
Lecture 21

Interior Point Methods∗

In 1984, Karmarkar introduced a new weakly polynomial time algorithm for solving LPs
[Kar84a], [Kar84b]. His algorithm was theoretically faster than the ellipsoid method and
Karmarkar made some strong claims about its performance in practice. The algorithm was
controversial at the time of its introduction, but there have been many improvements both
in theory and practice since then. The method is now considered to be better than simplex,
especially on large LPs.

The method can in general be used to solve SDPs, cone programmming, etc., but in
this lecture we will keep it simple and only discuss LPs. In particular, we will follow the
framework of Renegar from 1988 [Ren88] which gives better theoretical performance than
Karmarkar’s original algorithm.

21.1 Setup and Algorithm

We consider the problem
max cTx
s.t. Ax ≥ b

and let L = 〈A〉 + 〈b〉 + 〈c〉. Assume A is m × n, m ≥ n and that P := {x | Ax ≥ b} is
non-empty and bounded. Assume β < Opt and consider

Pβ :=
{
x | ax ≥ b, cTx ≥ β

}
.

We define the “barrier function” for the constraint aix ≥ bi to be ln(aix− bi). In some sense,
the constranint we care about most is the one corresponding to the objective function, so
we will give that one more weight. This leads us to define

fβ(x) := m ln(cTx− β) +
m∑
i=1

ln(aix− b).

*Lecturer: Ryan O’Donnell. Scribe: Deepak Bal.

1

This function is defined for x in the interior of Pβ and we may say it is −∞ on the boundary
of Pβ. We call x valid if x ∈ int(Pβ). We have given weight m to the constraint cTx ≥ β
and can think of this as the constraint added m times. One might want to consider putting
other weights on the constraints but it turns out this is best, theoretically.

Remark 21.1. fβ is strictly concave which implies it has a unique maximizer, ωβ which we
call the (analytic) center of Pβ

One should note that ωβ and fβ are not actually functions of Pβ, but rather functions of
the representation of Pβ. Extraneous constraints will affect their values.

ωβ

Ax ≥ b

cTx ≥ β

Figure 21.1: The polytope Pβ with contour lines of fβ and analytic center ωβ.

The rough algorithm is as follows

0. Initialize x(0), β(0)

For j = 1, 2, 3, . . .

1. β(j) := β(j−1)+ a little.

2. x(j) := approximation to new center ωβ(j) of Pβ(j) “starting from” x(j−1).

We only raise β(j) “a little” each step because if it is raised too much, then ωβ(j) might move
far from ωβ(j−1) in which case, we would have to potentially do too much work in Step 2.
Now we give a few more details in the (more) precise algorithm:

0. “Usual Tricks”: Set β(0) = 2−O(L) since we have proven earlier in the course that this is
a bound on the optimum value. Make a new instance P ′ which is bounded and feasible
and with the origin as the analytic center of P ′

β(0) . Finding the optimal value of this
new instance should allow us to read off the optimal value for the original instance.
Set x(0) = ωβ(0) = 0, the center of the new polytope.

2

For j = 1, 2, 3, . . .

1. Set β(j) := β(j−1) + δ(cTx(j−1) − β(j−1)) where δ = .05√
m

2. Do one step of Newton’s method for maximizing fβ(j) starting from x(j−1) to get x(j)

(We will discuss this in more detail later).

In practice one might do multiple steps of Newton’s method to get a better approximation
of the center, but for theoretical purposes, one is enough.

21.2 Analysis

21.2.1 The Progress Theorem

Theorem 21.2. (Progress Theorem) For every iteration j of the algorithm, we have

1. x(j) is valid for Pβ(j)

2.
(
βOpt − β(j)

)
≤
(

1− .01√
m

) (
βOpt − β(j−1))

where βOpt refers to c
Tx∗, the optimal value.

Corollary 21.3. After O(
√
mL) iterations, β(j) and x(j) are “within 2−O(L)” of Opt and we

may round to get the optimum value.

The details of the rounding are omitted but it involves the continued fraction represen-
tation of a point in the ending range. See Homework 2 solutions for more details.

So the total time for this method is

O(
√
mL)× (time to do one Newton step).

“In practice”, the number of iterations is typically bounded by something like O(1) or
O(logm), so people don’t really spend a lot of time tying to improve that factor. A lot
of past and current research concerns improving that second term, the time required to do
one Newton step.

21.2.2 Newton’s Method

Since fβ is strictly concave, finding the ω which maximizes fβ is the same as finding ω such
that ∇fβ(ω). Newton’s method for maximizing a function given a starting point x is to
essentially find the best fitting quadratic at x and maximize that. For a function of a single
variable we have, by the Taylor expansion, that

f(x+ h) ≈ f(x) + hf ′(x) +
1

2
h2f ′′(x).

3

This quadratic in h is maximized at h = − f ′(x)
f ′′(x)

(the denominator is non-zero here if the

function is strictly concave). So one step of Newton’s method would move from x to x+ h.
Newton’s method often refers to root finding and we see that the maximization algorithm is
just finding the root of f ′.

Now in multiple dimensions, things become more complicated but have a similar feel.
One step of Newton’s method will move from ~x to ~x+ ~h with

~h := −(Hf(x))−1 · ∇f(x)

where Hf is the Hessian matrix of f (the ij entry of Hf is the ij mixed partial of f). So
one can see how similar in spirit this looks to the expression for h in the single variable case.

Now for f = fβ, we can just write down all these things. After some computation we get

Hf(x) = ATD−2A+
m

cTx− β cc
T

where
D := diag (a1x− b1, . . . , amx− bm)

and
∇f(x) =

a1
a1x− b1

+
a2

a2x− b2
+ . . .+

am
amx− bm

+m
c

cTx− β . (21.1)

To compute ~h we have to pay the cost of a few matrix products and inversions to O(L) bits

of precision. So basically O(n3) arithmetic operations (each taking Õ(L) time). Sparse linear
solvers help are useful in these computations. So Renegar’s result will get us to O(m3.5L)
operations, whereas Karamakar’s original result took O(m4L) operations. The current best
known performance is a result of Vaidya from 1989 which takes O(m2) amortized time per
iteration leading to a total of O(m2.5L) operations. This result uses the existence of matrix
multiplication in time O(n2.4).

21.2.3 Proofs

Say we have just finished the jth iteration. Let β = β(j), ω = ω(j), x = x(j). In the (j + 1)th

iteration we let β′ = β(j+1) = β + δ-fraction of the distance from β to cTx. We can basically
think of x as being really close to ω. After shifting β to β′, the center ω moves to some ω′

and we compute an approximation x′ to the new center. We want ω far from y such that
cTy = β that way a δ-fraction is a good chunk of the way to βOpt. That’s why we weighted
the objective constraint so much.

4

ω

Ax ≥ b

cTx ≥ β

x∗

ω′

x

x′

cTx = βOpt

cTx = β′

Figure 21.2: At each step, we approach the optimum.

Definition 21.4. For any y ∈ Rn, 1 ≤ i ≤ 2m,

Rati(y) :=
signed distance of y to ith hyperplane

signed distance of ω to ith hyperplane
=


aiy − bi
aiω − bi

: 1 ≤ i ≤ m

cTy − β
cTω − β : m+ 1 ≤ i ≤ 2m

Note that we have y is valid for Pβ if and only if Rati(y) ≥ 0 ∀i, since the denominator
is always positive. We have the following key property of Rat:

Lemma 21.5. For any y ∈ Rn,
2m
avg
i=1
{Rati(y)} = 1

Proof.

2m
avg
i=1
{Rati(y)} = 1 ⇐⇒

2m∑
i=1

Rati(y) = 2m

⇐⇒
2m∑
i=1

(Rati(y)− 1) = 0

⇐⇒
2m∑
i=1

ai(y − ω)

aiω − bi
= 0 with ai = c, bi = β for i > m

⇐⇒ ∇f(ω) · (y − ω) = 0

which is true since ω is the maximizer of f .

5

Definition 21.6. Let εi(y) = 1 − Rati(y) for i = 1, 2, . . . , 2m. Then
∑2m

i=1 εi(y) = 0 for all
y. Let

err = err(j)(x) =

√√√√ 2m∑
i=1

εi(x)2

This definition allows us to state the key technical lemma into which all the calculations
and real hard work go.

Lemma 21.7. At each iteration of the algorithm, we have the following invariant:

err(j) ≤ .02 =⇒ err(j+1) ≤ .02

Note that err(0) = 0 and that err ≤ .02 implies x is valid since we get that |εi(x)| ≤ .02
for all i which implies that Rati(x) ≥ .98 > 0. Not being too greedy in raising δ comes into
play in the proof of this lemma.

Using these lemmas we can give a proof of the Progress Theorem.

Proof. (of Theorem 21.2) We have proved that x(j) is valid for Pβ(j) by the argument above
(since Rati(x) ≥ 0 for all i). So we must prove the second property of the Progress Theorem.
Let ∆ := βOpt − β. Then we have

cTω − β ≥ ∆

2
.

To see this, let x∗ be the optimum, so that cTx∗ = βOpt. Then x∗ is in Pβ so Rati(x
∗) ≥ 0∀i,

and avgi {Rati(x∗)} = 1. Hence

Ratm+1(x
∗) = · · · = Rat2m(x∗) ≤ 2.

So
cTx∗ − β
cTω − β ≤ 2 and this is equivalent to the claim. Now err ≤ .02 implies that

√
mε2m+1(x) ≤

.02 by throwing away the first m terms and equating the last m terms. So εm+1(x) ≤ .02√
m

.
Hence

cTx− β ≥
(

1− .02√
m

)
(cTω − β) ≥

(
1− .02√

m

)
∆

2
≥ .49∆.

So to finish the proof, we note that

βOpt − β′ = βOpt −
(
β + δ

(
cTx− β

))
≤ βOpt − (β + .49δ∆)

= βOpt − β − .49
.05√
m

(βOpt − β)

≤
(

1− .01√
m

)
(βOpt − β)

6

So it remains to prove Lemma 21.7. We will sketch this below. We will make use of the
following result. As expected, an apostrophe refers to the next step. So Rat′(x), ε′ will refer
to those quantities with resect to ω′, β′.

Lemma 21.8.
2m
avg
i=1

{
Rati(x)

Rat′i(x)

}
= 1 +

1

2

(
1− εm+1

1− ε′m+1

)
δε′m+1

The proof of this lemma is about a page of calculations, but it is nothing crazy.

Proof. (Sketch of Lemma 21.7) The proof of this lemma comes in two parts.

1. err(j)(x(j)) ≤ .02 =⇒ err(j+1)(x(j)) ≤ .1

2. err(j+1)(x(j)) ≤ .1 =⇒ err(j+1)(x(j+1)) . (.1)2 ≤ .02

All that we say about (2.) is that it is basically due to the fact that Newton’s method has
quadratic convergence. Really, we don’t even need this much. We just need to show with a
little bit of work that we improve by a factor of 5.

We now show (1.) modulo some small details. Examining the left hand side of Lemma
21.8 we have

2m
avg
i=1

{
Rati(x)

Rat′i(x)

}
= avg

{
1− εi
1− ε′i

}
= avg

{
(1− εi)

(
1 + ε′i + (ε′i)

2 + . . .
)}

by the geometric series expansion. Then ignoring higher order terms (this is not too bg of
a lie) and using the facts that

∑
εi =

∑
ε′i = 0 and

∑
εiε
′
i ≤

√∑
ε2i
√∑

ε′2i ≤ .02err′ by
Cauchy-Schwartz and the inductive hypothesis, we get that

LHS ≈ avg
{

1− εi + ε′i − εiε′i − ε′2i
}

≥ 1− 1

2m

∑
εiε
′
i +

1

2m

∑
ε′2i

≥ 1 +
1

2m
(err′)

2 − .02

2m
err′.

On the other hand, for the right hand side of the lemma, we have

RHS ≤ 1 + .51δε′m+1 ≤ 1 + .51δ
err′√
m

where the first inequality follows from the fact that 1−εi
1ε′i
≤ 1

1−δ which is not too hard to

show. The second inequality is because err′ ≥
√
mε′2m+1 =

√
mε′m+1

Putting these together, we see that

1

2m
err′2 − .02

2m
err′ ≤ .51

.05√
m
· err′√

m
.

So
err′2 ≤ (.051 + .02)err′,

and we conclude that err′ ≤ .071 ≤ .1 as desired.

7

Bibliography

[Kar84a] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
pages 302–311, 1984.

[Kar84b] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s method, for
linear programming. Mathematical Programming, 40:59–93, 1988.

8

	Interior Point Methods
	Setup and Algorithm
	Analysis
	The Progress Theorem
	Newton's Method
	Proofs

