Lecture 20

$\left(\frac{5}{3} - \epsilon\right)$ -approximation Algorithm for TSPP - Part 2*

This is a continuation of the previous lecture describing the An-Kleinberg-Shmoys algorithm for the Traveling Salesman Path Problem [AKS11].

20.1 Review

We begin by reviewing notes and definitions from the previous lecture.

First, we give an LP relaxation for TSPP:

$$\min c(x) := \sum_{e \in E} c_e x_e$$
s.t. $x(\partial S) \ge 1$ for separating cuts, i.e. $|S \cap \{s, t\}| = 1$, with $|S| > 1$

$$x(\partial S) \ge 2$$
 for non-separating cuts with $|S| > 1$

$$x(\partial S) = 2$$
 for cuts with $|S| = 1$

$$x_e \ge 0 \quad \forall e \in E$$

This polytope is a subset of the spanning tree polytope. As a result, optimal $x^* = \sum_{i \leq \binom{n}{2}} \lambda_i \mathbf{1}_{A_i}$, where A_i are the actual spanning trees with s, t as leaves. Based on this, the [AKS11] algorithm goes as follows:

- 1. Solve the TSPP LP relaxation to get a solution x^* .
- 2. Write x^* as a convex combination of spanning trees A_i that have s and t as leaves to get $x^* = \sum_{i \leq \binom{n}{2}} \lambda_i \mathbf{1}_{A_i}$.
- 3. Pick a spanning tree A at random from this distribution (choose A_i with probability λ_i).

^{*}Lecturer: Ryan O'Donnell. Scribe: Alex Beutel.

- 4. Let $T = T_A$ be the set of vertices in A whose degree parity needs to be fixed. As described above, |T| is even.
- 5. Take M to be the minimum cost matching on T.
- 6. Then $A \cup M$ has an Eulerian path from s to t. Shortcut to avoid taking the same edge twice and return the resulting path.

We will make heavy use of two other properties in this lecture:

- 1. Fractional T-join dominator: y such that $y_e \ge 0$ and $y(\partial S) \ge 1$ if S is an odd-T-cut $(|S \cap T| \text{ is odd})$.
- 2. Property \circledast : If S is a separating odd-T-cut, then $\mathbf{1}_A(\partial S) \geq 2$.

20.2 A $1.658\overline{3}$ -approximation

Goal We would like to find a mapping of $(x^*, A) \to y$, some fractional T_A -join dominator such that the expected cost

$$\mathbf{E}_{A}[c(y)] \le 0.658\bar{3}c(x^*).$$

We note that $\mathbf{E}_A[c(M)] \leq \mathbf{E}_A[c(y)]$ and $\mathbf{E}[c(A)] = c(x^*)$. Therefore, $\mathbf{E}[\cos t] \leq 1.658\overline{3}c(x^*)$.

Idea 1 We first try taking $y = \frac{1}{3}x^* + \frac{1}{3}\mathbf{1}_A$. We see that the expected cost

$$E[c(y)] = \frac{1}{3}c(x^*) + \frac{1}{3}\mathbf{E}[c(\mathbf{1}_A)] = \frac{2}{3}c(x^*).$$

This therefore gives a $\frac{5}{3}$ -approximation. However, we must prove that this is valid (that y is a fractional T-join dominator):

- C1. S is non-separating: We know that $x^*(\partial S) \geq 2$ and $\mathbf{1}_A(\partial S) \geq 1$. Therefore, $y(\partial S) = \frac{1}{3}x^*(\partial S) + \frac{1}{3}\mathbf{1}_A(\partial S) \geq \frac{2}{3} + \frac{1}{3} = 1$.
- C2. S is separating: We know that $x^*(\partial S) \geq 1$ and $\mathbf{1}_A(\partial S) \geq 2$, based on \circledast . Therefore, $y(\partial S) \geq \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 2 = 1$.

We see that we get the $\frac{5}{3}$ -approximation. It is going to be hard to say anything smarter about non-separating cuts, but we can improve upon the analysis of the separating ones.

Idea 2 We now consider $y = 0.35 \cdot x^* + 0.3 \cdot \mathbf{1}_A + \dots$, where we expect we will have to add another term at the end. For a non-separating S we see that $y(\partial S) \geq .35 \cdot 2 + .3 \cdot 1 + \dots \geq 1$. However, for a separating S we find that we only know that $y(\partial S) \geq .35 \cdot 1 + .3 \cdot 2 + \dots = .95 + \dots$ Thus, we describe $y = .35 \cdot x^* + .3 \cdot \mathbf{1}_A + .05 \cdot f$ with the goal that $\mathbf{E}_A[c(f)] \leq \frac{1}{6}c(x^*)$ so that $\mathbf{E}[c(y)] \leq .65c(x^*) + .05 \cdot \frac{1}{6}c(x^*) = .658\overline{3}c(x^*)$. Therefore in the case of a separating S, we find that $y(\partial S) \geq .95 + .05 \cdot f(\partial S)$.

We now focus on different f terms that will provide an acceptable answer when S is a separating cut (since all positive f will satisfy the case for a non-separating S).

We know that if $x^*(\partial S)$ is sufficiently bigger than 1 we are covered. For example, if $x^*(\partial S) \geq \frac{8}{7}$ then $y(\partial S) \geq .35 \cdot \frac{8}{7} + .6 = 1$ and the f term is unnecessary.

Definition 20.1. A separating cut is τ -narrow if $x^*(\partial S) < 1 + \tau$. While, we define this in the general sense, τ previously (and in all future cases) is in fact equal to $\frac{1}{7}$.

Interestingly, we are fine if $x^*(\partial S) = 1$. For every choice of A, we know that S will not be an odd- T_A -cut. Thus, in checking the fractional T-join dominator conditions for y, we do not need to worry about S. $x^*(\partial S) = \mathbf{E}_A[\mathbf{1}_A(\partial S)]$ and $\mathbf{1}_A(\partial S) \geq 1$ always. Therefore we know that $\mathbf{E}_A[\mathbf{1}_A(\partial S) = 1$ and thus $\mathbf{1}_A(\partial S) = 1$ always. Therefore, S is not an odd- T_A -cut by \circledast . Even if $x^*(\partial S) = 1.01$, we know that $\mathbf{Pr}[\mathbf{1}_A(\partial S) \geq 2]$ must be very small.

Proposition 20.2. If S is τ -narrow, then $\mathbf{Pr}_A[S \text{ is an odd-}T_A\text{-cut}] < \tau$

Proof. We know that $\mathbf{E}[\mathbf{1}_A(\partial S)] = x^*(\partial S) < 1 + \tau$. Therefore, $\mathbf{Pr}[\mathbf{1}_A(\partial S) \geq 2] < \tau$ and $\mathbf{Pr}[S \text{ is an odd-}T_A\text{-cut}] \leq \mathbf{Pr}[\mathbf{1}_A(\partial S) \geq 2]$ by \circledast .

Theorem 20.3. Given x^* , the τ -narrow separating cuts $S_1, \ldots S_k$ have ∂S_i "almost" disjoint.

For proving this we will begin by pretending that they are in fact truly disjoint.

Definition 20.4. $f = \sum_{i \leq k} \mathbf{1}[S_i \text{ is an odd-} T_A\text{-cut}] \cdot x^* \big|_{\partial S_i}$, where $x^* \big|_{\partial S_i}$ puts 0 on edges not on the boundary.

If S is a separating odd- T_A -cut, then $y(\partial S) \ge .35 \cdot x^*(\partial S) + .3 \cdot 2 + .05 \cdot x^*(\partial S) \ge 1$. Therefore, this definition of f produces a fractional T-join dominator.

As stated earlier, our goal is for $\mathbf{E}_A[c(f)] \leq \frac{1}{6}c(x^*)$. We see here that $\mathbf{E}_A[c(f)] = \sum_i \mathbf{Pr}_A[S_i \text{ is an odd-}T_A\text{-cut}] \cdot c(x^*|_{\partial S_i}) \leq \tau \sum_i c(x^*|_{\partial S_i}) = \tau c(x^*)$. There is no double-counting in the summation because of the assumed "disjointness" of the ∂S_i 's. Therefore, this gives us $\mathbf{E}_A[c(f)] \leq \frac{1}{7}c(x^*)$. Because the ∂S_i 's are only almost disjoint, this is relaxed from $\frac{1}{7}$ to $\frac{1}{6}$.

Claim 20.5. If S and S' are separating τ -narrow cuts, then they don't cross.

Figure 20.1: Two crossing separating cuts, S and S', with edges out of $S\Delta S'$.

Proof. Suppose S and S' cross. $S\Delta S'$ has two non-empty pieces, where each piece is a non-separating cut (since s is of course in the intersection of the two). Therefore, by the LP definition, there must be at least 2 edge weights out of each piece. Therefore, $x^*(\partial S) + x^*(\partial S') \geq 4$. However, both $x^*(\partial S) \leq 1 + \tau$ and $x^*(\partial S') \leq 1 + \tau$. This is a contradiction. Definitely include the picture, but this proof doesn't make sense to me.

Because the separating τ -narrow cuts do not cross, we can consider the cuts as being sequential subsets either around s or t, as shown in Figure 20.2. We can label vertices based on the largest cut they fall within. Therefore, the set C_i is the set of vertices as shown in the picture above, the set L_i is the set C_{i-1} and the set $R_i = C_{i+1}$.

Figure 20.2: Concurrent τ -narrow cuts with edges between different regions, each labeled by C_i as described in the text.

Idea Instead of putting $x^*|_{\partial S_i}$ into f, just put $x^*|_{E(C_i,R_i)}$ because we know that $E(C_i,R_i)$ are disjoint for all i.

Lemma 20.6. For all i, we know that $x^*(E(C_i, R_i)) \ge 1 - \tau = \frac{6}{7}$. Therefore, we can put $\frac{7}{6} \cdot x^*|_{E(C_i, R_i)}$ into f.

This makes y valid and the expected cost becomes $\frac{7}{6} \cdot \frac{1}{7} \cdot c(x^*) = \frac{1}{6}c(x^*)$.

Proof. Because the cuts are τ -narrow we know that $x^*(L,C) + x^*(L,R) = x^*(L,C \cup R) \le 1 + \tau$, and from the LP since S = C, we know that $x^*(L,C) + x^*(C,R) = x^*(C,L \cup R) \ge 2$. If we subtract the first statement from the second we see that $x^*(C,R) - x^*(L,R) \ge 1 - \tau$ and thus $x^*(C,R) \ge 1 - \tau$.

20.3 The Hirsch Conjecture

We now switch topics entirely to other new, interesting work. We begin with some basic definitions.

Definition 20.7. P is a convex polytope in \mathbb{R}^d with n facets (and thus (d-1)-dimensional faces).

Definition 20.8. G(P) is the graph of the vertices of P.

Definition 20.9. $\delta(P)$ is the diameter of G(P) (the maximum distance between any two points).

Definition 20.10. $\Delta(d, n)$ is the largest possible $\delta(P)$ for a P in \mathbb{R}^d with n facets. This bounds the running time of the simplex algorithm using "clairvoyant" pivoting.

1957 Hirsch Conjecture $\Delta(d, n) \leq n - d$

The original conjecture allowed an unbounded P and was disproved in 1967 by Klee and Walkup. We will focus on the case of a bounded P. This has been verified in many cases. We look for example at the simplex case of a convex hull of d+1 points in general positions. For example, for a basic tetrahedron we find that n=d+1 and thus n-d=1. Looking at Figure 20.3(a) we see that $\delta(P)=1$. Similarly for a cube we find that n=2d, n-d=d and $\delta(P)=d$.

Figure 20.3: Basic tetrahedron (a) and cube (b) as discussed in the text.

Much progress has been made since:

[KW67] stated that the Hirsch conjecture was equivalent to the statement that $\forall u, v$ it is possible to go from u to v such that each step enters a new facet.

[Larman 1970]: $\Delta(d,n) \leq \frac{1}{8}2^d \cdot n$ [Barnette 1974]: $\Delta(d,n) \leq \frac{1}{12}2^d \cdot n$ [Kalai-Kleitman 1992]: $\Delta(d,n) \leq n^{\log d+1}$

Finally, in 2010 [Santos] proved the conjecture false showing that $\Delta(43, 86) \ge 44$. [MSW11] found a completely explicit case for which d = 20, n = 40, 36442 vertices, and $\delta(P) = 21$.

Hähnle Conjecture $\Delta(d, n) \leq d(n - d) + 1$.

Additionally, the poly-Hirsch conjecture is still open, stating $\Delta(d, n) \leq n^{O(1)}$.

20.4 A Rough Explanation of Santos's Theorem (2010)

We will roughly outline the method used by Santos to disprove the Hirsch Conjecture.

Definition 20.11. Polytope P with $n \geq 2d$ is a *spindle* if it has two vertices u, v which don't share a facet but every facet touches u or v.

A spindle can be thought of as the intersection of two "cones" with apices u, v such that the $u\bar{v}$ is inside the intersection.

Figure 20.4: A spindle as described previously.

Definition 20.12. Length = dist(u, v).

Figure 20.5: An example of the pivot transformation from hexagon (a) to 3-dimensional polytope (b).

Theorem 20.13. If there exists a spindle P with n > 2d and length l, then there exists a spindle P' in dimension d + 1 with n + 1 facets and length $\geq l + 1$.

The process of creating P' from P is known as the "Santos Wedge Operation." We can of course see the effect of doing this wedge operation repeatedly: $(d, n, l) \to (d+1, n+1, l+1) \to (d+2, n+2, l+2) \to \ldots$ If we do this n-2d times then we get (n-d, 2n-2d, l+n-2d). If l>d then diam $\geq l+n-2d>n-d$. Therefore, to disprove the Hirsch conjecture, we can construct a d-dimensional spindle of length >d.

Proof. The [KW] wedge picks one pair of connected vertices to keep constant and doubles all vertices. Such that for vertex u and new vertex u', there is an edge between u and u' as well as added edges between u' and the copied versions of the neighbors of u. This transformation is shown in Figure 20.5.

If n > 2d then u or v is degenerate (we will assume u). Take any facet that contains u and wedge on it. This is almost the new spindle. We must add a small amount of perturbation.

Theorem 20.14. There exists a spindle in 5 dimensions with length 6.

Santos gives two proofs. First he explicitly gives an example that can be verified on the computer. Second, there is a nice conceptual analysis of combinatorial maps on the 3-sphere.

It can be shown that there does not exist a 3-dimensional spindle with length 4. Additionally, [Thomas] showed that there does not exist a 4-dimensional spindle with length 5. As such, a 5-dimensional spindle is the smallest one for which we can have length > dimensions.

This results in a disproof of the Hirsch Conjecture but an explicit polytope is not given. The example for which $\Delta(20,4) \geq 21$ is explicit.

Bibliography

[AKS11] Hyung-Chan An, Robert Kleinberg, and David B. Shmoys. Improving christofides' algorithm for the s-t path tsp. CoRR, abs/1110.4604, 2011. 20, 20.1