Lecture 20

% — € |-approximation Algorithm for

TSPP - Part 27

This is a continuation of the previous lecture describing the An-Kleinberg-Shmoys algorithm
for the Traveling Salesman Path Problem [AKS11].

20.1 Review

We begin by reviewing notes and definitions from the previous lecture.
First, we give an LP relaxation for TSPP:

min ¢(z) := Zce:ce

eCE
s.t. £(0S) > 1 for separating cuts, i.e. |[SN{s,t}| =1, with |[S| > 1
x(0S) > 2 for non-separating cuts with |S| > 1
z(0S) =2 for cuts with |S| =1
r. >0 Veec FE

>
>

This polytope is a subset of the spanning tree polytope. As a result, optimal z* =
> <(2) Aily,, where A; are the actual spanning trees with s,¢ as leaves. Based on this, the
—\2

[AKS11] algorithm goes as follows:
1. Solve the TSPP LP relaxation to get a solution x*.

2. Write z* as a convex combination of spanning trees A; that have s and t as leaves to

get ©* = Zzg( )/\ilAi.

2
3. Pick a spanning tree A at random from this distribution (choose A; with probability
Ai)-
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4. Let T' = T4 be the set of vertices in A whose degree parity needs to be fixed. As
described above, |T'| is even.

5. Take M to be the minimum cost matching on 7.

6. Then AU M has an Eulerian path from s to t. Shortcut to avoid taking the same edge
twice and return the resulting path.

We will make heavy use of two other properties in this lecture:

1. Fractional T-join dominator: y such that y. > 0 and y(95) > 1 if S is an odd-T-cut
(1SN T is odd).

2. Property ®: If S is a separating odd-T-cut, then 14(0S) > 2.

20.2 A 1.6583-approximation

Goal We would like to find a mapping of (z*, A) — y, some fractional T4-join dominator
such that the expected cost

]E‘)[c(y)] < 0.6583¢(z*).

We note that E4lc(M)] < Elc(y)] and E[c(A)] = ¢(z*). Therefore, E[cost] < 1.6583¢(z*).

Idea 1 We first try taking y = %x* + élA. We see that the expected cost

1, .. 1 2 .,
Ele(y)] = ze(e”) + 5 Ble(1a)] = (7).
3 3 3
This therefore gives a g—approximation. However, we must prove that this is valid (that y is
a fractional T-join dominator):

C1. S is non-separating: We know that z*(0S) > 2 and 14(9S) > 1. Therefore, y(9S) =
127(08) + 314(05) > 2+ 1 = 1.

C2. S is separating: We know that 2*(0S) > 1 and 14(0S) > 2, based on ®. Therefore,
y(0S)>3-1+3-2=1.

We see that we get the g—approximation. It is going to be hard to say anything smarter
about non-separating cuts, but we can improve upon the analysis of the separating ones.



Idea 2 We now consider y = 0.35-2*4+0.3-14 + ..., where we expect we will have to add
another term at the end. For a non-separating S we see that y(9S) > .35-2+.3-1+... > 1.
However, for a separating S we find that we only know that y(0S) > .35-14+.3-24 ... =
95+.... Thus, we describe y = .35- 2%+ .31, +.05- f with the goal that E[c(f)] < sc(z*)
so that E[c(y)] < .65¢(z*) + .05 - gc(x*) = .6583¢(x*). Therefore in the case of a separating
S, we find that y(95) > .95+ .05 f(959).

We now focus on different f terms that will provide an acceptable answer when S is a
separating cut (since all positive f will satisfy the case for a non-separating 5).

We know that if x*(05) is sufficiently bigger than 1 we are covered. For example, if
2*(0S) > & then y(9S) > .35- £ 4+ .6 = 1 and the f term is unnecessary.

Definition 20.1. A separating cut is 7-narrow if 2*(0S) < 1+ 7. While, we define this in
the general sense, 7 previously (and in all future cases) is in fact equal to %

Interestingly, we are fine if 2*(0S) = 1. For every choice of A, we know that S will not
be an odd-T'4-cut. Thus, in checking the fractional T-join dominator conditions for y, we do
not need to worry about S. z*(9S5) = E4[14(95)] and 14(9S) > 1 always. Therefore we
know that E4[14(0S) = 1 and thus 14(0S) = 1 always. Therefore, S is not an odd-T}s-cut
by ®. Even if 2*(0S) = 1.01, we know that Pr[14(05) > 2] must be very small.

Proposition 20.2. If S is T-narrow, then Pr4[S is an odd-Tx-cut] < T

Proof. We know that E[14(05)] = 2*(0S) < 1+ 7. Therefore, Pr[1,4(0S) > 2] < 7 and
Pr[S is an odd-T4-cut] < Pr[14(9S) > 2] by ®. O

Theorem 20.3. Given z*, the T-narrow separating cuts Sy, ... Sy have 0S; “almost” disjoint.

For proving this we will begin by pretending that they are in fact truly disjoint.

Definition 20.4. f =}, 1[S; is an odd-T4-cut] 'x*las-’ where z*
on the boundary.

os. Puts 0 on edges not

If S is a separating odd-T4-cut, then y(9S) > .35 - 2*(9S) + .3 -2+ .05 z*(9S) > 1.
Therefore, this definition of f produces a fractional T-join dominator.

As stated earlier, our goal is for Ealc(f)] < ge(z*). We see here that Ealc(f)] =
> PralSiis an odd-Ty-cut] - c(z*|,y) < 735 c(2*],,) = 7e(z”). There is no double-
counting in the summation because of the assumed “disjointness” of the 95;’s. Therefore,
this gives us Ealc(f)] < Le(a*). Because the 9S;’s are only almost disjoint, this is relaxed

1 1
from 7 to 6

Claim 20.5. If S and S’ are separating T-narrow cuts, then they don’t cross.



Figure 20.1: Two crossing separating cuts, S and S’, with edges out of SAS’.

Proof. Suppose S and S’ cross. SAS’ has two non-empty pieces, where each piece is a
non-separating cut (since s is of course in the intersection of the two). Therefore, by the
LP definition, there must be at least 2 edge weights out of each piece. Therefore, *(95) +
x*(0S") > 4. However, both 2*(0S) < 1+ 7 and 2*(0S’) < 1 + 7. This is a contradiction.
Definitely include the picture, but this proof doesn’t make sense to me. O]

Because the separating 7-narrow cuts do not cross, we can consider the cuts as being
sequential subsets either around s or ¢, as shown in Figure 20.2. We can label vertices based
on the largest cut they fall within. Therefore, the set C; is the set of vertices as shown in
the picture above, the set L; is the set C;_; and the set R; = Cj,1.

Figure 20.2: Concurrent 7-narrow cuts with edges between different regions, each labeled by
C; as described in the text.

Idea Instead of putting :13*|6S_ into f, just put x*|E( ) because we know that F(C;, R;)

Ci,R;
are disjoint for all 7.

Lemma 20.6. For all i, we know that z*(E(C;,R;)) > 1 —1 = g. Therefore, we can put
%-x* E(CoR) nto f.



This makes y valid and the expected cost becomes £ - 1 - c(z*) = se(z*).

Proof. Because the cuts are T-narrow we know that z*(L,C) + 2*(L, R) = 2*(L,C U R) <
1+ 7, and from the LP since S = C, we know that *(L,C) 4+ 2*(C, R) = *(C, LUR) > 2.
If we subtract the first statement from the second we see that z*(C,R) —2*(L,R) > 1 — 71
and thus z*(C,R) > 1 — 7. O

20.3 The Hirsch Conjecture

We now switch topics entirely to other new, interesting work. We begin with some basic
definitions.

Definition 20.7. P is a convex polytope in R? with n facets (and thus (d — 1)-dimensional
faces).

Definition 20.8. G(P) is the graph of the vertices of P.

Definition 20.9. 6(P) is the diameter of G(P) (the maximum distance between any two
points).

Definition 20.10. A(d,n) is the largest possible §(P) for a P in R? with n facets. This
bounds the running time of the simplex algorithm using “clairvoyant” pivoting.

1957 Hirsch Conjecture A(d,n) <n—d

The original conjecture allowed an unbounded P and was disproved in 1967 by Klee and
Walkup. We will focus on the case of a bounded P. This has been verified in many cases.
We look for example at the simplex case of a convex hull of d+ 1 points in general positions.
For example, for a basic tetrahedron we find that n = d + 1 and thus n — d = 1. Looking
at Figure 20.3(a) we see that §(P) = 1. Similarly for a cube we find that n =2d, n —d =d
and 6(P) = d.

(a) (b)
Figure 20.3: Basic tetrahedron (a) and cube (b) as discussed in the text.

Much progress has been made since:



[KW67] stated that the Hirsch conjecture was equivalent to the statement that Vu, v it
is possible to go from u to v such that each step enters a new facet.

[Larman 1970]: A(d,n) < £2%-n

[Barnette 1974]: A(d,n) < 52¢-n

[Kalai-Kleitman 1992]: A(d, n) < nlosd+l

Finally, in 2010 [Santos| proved the conjecture false showing that A(43,86) > 44. [MSW11]
found a completely explicit case for which d = 20, n = 40, 36442 vertices, and 6(P) = 21.

Hihnle Conjecture A(d,n) <d(n—d)+ 1.
Additionally, the poly-Hirsch conjecture is still open, stating A(d,n) < n®W,

20.4 A Rough Explanation of Santos’s Theorem (2010)

We will roughly outline the method used by Santos to disprove the Hirsch Conjecture.

Definition 20.11. Polytope P with n > 2d is a spindle if it has two vertices u,v which
don’t share a facet but every facet touches u or v.

A spindle can be thought of as the intersection of two “cones” with apices u, v such that
the uv is inside the intersection.

v

Figure 20.4: A spindle as described previously.

Definition 20.12. Length = dist(u,v).



(a) (b)

Figure 20.5: An example of the pivot transformation from hexagon (a) to 3-dimensional
polytope (b).

Theorem 20.13. If there exists a spindle P with n > 2d and length [, then there exists a
spindle P" in dimension d + 1 with n + 1 facets and length > 1+ 1.

The process of creating P’ from P is known as the “Santos Wedge Operation.” We can of
course see the effect of doing this wedge operation repeatedly: (d,n,l) — (d+1,n+1,l+1) —
(d+2,mn+2,1+2) — .... If we do this n — 2d times then we get (n —d,2n —2d, [+ n — 2d).
If I > d then diam > [ +n — 2d > n — d. Therefore, to disprove the Hirsch conjecture, we
can construct a d-dimensional spindle of length > d.

Proof. The [KW] wedge picks one pair of connected vertices to keep constant and doubles all
vertices. Such that for vertex u and new vertex v, there is an edge between v and v’ as well
as added edges between v’ and the copied versions of the neighbors of u. This transformation
is shown in Figure 20.5.

If n > 2d then u or v is degenerate (we will assume u). Take any facet that contains
u and wedge on it. This is almost the new spindle. We must add a small amount of
perturbation. O

Theorem 20.14. There exists a spindle in 5 dimensions with length 6.

Santos gives two proofs. First he explicitly gives an example that can be verified on the
computer. Second, there is a nice conceptual analysis of combinatorial maps on the 3-sphere.

It can be shown that there does not exist a 3-dimensional spindle with length 4. Ad-
ditionally, [Thomas| showed that there does not exist a 4-dimensional spindle with length
5. As such, a 5-dimensional spindle is the smallest one for which we can have length >
dimensions.

This results in a disproof of the Hirsch Conjecture but an explicit polytope is not given.
The example for which A(20,4) > 21 is explicit.
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