approximation-stability would require separation only O(1/ε)
and independent of k). On the other hand if the clusters are high-dimensional, then
this condition can require less separation than approximation-stability since the ra-
tio of projected distances will be more pronounced than the ratios of distances in the
original space.

8. CONCLUSIONS AND OPEN QUESTIONS
8.1. Discussion
The main motivation for this work is that for many unsupervised-learning clustering
problems, such as clustering proteins by function or clustering images by subject, the
true goal is to partition the points correctly—e.g., to produce a clustering in which
proteins are correctly clustered by their function, or all images by who is in them.
However, since accuracy typically cannot be measured directly by the clustering al-
gorithm, distance-based objectives such as k-median, k-means, or min-sum are used
instead as measurable proxies for this goal.8 Usually, these distance-based objectives
are studied in isolation, for an arbitrary point set, with upper and lower bounds proven
on their approximability. In this work, we consider instead the implications of study-
ing them along with the underlying accuracy goal. What our results show is that if we
consider the natural inductive bias that would motivate use of a c-approximation algo-
rithm for such problems, namely (c, ε)-approximation-stability, we can use it to achieve
a clustering of error O(ε) even if we do not have a c-approximation algorithm for the
associated objective: in fact, even if achieving a c-approximation is NP-hard. In par-
ticular, for the case of the k-median, k-means, and min-sum objectives, we can achieve

7In particular, a c-perturbed instance d̃ satisfies d(x, y) ≤ d̃(x, y) ≤ cd(x, y) for all points x, y. So, using Φ

to denote cost in the original instance, Φ̃ to denote cost in the perturbed instance and using C̃ to denote the
optimal clustering under Φ̃, we have Φ(C̃) ≤ Φ̃(C̃) ≤ Φ̃(C∗) ≤ cΦ(C∗).
8This is similar to the way quantities such as hinge-loss are often used as surrogate losses for error rate or
0-1 loss in the context of supervised learning—except that for supervised learning, this is done to make the
computational problem more tractable, whereas in the case of clustering it is done because the underlying
accuracy goal cannot be directly measured.
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a low-error clustering on any instance satisfying (c, ε)-approximation-stability for any
constant c > 1 (if additionally the target clusters are large in the case of min-sum).

From the perspective of approximation algorithms, this work suggests a new avenue
for making progress in the face of approximation-hardness barriers for problems where
the given objective may be a proxy for an underlying accuracy goal. In particular, an
appealing aspect of (c, ε)-approximation-stability is that it is a property that one would
hope anyway to hold for such problems when using an approximation algorithm. That
is because if the given instance does not satisfy this condition, then achieving a c-
approximation is, by itself, insufficient to ensure producing a desirable solution for
that instance. So, an algorithm that guarantees low-error solutions under (c, ε)-approx-
imation-stability can be said to perform nearly as well on such problems as if one had a
generic c-approximation, and as we show, this may be achievable even when achieving
a c-approximation is NP-hard. In particular, since we achieve this guarantee for any
constant c > 1, this means that our performance guarantee in terms of accuracy is
nearly as good as if we had a generic PTAS for the k-median, k-means, and min-sum
objectives.

Approximation-stability additionally motivates algorithms with interesting and use-
ful properties. For example, it motivates outlier-resilient re-clustering of data as in
Algorithm 1 (Section 3) as well as algorithms that aim to explicitly identify and out-
put “I don’t know” on outliers in order to achieve especially low error on the remain-
der (e.g., Theorem 4.4, Section 4). Furthermore, as with approximation ratio, approx-
imation stability can provide a useful and convenient guide for algorithm design in
novel data clustering scenarios. For example, as discussed in Section 7, Voevodski
et al. [2010] consider the problem of clustering biological datasets in which only lim-
ited distance information can be obtained. They find that algorithms designed for
approximation-stability—in fact, a variant of the algorithm that we propose for the
k-median problem—yield fast and highly accurate results.

8.2. Open questions
One natural open question is whether the O(ε/α) form of the bounds we achieve are
intrinsic, or if improved bounds for these objectives are possible. For example, suppose
our instance satisfies (1 + ε, ε)-approximation-stability for all ε > 0, say for k-median
(e.g., achieving a 1.01-approximation would produce a solution of error 1%, a 1.001-
approximation gives error 0.1%, etc.); is such an assumption sufficient to produce a
near-optimal solution of some form, either in terms of approximation or in terms of
low error? (Note that directly applying our results for (1+α, ε)-approximation-stability
yields nothing useful in terms of low error, since our closeness guarantee of O(ε/α) be-
comes greater than 1 when α = ε.) Another natural question is whether one can use
this approach for other clustering or partitioning objective functions. For example, the
sparsest cut problem has been the subject of a substantial body of research, with the
best known approximation guarantee a factor of O(

√
log n) [Arora et al. 2004]. How-

ever, in the event this objective is a proxy for a true goal of partitioning a dataset in
a nearly-correct manner, it is again natural to consider data satisfying (c, ε)-approx-
imation-stability. In this case, given the current state of approximation results, it
would be of interest even if c is a large constant. See [Balcan 2009] for more details. The
max-cut problem would also be of interest, for values c closer to 1 than the Goemans-
Williamson bound [Goemans and Williamson 1995] (defining approximation-stability
appropriately for maximization problems).

More broadly, there are other types of problems, such as evolutionary tree recon-
struction, where the measurable objectives typically examined may again only be a
proxy for the true goals, e.g., to produce a correct evolutionary tree. It would be in-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Clustering under Approximation Stability A:27

teresting to examine whether the approach developed here might be of use in those
settings as well.
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A. ADDITIONAL PROOFS
THEOREM A.1. For any 1 ≤ c1 < c2, any ε, δ > 0, for sufficiently large k, there exists

a family of metric spaces G and target clusterings that satisfy (c1, ε)-approximation-
stability for the k-median objective (likewise, k-means and min-sum) and yet do not
satisfy even (c2, 1/2− δ)-approximation-stability for that objective.

PROOF. We focus first on the k-median objective. Consider a set of n points such
that the target clustering consists of one cluster C1 with n(1 − 2δ) points and k − 1
clusters C2, . . . , Ck each with 2δn

k−1 points. All points in the same cluster have distance
1. The distance between points in any two distinct clusters Ci, Cj for i, j ≥ 2 is D,
where D > 1 will be defined below. Points in C1 are at distance greater than c2n from
any of the other clusters.

In this construction, the target clustering is the optimal k-median solution, and has
a total k-median cost of n − k. We now define D so that there (just barely) exists a c2
approximation that splits cluster C1. In particular, consider the solution that merges
C2 and C3 into a single cluster (C4, . . . , Ck will each be their own cluster) and uses
2 clusters to evenly split C1. This clearly has error at least 1/2 − δ, and furthermore
this solution has a cost of ( 2δn

k−1 )(D − 1) + n − k, and we define D to set this equal to
c2(n− k)) = c2OPT.

Any c1 approximation, however, must be ε-close to the target for k > 1 + 2δ/ε. In
particular, by definition of D, any c1-approximation must have one median inside each
Ci. Therefore, it cannot place two medians inside C1 as in the above c2-approximation,
and so can have error on fewer than 2δn

k−1 points. This is less than εn by definition of k.
The same construction, with D defined appropriately, applies to k-means as well. In

particular, we just define D to be the square-root of the value used for D above, and
the entire argument proceeds as before.

For min-sum, we modify the construction so that distances in C1 are all equal to
0, so now OPT = (k − 1)( 2δn

k−1 )( 2δn
k−1 − 1). Furthermore, we set points in C1 to be at

distance greater than c2OPT from all other points. We again define D so that the
cheapest way to use k − 2 clusters for the points in C2 ∪ . . . ∪ Ck has cost exactly
c2OPT. However, because of the pairwise nature of the min-sum objective, this is now
to equally distribute the points in one of the clusters C2, . . . , Ck among all the others.
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This has cost 2( 2δn
k−1 )2D + OPT − ( 2δn

k−1 )2(k−3
k−2 ), which as mentioned above we set to

c2OPT. Again, because we have defined D such that the cheapest clustering of C2 ∪
. . . ∪ Ck using k − 2 clusters has cost c2OPT, any c1 approximation must use k − 1
clusters for these points and therefore again must have error less than 2δn

k−1 < εn.

THEOREM A.2. For k-median, k-means, and min-sum objectives, for any c > 1,
the problem of finding a c-approximation can be reduced in polynomial time to the
problem of finding a c-approximation under (c, ε)-approximation-stability. Therefore, a
polynomial-time algorithm for finding a c-approximation under (c, ε)-approximation-
stability implies a polynomial-time algorithm for finding a c-approximation in general.

PROOF. Given a metric G with n nodes and a value k (a generic instance of the
clustering problem) we construct a new instance that is (c, ε)-approximation-stable.
In particular we create a new graph G′ by adding an extra n/ε nodes that are all at
distance D from each other and from the nodes in G, where D is chosen to be larger
than cOPT on G (e.g., D could be the sum of all pairwise distances in G). We now let
k′ = k + n/ε and define the target clustering to be the optimal (k-median, k-means, or
min-sum) solution on G, together with each of the points in G′ \G in its own singleton
cluster.

We first claim that G′ satisfies (c, ε)-approximation-stability. This is because, by defi-
nition of D, any solution that does not put each of the new nodes into its own singleton
cluster will incur too high a cost to be a c-approximation. So a c-approximation can
only differ from the target on G (which has less than an ε fraction of the nodes). Fur-
thermore, a c-approximation in G′ yields a c-approximation in G because the singleton
clusters do not contribute to the overall cost in any of the k-median, k-means, or min-
sum objectives.

The following shows that unlike (1.01, ε)-approximation-stability, obtaining an O(ε)-
close clustering is NP-hard under (1, ε)-approximation-stability.

THEOREM A.3. For any contant c′, for any ε < 1/(ec′), it is NP-hard to find a clus-
tering of error at most c′ε for the k-median and k-means problem under (1, ε)-approx-
imation-stability.

PROOF. First, let us prove a (1 + 1/e)-hardness for instances of k-median where
one is allowed to place centers at any point in the metric space. The proof is very
similar to the proof from [Guha and Khuller 1999; Jain et al. 2002] which gives a
(1 + 2/e)-hardness for the case where one can place centers only at a distinguished
set of locations in the metric space. We then show how to alter this hardness result to
prove the theorem.

Consider the max-k-coverage problem with n elements and m sets: that is, given m
subsets of a universe of n elements, find k sets whose union covers as many elements
as possible. It is NP-hard to distinguish between instances of this problem where there
exist k sets that can cover all the elements, and instances where any k sets cover only
(1 − 1/e)-fraction of the elements [Feige 1998]. The hard instances have the property
that both m and k are a tiny fraction of the number of elements n. For some suitably
large constant C, we construct an instance of k-median with cn + m points, one point
for each set and c points for each element, assign distance 1 between any two points
such that one of them represents an element and the other a set containing that point,
and distance 2 to all other pairs.

Note that if there are k sets in the set system that cover all the elements (the “yes”
instances), choosing the corresponding k points as centers gives us a solution of cost
cn + 2(m − k) ≤ (1 + δ)cn for some arbitrarily small constant δ > 0. On the other
hand, given any solution to k-median with cost C, if any of these centers are on points
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corresponding to elements, we can choose a set-point at unit distance from it instead,
thus potentially increasing the cost of the solution by at most m to C + m. Hence, if
this collection of k sets covers at most (1 − 1/e) fraction of the elements (as in a “no”
instance of max-k-coverage), the cost of this solution would be at least (1 − 1/e)cn +
2/ecn+ 2(m− k) = (1 + 1/e)cn+ 2(m− k); hence C would be at least (1 + 1/e− δ)cn in
this case. This shows that for every δ, there are instances of k-median whose optimal
cost is either at most C or at least (1+1/e− δ), such that distinguishing between these
two cases is NP-hard.

Let us now add infinitesimal noise to the above instances of k-median to make a
unique optimal solution and call this the target; the uniqueness of the optimal solution
ensures that we satisfy (1, ε)-approximation-stability without changing the hardness
significantly. Now, in the “yes” case, any clustering with error c′ε will have cost at most
(1− c′ε)cn+ 2c′εcn+ 2(m− k) ≤ (1 + c′ε+ δ)cn. This is less than the cost of the optimal
solution in the “no” case (which is still at least (1 + 1/e− δ)cn) as long as c′ε ≤ 1/e− 2δ,
and would allow us to distinguish the “yes” and “no” instances. This completes the
proof for the k-median case, and the proof can be altered slightly to work for the k-
means problem as well.

A.1. Proof of the Reassignment Lemma
We now prove Lemma 2.3, which we restate here for convenience.

LEMMA 2.3. Let C = {C1, . . . , Ck} be a k-clustering in which each cluster is nonempty,
and let R = {(x1, j1), (x2, j2), . . . , (xt, jt)} be a set of t reassignments of points xi to
clusters Cji (assume that xi 6∈ Cji for all i). Then there must exist a set R′ ⊆ R of size at
least t/3 such that the clustering C′ produced by reassigning points in R′ has distance
exactly 1

n |R
′| from C.

Note: Before proving the lemma, note that we cannot necessarily just choose R′ = R
because, for instance, it could be that R moves all points in C1 to C2 and all points in
C2 to C1: in this case, performing all reassignments in R produces the exact same clus-
tering as we started with (just with different indices). Instead, we need to ensure that
each reassignment in R′ has an associated certificate ensuring that if implemented, it
will increase the resulting distance from C. Note also that if C consists of 3 singleton
clusters: C1 = {x}, C2 = {y}, C3 = {z}, and if R = {(x, 2), (y, 3), (z, 1)}, then any subset
of reassignments in R will produce a clustering that differs in at most one element
from C; thus, the factor of 3 is tight.
Notation. Given a clustering C and a point x, let C(x) denote the cluster Ci ∈ C such
that x ∈ Ci.

PROOF. The proof is based on the following lower-bounding technique. Given two
clusterings C and C′, suppose we can produce a list L of disjoint subsets of points
S1, S2, . . ., such that for each i, all points in Si are in the same cluster in one of C or C′
and they are all in different clusters in the other. Then C and C′ must have distance at
least 1

n

∑
i(|Si| − 1). In particular, any bijection σ on the indices can have agreement

between C and C′ on at most one point from each Si.
A simpler factor-8 argument: We begin for illustration with a simpler factor-8 argu-

ment. For this argument we consider two cases. First, suppose that at least half of the
reassignments in R involve points x in clusters of size ≥ 2. In this case, we simply do
the following. While there exists some (x, j) ∈ R such that |C(x)| ≥ 2, choose some
arbitrary point y ∈ C(x) and add {x, y} to L, add (x, j) to R′, and then remove (x, j)
from R as well as any reassignment of y if one exists; also remove both x and y from
the overall point set S. If cluster C(x) has been reduced to a singleton {z}, then remove
z from R and S as well. This process guarantees that all pairs added to L are disjoint,
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and we remove at most three times as many reassignments from R as we add to R′
(one for x, at most one for y, and at most one for z). Thus, since we assumed at least
half of R came from clusters of size at least 2, overall we get a factor of 6. The second
case is that at least half of the reassignments in R involve points x in clusters of size
1. In that case, randomly color each cluster red or blue: in expectation, 1/4 of these
reassignments (at least 1/8 of the total in R) go from red clusters to blue clusters. We
now simply put all of these reassignments, namely those involving points moving from
singleton red clusters to blue clusters, into R′. Because all such (x, j) for any given j
involve different source clusters, for each j such thatR′ contains at least one pair (x, j),
we pick an arbitrary y ∈ Cj and put in L the witness set Sj = {x : (x, j) ∈ R′} ∪ {y}.
All points in Sj were in different clusters in C and are in the same cluster in C′, and
the sets Sj , Sj′ for j 6= j′ are disjoint, so L is a legitimate witness set. Furthermore,∑
j(|Sj | − 1) = |R′| as desired.

The factor-3 argument: For the factor-3 argument, we begin constructing R′ and L
as in the first case above, but using only clusters of size at least 3. Specifically, while
there exists a reassignment (x, j) ∈ R such that x is in a cluster C(x) with at least
3 points: choose an arbitrary point y ∈ C(x) and add {x, y} to L, add (x, j) to R′, and
remove (x, j) from R as well as any reassignment of y if one exists. In addition, remove
x and y from the point set S. This process guarantees that all pairs added to L are
disjoint, and we remove at most twice as many reassignments from R as we add to
R′. (So, if R becomes empty, we will have achieved our desired result with |R′| = t/2).
Moreover, because we only perform this step if |C(x)| ≥ 3, this process does not produce
any empty clusters.

We now have that for all reassignments (x, j) ∈ R, x is in a singleton or doubleton
cluster. Let Rsingle be the set of reassignments (x, j) ∈ R such that x is in a singleton
cluster. Viewing these reassignments as directed edges, Rsingle forms a graph on the
clusters Ci where each node has outdegree ≤ 1. Therefore, each component of this
graph must be an arborescence with possibly one additional edge from the root. We
now proceed as follows. While Rsingle contains a source (a node of outdegree 1 and
indegree 0), choose an edge (x, j) such that (a) x is a source and (b) for all other edges
(y, j), y is either a source or part of a cycle. We then consider two cases:

(1) Node j is not a sink in Rsingle: that is, there exists an edge (z, jz) ∈ Rsingle for
z ∈ Cj . In this case, we add to R′ the edge (x, j) and all other edges (y, j) such that
y is a source, and we remove from R (and from Rsingle) the edges (z, jz), (x, j), and
all edges (y, j) (including the at most one edge (y, j) such that y is part of a cycle).
We then add to L the set {x} ∪ {z} ∪ {y : (y, j) was just added to R′} and remove
these points from S. Note that the number of edges removed from R is at most the
number of edges added to R′ plus 2, giving a factor of 3 in the worst case. Note also
that we maintain the invariant that no edges in Rsingle point to empty clusters,
since we deleted all edges into Cj , and the points x and y added to L were sources
in Rsingle.

(2) Otherwise, node j is a sink in Rsingle. In this case, we add to R′ the edge (x, j)
along with all other edges (y, j) ∈ Rsingle (removing those edges from R and
Rsingle). We choose an arbitrary point z ∈ Cj and add to L the set {x} ∪ {z} ∪ {y :
(y, j) was just added to R′}, removing those points from S. In addition, we remove
from R all (at most two) edges exiting from Cj (we are forced to remove any edge
exiting from z since z was added to L, and there might be up to one more edge if Cj
is a doubleton). Again, the number of edges removed from R is at most the number
of edges added to R′ plus 2, giving a factor of 3 in the worst case.
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At this point, if Rsingle is nonempty, its induced graph must be a collection of disjoint
cycles. For each such cycle, we choose every other edge (half the edges in an even-
length cycle, at least 1/3 of the edges in an odd cycle), and for each edge (x, j) selected,
we add (x, j) to R′, remove (x, j) and (z, jz) for z ∈ Cj from R and Rsingle, and add the
pair {x, z} to L.

Finally, Rsingle is empty and we finish off any remaining doubleton clusters using
the same procedure as in the first part of the argument. Namely, while there exists a
reassignment (x, j) ∈ R, choose an arbitrary point y ∈ C(x) and add {x, y} to L, add
(x, j) to R′, and remove (x, j) from R as well as any reassignment involving y if one
exists.

By construction, the set R′ has size at least |R|/3, and the set L ensures that each
reassignment in R′ increases the resulting distance from C as desired.

B. ANALYSIS OF EXAMPLE IN SECTION 6
In Section 6, an example is presented of

√
n clusters of

√
n points each, with distance

1 between points in the same target cluster, and distance D + 1 between points in
different target clusters. We prove here that for any ε < 1/2, this satisfies (Dε/2, ε)-
approximation-stability for both k-median and k-means objectives. Thus, if D > 4/ε,
then this is (2, ε)-approximation-stable.

Let C be a clustering of distance at least ε from the target clustering CT = C∗. Since
C∗ has both k-median and k-means cost equal to n −

√
n, we need to show that C has

k-median cost at least (Dε/2)(n−
√
n) (its k-means cost can only be larger).

We do this as follows. First, define the “non-permutation distance” from C to C∗ as
npdist(C, C∗) = 1

n

∑k
i=1 minj |Ci − C∗j |. That is, we remove the restriction that differ-

ent clusters in C cannot be mapped to the same cluster in C∗. This is non-symmetric,
but clearly satisfies the condition that npdist(C, C∗) ≤ dist(C, C∗). We observe now that
the k-median cost of C is equal to Dn · npdist(C, C∗) + (n −

√
n). In particular, the op-

timal median for each cluster Ci in C is a point in whichever cluster C∗j of C∗ has
the largest intersection with Ci. This causes each point in Ci − C∗j to incur an addi-
tional cost of D over its cost in C∗, and so the overall increase over the cost of C∗ is
Dn · npdist(C, C∗). Thus, it remains just to show that npdist(C, C∗) cannot be too much
smaller than dist(C, C∗).

We now show that npdist(C, C∗) ≥ dist(C, C∗)/2. We note that this will rely heavily
on the fact that all clusters in C∗ have the same size: if C∗ contained clusters of very
different sizes, the statement would be false. Since this inequality may be of interest
more generally (it is not specific to this example), we formalize it in Lemma B.1 below.

LEMMA B.1. For any clustering C, if all clusters of C∗ have size n/k, then we have
npdist(C, C∗) ≥ dist(C, C∗)/2.

PROOF. Let pi = |Ci|/n and p = (p1, . . . , pk). Let u = (1/k, . . . , 1/k) and de-
fine ∆(p, u) =

∑
i:pi>ui

pi − ui to be the variation distance between p and u. Then,
npdist(C, C∗) ≥ ∆(p, u) because a cluster in C of size pin > n/k contributes at least
pi − 1/k to the non-permutation distance. Let ∆i = max(1/k − pi, 0). Since variation
distance is symmetric, we have ∆(p, u) =

∑
i ∆i.

Now, fix some mapping of clusters Ci to clusters C∗j yielding the non-permutation
distance from C to C∗. Let Tj denote the set of indices i such that Ci is mapped to C∗j
and let tj = |Tj |. Let S denote the set of indices j such that tj ≥ 2 (if this were a
permutation then S would be empty). We can now lower-bound the non-permutation
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distance as

npdist(C, C∗) ≥
∑
j∈S

∑
i∈Tj

pi

− 1/k


≥

∑
j∈S

 tj − 1

k
−
∑
i∈Tj

∆i


≥

∑
j∈S

tj − 1

k

−∆(p, u).

Therefore, we have

npdist(C, C∗) + ∆(p, u) ≥
∑
j∈S

tj − 1

k
. (B.1)

We now claim we can convert this mapping into a permutation without increasing the
distance by too much. Specifically, for each j such that tj ≥ 2, keep only the i ∈ Tj
such that Ci has highest overlap with C∗j and assign the rest to (arbitrary) unmatched
target clusters. This reassignment can increase the distance computation by at most
1
k (

tj−1
tj

) ≤ 1
k (

tj−1
2 ). Therefore, we have

dist(C, C∗) ≤ npdist(C, C∗) +
∑
j∈S

tj − 1

2k
. (B.2)

Combining (B.1) and (B.2) we have dist(C, C∗) − npdist(C, C∗) ≤ 1
2 (npdist(C, C∗) +

∆(p, u)), and since ∆(p, u) ≤ npdist(C, C∗), this yields dist(C, C∗) ≤ 2npdist(C, C∗) as
desired.

Finally, as noted above, by Lemma B.1 we have that the cost of clustering C in the
construction is at least Dnε/2 as desired.
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