
Lecture 12

Semidefinite Duality∗

In the past couple of lectures we have discussed semidefinite programs and some of their
applications in solving computer science problems. In this lecture we introduce the concept
of semidefinite duality and look at the relationship between a semidefinite program and its
dual.

12.1 Semidefinite Matrices

Recall from Lecture 10 that a symmetric matrix A of size n×n is positive semidefinite (psd)
if it meets any one of the following two criteria (or any of a host of others): the third criterion
below is yet another useful way to characterize psd matrices.

1. x>Ax ≥ 0 for all x ∈ Rn.

2. All eigenvalues of A are non-negative.

3. A = PDP> where D is the diagonal matrix diag(λ1, λ2, . . . λn) where the λi are the
eigenvalues of A and P ’s columns are the eigenvectors of A. In D we note that λ1 ≥
λ2 ≥ . . . ≥ λn.

We define the function diag(x1, x2, . . . xn) below.

diag(x1, x2, . . . xn) =


x1

x2
. . .

xn


We note from this property that A1/2 = PD1/2P> where D1/2 =diag(

√
λ1,
√
λ2, . . .).

From this, due to the orthonormality of P , it is clear that A = A1/2A1/2.

We would like to include additional notation to simplify future computations. Recall
that A � 0 denotes that A is positive semidefinite; let us define A � B to mean B −A � 0.

*Lecturer: Anupam Gupta. Scribe: Alex Beutel.

1



LECTURE 12. SEMIDEFINITE DUALITY 2

Definition 12.1. Given symmetric matrices A,B we define A•B = Tr(A>B) =
∑

ij AijBij.

We can think of A and B as vector of length n2, then A•B is just the usual inner product
between vectors. Note that if x ∈ Rn, then (xx>) is an n× n matrix, where (xx>)ij = xixj.

Fact 12.2. x>Ax =
∑

ij xixjAij =
∑

ij(xx
>)ijAij = (xx>) • A.

Based on these underlying principles of linear algebra and psd matrices, we can begin to
derive some interesting facts that will be useful later in the lecture. The proofs were not all
discussed in class, but are given here for completeness.

Fact 12.3. For any two n× n matrices A,B, Tr(AB) = Tr(BA).

Proof. Tr(AB) =
∑

i(AB)ii =
∑

i

∑
j AijBji =

∑
j

∑
iBjiAij = Tr(BA).

Lemma 12.4. For a symmetric n × n matrix A, A is psd if and only if A • B ≥ 0 for all
psd B.

Proof. One direction is easy: if A is not psd, then there exists x ∈ Rn for which A• (xx>) =
x>Ax < 0. But xx> is psd, which shows that A •B < 0 for some psd B.

In the other direction, let A,B be psd. We claim that C, defined by Cij = AijBij, is also
psd. (This matrix C is called the Frobenius inner product Schur-Hadamard product of A
and B.) Then ∑

ij

AijBij =
∑
ij

Cij = 1>C1 ≥ 0

by the definition of psd-ness of C. To see the claim: since A � 0, there exist random variables
{ai}ni=1 such that Aij = E[aiaj]. Similarly, let Bij = E[bibj] for r.v.s {bi}. Moreover, we can
take the a’s to be independent of the b’s. So if we define the random variables ci = aibi, then

Cij = E[aiaj]E[bibj] = E[aiajbibj] = E[cicj],

and we are done. (Note we used independence of the a’s and b’s to make the product of
expectations the expectation of the product.)

This clean random variable-based proof is from this blog post. One can also show
the following claim. The linear-algebraic proof also gives an alternate proof of the above
Lemma 12.4.

Lemma 12.5. For A � 0 (i.e., it is positive definite), A •B > 0 for all psd B, B 6= 0.

Proof. Let’s write A as PDP> where P is orthonormal, and D is the diagonal matrix
containing A’s eigenvalues (which are all positive, because A � 0.

Let B̂ = P>BP , and hence B = PB̂P>. Note that B̂ is psd: indeed, x>B̂x =
(Px)>B(Px) ≥ 0. So all of B̂’s diagonal entries are non-negative. Moreover, since B 6= 0,

not all of B̂’s diagonal entries can be zero (else, by B̂’s psd-ness, it would be zero). Finally,

Tr(AB) = Tr((PDP>)(PB̂P>)) = Tr(PDB̂P>) = Tr(DB̂P>P ) = Tr(DB̂) =
∑
i

DiiB̂ii.

Since Dii > 0 and B̂ii ≥ 0 for all i, and B̂ii > 0 for some i, this sum is strictly positive.

http://blog.djalil.chafai.net/2011/08/23/two-basic-probabilistic-proofs/
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Lemma 12.6. For psd matrices A,B, A •B = 0 if and only if AB = 0.

Proof. Clearly if AB = 0 then A •B = tr(A>B) = tr(AB) = 0. For the other direction, we
use the ideas (and notation) from Lemma 12.4. Again take the Frobenius product C defined
by Cij = AijBij. Then C is also psd, and hence Cij = E[cicj] for random variables {ci}ni=1.
Then

A •B =
∑
ij

Cij =
∑
ij

E[cicj] = E[
∑
ij

cicj] = E[(
∑
i

ci)
2].

If this quantity is zero, then the random variable
∑

i ci =
∑

i aibi must be zero with proba-
bility 1. Now

(AB)ij =
∑
k

E[aiak]E[bkbj] =
∑
k

E[aibj(akbk)] = E[aibj(
∑
k

ck)] = 0,

so AB is identically zero.

12.2 Semidefinite Programs and their Duals

Given this understanding of psd matrices, we can now look at semidefinite programs (SDPs),
and define their duals. Let us describe two common forms of writing SDPs. Consider
symmetric matrices A1, A2, . . . Am, C, and reals b1, b2, . . . bm. The first form is the following
one.

minC •X (12.1)

s.t. Ai ·X = bi i = 1 . . .m

X � 0

Another common form for writing SDPs is the following.

max
m∑
i=1

biyi = b>y (12.2)

s.t.
m∑
i=1

Aiyi � C

This of course means that C −
∑
Aiyi � 0. If we set S = C −

∑
Aiyi and thus S � 0 then

it is clear that this constraint can be rewritten as
∑
yiAi + S = C for S � 0.

max b>y (12.3)

s.t.
m∑
i=1

Aiyi + S = C

S � 0

Given an SDP in the form (12.1), we can convert it into an SDP in the form (12.3), and
vice versa—this requires about a page of basic linear algebra.
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12.2.1 Examples of SDPs

The Max-Cut Problem

An example, which we’ve already seen, is the semidefinite program for the maxcut problem.
Given a graph G = (V,E), with edge weights wij,

1

2
max

∑
(i,j)∈E

wij(1− 〈vi, vj〉)

s.t. 〈vi, vi〉 = 1 ∀i ∈ V

This is equivalent to

1

2
max

∑
(i,j)∈E

wij(1−Xij)

s.t. Xii = 1 ∀i ∈ V
X � 0

where we used the fact that X � 0 iff there are vectors vi such that Xij = 〈vi, vj〉. For i, j
such that {i, j} 6∈ E, define wij = 0, and for {i, j} ∈ E define wji = wij; hence the objective
function can now be written as

1

4
max

∑
i,j∈V

wij(1−Xij).

(The extra factor of 1/2 is because we count each edge {u, v} twice now.) We can write this
even more compactly, once we introduce the idea of the Laplacian matrix of the weighted
graph.

Lij = L(w)ij =

{∑
k wik if i = j,

−wij if i 6= j.

Again, the objective function of the above SDP (ignoring the factor of 1
4

for now) is∑
i,j

wij(1−Xij) =
∑
i,j

wij −
∑
i 6=j

wijXij

=
∑
i

(∑
j

wij

)
+
∑
i 6=j

LijXij

=
∑
i

LiiXii +
∑
i 6=j

Lij Xij

= L •X

Finally rewriting Xii = X • (eie
>
i ), the SDP is

max
1

4
L •X (12.4)

X • (eie
T
i ) = 1 ∀i
X � 0
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Note that this SDP is in the form (12.1).

Maximum Eigenvalue of Symmetric Matrices

Another simple example is using an SDP to find the maximum eigenvalue for a symmetric
matrix A. Suppose A has eigenvalues λ1 ≥ λ2 . . . ≥ λn. Then the matrix tI − A has
eigenvalues t−λ1, t−λ2, . . . , t−λn. Note that tI−A is psd exactly when all these eigenvalues
are non-negative, and this happens for values t ≥ λ1. This immediately gives us that

λ1 = min{t | s.t. tI − A � 0} (12.5)

We will use λ1(A) = λmax(A) to denote the maximum eigenvalue of the matrix A. Note that
this SDP uses the form (12.3) given above.

Note: John pointed out that one could also write the maximum eigenvalue computation as
the following SDP:

maxA •X (12.6)

s.t. X • I = 1

X � 0

Indeed, we will soon show that (12.6) is precisely the SDP dual of (12.5).

12.2.2 Weak Duality

Given the two SDP forms above, namely (12.1) and (12.3), let’s first note that one can move
purely syntactically from one to the other. Next, one can show that these form a primal-
dual pair. Let us consider the minimization problem in (12.1) to be the primal, and the
maximization problem (12.3) to be the dual form.

Theorem 12.7 (Weak Duality). If X is feasible for the primal SDP and (y, S) are feasible
for the dual SDP, then C •X ≥ b>y.

Proof. Suppose (y, S) and X are feasible, then:

C •X = (
∑

yiAi + S) •X (12.7)

=
∑

yi(Ai •X) + (S •X) (12.8)

=
∑

yibi + (S •X) (12.9)

Since S and X are psd, Lemma 12.4 implies S •X ≥ 0. Therefore, C •X ≥ b>y.

Note that the transformation between the primal SDP form and the dual form was
syntactic, much like in the case of LPs. And we have weak duality, like LPs. However,
in Section 12.3 we will see that strong duality does not always hold (there may be a gap
between the primal and dual values), but will also give some natural conditions under which
strong SDP duality does hold.
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12.2.3 General Cone Programs

Before we move on, let us actually place semidefinite duality (and LP duality) in a slightly
broader context, that of duality in general cone programming. Suppose we consider a convex
cone K ∈ Rn (i.e., it is convex, and for x ∈ K and α ≥ 0, αx ∈ K). We can now define the
dual cone K∗ = {y | x>y ≥ 0 ∀x ∈ K}. E.g., here is an example of a cone in R2, and its
dual cone.

Figure 12.1: The cone K (in dark grey) and its dual cone K∗ (shaded).

Moreover, here are some examples of K and the corresponding K∗.

K = Rn K∗ = {0}
K = Rn

≥0 K∗ = Rn
≥0

K = PSDn K∗ = PSDn

Let us write two optimization problems over cones, the primal and the dual. Given
vectors a1, a2, . . . , am, c ∈ Rn and scalars b1, b2, . . . , bm ∈ R, the primal cone program (P’) is

min c>x

s.t. a>i x = bi i = 1 . . .m

x ∈ K

The dual cone program (D’) is written below:

max b>y
m∑
i=1

yiai + s = c

s ∈ K∗, y ∈ Rm

Claim 12.8 (Weak Duality for Cone Programs). If x is feasible for the primal (P’) and
(y, s) feasible for the dual (D’), then c>x ≥ b>y.

Proof. c>x = (
∑
yiai + s)>x =

∑
yia
>
i + s>x ≥

∑
yibi + 0 = b>y, where we use the fact

that if x ∈ K and s ∈ K∗ then s>x ≥ 0.
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Now instantiating K with the suitable cones we can get LPs and SDPs: e.g., considering
K = Rn

≥0 = K∗ gives us

min c>x max b>y

s.t. a>i x = bi i = 1 . . .m
∑m

i=1 yiai + s = c

x ≥ 0 s ≥ 0, y ∈ Rm

which is equivalent to the standard primal-dual pair of LPs

min c>x max b>y

s.t. a>i x = bi i = 1 . . .m
∑m

i=1 yiai ≤ c

x ≥ 0 y ∈ Rm

And setting K = K∗ = PSDn gives us the primal-dual pair of SDPs (12.1) and (12.3).

12.2.4 Examples: The Maximum Eigenvalue Problem

For the maximum eigenvalue problem, we wrote the SDP (12.5). Since it of the “dual” form,
we can convert it into the “primal” form in a purely mechanical fashion to get

maxA •X
s.t. X • I = 1

X � 0

We did not cover this in lecture, but the dual can be reinterpreted further. recall that X � 0
means we can find reals pi ≥ 0 and unit vectors xi ∈ Rn such that X =

∑
i pi(xix

>
i ). By

the fact that xi’s are unit vectors, Tr(xix
>
i ) = 1, and the trace of this matrix is then

∑
i pi.

But by our constraints, X • I = Tr(X) = 1, so
∑

i pi = 1.
Rewriting in this language, λmax is the maximum of∑

i

pi (A • xix>i )

such that the xi’s are unit vectors, and
∑

i pi = 1. But for any such solution, just choose the
vector xi∗ among these that maximizes A • (xi∗x

>
i∗); that is at least as good as the average,

right? Hence,

λmax = max
x∈Rn:‖x‖2=1

A • (xx>) = max
x∈Rn

x>Ax

x>x

which is the standard variational definition of the maximum eigenvalue of A.

12.2.5 Examples: The Maxcut SDP Dual

Now let’s revisit the maxcut SDP. We had last formulated the SDP as being of the form

max
1

4
L •X

X • (eie
T
i ) = 1 ∀i
X � 0

http://en.wikipedia.org/wiki/Rayleigh_quotient
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It is in “primal” form, so we can mechanically convert it into the “dual” form:

min
1

4

n∑
i=1

yi

s.t.
∑
i

yi(eie
>
i ) � L

For a vector v ∈ Rn, we define the matrix diag(v) to be the diagonal matrix D with Dii = vi.
Hence we can rewrite the dual SDP as

min 1
4
1>y

s.t. diag(y)− L � 0

Let us write y = t1− u for some real t ∈ R and vector u ∈ Rn such that 1>u = 0: it must
be the case that 1>y = n · t. Moreover, diag(t1− u) = tI − diag(u), so the SDP is now

min 1
4
n · t

s.t. tI − (L+ diag(u)) � 0

1>u = 0.

Hey, this looks like the maximum eigenvalue SDP from (12.5): indeed, we can finally write
the SDP as

n

4
· min
u:1>u=0

λmax(L+ diag(u)) (12.10)

What is this saying? We’re taking the Laplacian of the graph, adding in some “correction”
values u to the diagonal (which add up to zero) so as the make the maximum eigenvalue as
small as possible. The optimal value of the dual SDP is this eigenvalue scaled up by n/4.
(And since we will soon show that strong duality holds for this SDP, this is also the value
of the max-cut SDP.) This is precisely the bound on max-cut that was studied by Delorme
and Poljak [DP93].

In fact, by weak duality alone, any setting of the vector u would give us an upper bound on
the max-cut SDP (and hence on the max-cut). For example, one setting of these correction
values would be to take u = 0, we get that

maxcut(G) ≤ SDP (G) ≤ n

4
λmax(L(G)), (12.11)

where L(G) is the Laplacian matrix of G. This bound was given even earlier by Mohar and
Poljak [MP90].

Some Examples

Sometimes just the upper bound (12.11) is pretty good: e.g., for the case of cycles Cn, one
can show that the zero vector is an optimal correction vector u ∈ Rn, and hence the max-cut
SDP value equals the n/4λmax(L(Cn)).
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To see this, consider the function f(u) = n
4
λmax(L + diag(u)). This function is convex

(see, e.g. [DP93]), and hence f(1
2
(u + u′)) ≤ 1

2
(f(u) + f(u′)). Now if f(u) is minimized

for some non-zero vector u∗ such that 1>u = 0. Then by the symmetry of the cycle, the
vector u(i) = (u∗i , u

∗
i+1, . . . , u

∗
n, u

∗
1, . . . , u

∗
i−1)

> is also a minimizer. But look: each coordinate
of
∑n

i=1 u
(i) is itself just

∑
i u
∗
i = 0. On the other hand, f(0) = f( 1

n

∑
i u

(i)) ≤ 1
n

∑
i f(u(i)) =

f(u) by the convexity of f(). Hence the zero vector is a minimizer for f().

Note: Among other graphs, Delorme and Poljak considered the gap between the integer max-
cut and the SDP value for the cycle. The eigenvalues for L(Cn) are 2(1 − cos(2πt/n) for
t = 0, 1, . . . , n− 1. For n = 2k, the maximum eigenvalue is 4, and hence the max-cut dual (and
primal) value is n

4 · 4 = n, which is precisely the max-cut value. The SDP gives us the right
answer in this case.

What about odd cycles? E.g., for n = 3, say, the maximum eigenvalue is 3/2, which means
the dual (=primal) equals 9/8. For n = 5, λmax is 1

2 (5 +
√

5), and hence the SDP value is
4.52. This is ≈ 1.1306 times the actual integer optimum. (Note that the best current gap is
1/0.87856 ≈ 1.1382, so this is pretty close to the best possible.)

On the other hand, for the star graph, the presence of the correction vector makes a big
difference. We’ll see more of this in the next HW.

12.3 Strong Duality

Unfortunately, for SDPs, strong duality does not always hold. Consider the following example
(from Lovász):

min y1

s.t.

 0 y1 0
y1 y2 0
0 0 y1 + 1

 � 0 (12.12)

Since the top-left entry is zero, SDP-ness forces the first row and column to be zero, which
means y1 = 0 in any feaasible solution. The feasible solutions are (y1 = 0, y2 ≥ 0). So the
primal optimum is 0. Now to take the dual, we write it in the form (12.2):

y1

0 1 0
1 0 0
0 0 1

+ y2

0 0 0
0 1 0
0 0 0

 �
0 0 0

0 0 0
0 0 −1

 .

to get the dual:

max−X33

s.t. X12 +X21 +X33 = 1

X22 = 0

X � 0

Since X22 = 0 and X � 0, we get X12 = X21 = 0. This forces X33 = 1, and the opti-
mal value for this dual SDP is −1. Even in this basic example, strong duality does not
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hold. So the strong duality theorem we present below will have to make some assumptions
about the structure of the primal and dual, which is often called regularization or constraint
qualification.

Before we move on, observe that the example is a fragile one: if one sets the top left
entry of (12.12) to ε > 0, suddenly the optimal primal value drops to −1. (Why?)

One more observation: consider the SDP below.

minx1(
x1 1
1 x2

)
� 0

By PSD-ness we want x1 ≥ 0, x2 ≥ 0, and x1, x2 ≥ 1. Hence for any ε > 0, we can set x1 = ε
and x2 = 1/x1—the optimal value tends to zero, but this optimum value is never achieved.
So in general we define the optimal value of SDPs using infimums and supremums (instead
of just mins and maxs). Furthermore, it becomes a relevant question of whether the SDP
achieves its optimal value or not, when this value is bounded. (This was not an issue with
LPs: whenever the LP was feasible and its optimal value was bounded, there was a feasible
point that achieved this value.)

12.3.1 The Strong Duality Theorem for SDPs

We say that a SDP is strictly feasible if it satisfies its positive semidefiniteness requirement
strictly: i.e. with positive definiteness.

Theorem 12.9. Assume both primal and dual have feasible solutions. Then vprimal ≥ vdual,
where vprimal and vdual are the optimal values to the primal and dual respectively. Moreover,
if the primal has a strictly feasible solution (a solution x such that x � 0 or x is positive
definite) then

1. The dual optimum is attained (which is not always the case for SDPs)

2. vprimal = vdual

Similarly, if the dual is strictly feasible, then the primal optimal value is achieved, and equals
the dual optimal value. Hence, if both the primal and dual have strictly feasible solutions,
then both vprimal and vdual are attained.

Note: For both the SDP examples we’ve considered (max-cut, and finding maximum eigenval-
ues), you should check that strictly feasible solutions exist for both primal and dual programs,
and hence there is no duality gap.

Strict feasibility is also a sufficient condition for avoiding a duality gap in more general convex
programs: this is called the Slater condition. For more details see, e.g., the book by Boyd and
Vanderberghe.
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12.3.2 The Missing Proofs∗

We did not get into details of the proof in lecture, but they are presented below for com-
pleteness. (The presentation is based on, and closely follows, that of Laci Lovász’s notes.)
We need a SDP version of the Farkas Lemma. First we present a homogeneous version, and
use that to prove the general version.

Lemma 12.10. Let Ai be symmetric matrices. Then
∑

i yiAi � 0 has no solution if and
only if there exists X � 0, X 6= 0 such that Ai •X = 0 for all i.

One direction of the proof (if
∑

i yiAi � 0 is infeasible, then such an X exists) is an easy
application of the hyperplane separation theorem, and appears in Lovasz’s notes. The other
direction is easy: if there is such a X and

∑
i yiAi � 0 is feasible, then by Lemma 12.5 and

the strict positive definiteness (
∑

i yiAi)•X > 0, but all Ai•X = 0, which is a contradiction.
We could ask for a similar theorem of alternatives for

∑
i yiAi � 0: since we’re assuming

more, the “only if” direction goes through just the same. But the “if” direction fails, since
we cannot infer a contradiction just from Lemma 12.4. And this will be an important
issue in the proof of the duality theorem. Anyways, the Farkas Lemma also extends to the
non-homogeneous case:

Lemma 12.11. Let Ai, C be symmetric matrices. Then
∑

i yiAi � C has no solution if and
only if there exists X � 0, X 6= 0 such that Ai •X = 0 for all i and C •X ≥ 0.

Proof. Again, if such X exists then we cannot have a solution. For the other direction, the
constraint

∑
i yiAi−C � 0 is equivalent to

∑
i yiAi + t(−C) � 0 for t > 0 (because then we

can divide through by t). To add this side constraint on t, let us define

A′i :=

(
Ai 0
0 0

)
and C ′ :=

(
−C 0
0 1

)
.

Lemma 12.10 says if
∑

i yiA
′
i + tC ′ � 0 is infeasible then there exists psd X ′ 6= 0, with

X ′ • A′i = 0 and X ′ • C ′ = 0. If X is the top n × n part of X ′, we get X • Ai = 0 and
(−C) •X + xn+1,n+1 = 0. Moreover, from X ′ � 0, we get X � 0 and xn+1,n+1 ≥ 0—which
gives us C •X ≥ 0. Finally, to check X 6= 0: in case X ′ 6= 0 but X = 0, we must have had
xn+1,n+1 > 0, but then C ′ •X 6= 0.

Now, here’s the strong duality theorem: here the primal is

min{b>y |
∑
i

yiAi � C}

and the dual is
max{C •X | Ai •X = bi∀i,X � 0}

Theorem 12.12. Assume both primal and dual are feasible. If the primal is strictly feasible,
then (a) the dual optimum is achieved, and (b) the primal and dual optimal values are the
same.
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Proof. Since b>y < optp and
∑

i yiAi � C is not feasible, we can define

A′i :=

(
−bi 0
0 Ai

)
and C ′ :=

(
−optp 0

0 C

)
and use Lemma 12.11 to get psd Y ′ 6= 0 with Y ′ • A′i = 0 and Y ′ • C ′ ≥ 0. Say

Y ′ :=

(
y0 y
y Y

)
then Ai • Y = y0 bi and C • Y ≥ y0 optp. By psd-ness, y0 ≥ 0. If y0 6= 0 then we can divide
through by y0 to get a feasible solution to the dual with value equal to optp.

What if y0 = 0? This cannot happen. Indeed, then we get Ai•Y = 0 and C•Y ≥ 0, which
contradicts the strict feasibility of the primal. (Note that we are using the “if” direction
of the Farkas Lemma here, whereas we used the “only if” direction in the previous step.)
Again, we really need to assume strict feasibility, because there are examples otherwise.

The notion of duality we’ve used here is Lagrangian duality. This is not the only notion
possible, and in fact, there are papers that study other notions of duality that avoid this
“duality gap” without constraint qualification. For example, see the paper of Ramana,
Tüncel, and Wolkowicz (1997).
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