Lecture 11

The Lovasz ¥ Function™

11.1 Perfect graphs

We begin with some background on perfect graphs. First, we define some quantities on
graphs.

Definition 11.1. Given a graph G on n vertices, we define the following quantities:
1. The cliqgue number of G, written as w(G), is the size of the largest clique in G.

2. The independence number of G, written as «(G), is the size of the largest independent
set in G.

3. The chromatic number of G, written as x(G), is the minimum number of colors required
to properly color G.

4. The clique cover number of G, written as x(G), is the size of the smallest clique cover
in GG, which is the minimum number of vertex disjoint cliques such that every vertex
is in some clique.

Recall that the complement of a graph G, denoted G, is the graph on the same vertices
as (G such that two vertices are connected in G if and only if they are not connected in G.
The following facts will be useful:

4. «

5. «

“Lecturer: Anupam Gupta. Scribe: David Witmer.

LECTURE 11. THE LOVASZ 9 FUNCTION 2
The last fact holds because each color class is an independent set.
Now we give the definition of a perfect graph, first stated by Berge.

Definition 11.2. A graph G is perfect if w(G') = x(G’) for all vertex-induced subgraphs G’
of G.

Example 11.3. Consider the 5-cycle Cs, shown in Figure 11.1. Cj is its own complement,
so have the following values for the quantities defined above:

w(C5) =2
a(Cs) =2
X(Cs) =3
X(Cs) =3

C5 is the smallest non-perfect graph.

A

Figure 11.1: C5 and Cs. Note that Cj is isomorphic to Cs.

Bipartite graphs For any bipartite graph G, w(G) = 2 and x(G) = 2. Let VC(G) be the
size of the minimum vertex cover of G. Then a(G) = n — VC(G). By Koénig’s Theorem,
this is equal to n — MM(G), where MM(G) is equal to the size of the maximum matching
in G. In general, a is a lower bound for y, but in this case, the two are equal. To see this,
consider a clique cover of GG consisting of 2-cliques corresponding to each edge of a maximum
matching and 1-cliques for all remaining vertices as shown in Figure 11.2. The number of
vertices not covered by the edges of the maximum matching is n — 2MM(G), so the number
of cliques in this cover is MM(G) + (n — 2MM(G)) = n — MM(G). Then it must be true
that y(G) < n — MM(G), which, in turn, implies that a(G) = x(G). This shows that both
bipartite graphs and their complements are perfect.

LECTURE 11. THE LOVASZ ¥ FUNCTION 3

O

®

Figure 11.2: The clique cover corresponding to a matching of a bipartite graph.

Line graphs of bipartite graphs Recall that the line graph L(G) of a graph G is the
graph such that there is a vertex in L(G) for each edge of G and two vertices of L(G) are
connected by an edge if and only their corresponding edges in G have a common endpoint.
If G is bipartite, then w(L(G)) and x(L(G)) are both equal to the maximum degree of the
vertices in G. In addition, a(L(G)) = MM(G) and x(L(G)) = VC(G). By Kénig’s Theorem,
X(L(G)) = MM(G). Thus, line graphs of bipartite graphs and their complements are perfect.

Chordal graphs and interval graphs A chordal graph is a graph such that in every
cycle of length four or more, there is an edge connecting two nonadjacent vertices of the
cycle. Consider a set of intervals on the real line. The corresponding interval graph has a
vertex for each interval and an edge between two vertices if the intersection of their intervals
is nonempty. The set of interval graphs is a subset of the set of chordal graphs. An example
of an interval graph is shown in Figure 11.3. Chordal graphs and their complements are
perfect.

E F

Figure 11.3: A set of intervals and the corresponding interval graph.

Comparability graphs Consider a partially ordered set P. The comparability graph of
P is the graph with a vertex for each element of P and an edge between two elements if
and only if their corresponding elements p and ¢ in the partially ordered set are comparable
(p < q or p> q). Each clique in the comparability graph corresponds to a chain in the
partially ordered set, and each independent set corresponds to an antichain. Let G be a

LECTURE 11. THE LOVASZ ¥ FUNCTION 4

comparability graph. Then w(G) = x(G). Consider the following coloring scheme: Choose
a maximal antichain and color all of its elements one color. Remove these elements and
continue inductively. Each time we remove a maximal antichain, the length of each maximal
chain decreases by one, so w(G) colors suffice. Since w(G) is a lower bound for x(G), we have
equality. Also, a(G) = x(G). Consider a maximal antichain. We can form a clique cover by
taking the maximal chains containing the element of the antichain. Since a(G) < x(G), the
two quantities must be equal. Therefore, comparability graphs and their complements must
be perfect.

For each of these classes of graphs, we see that their complements are also perfect. Lovasz
proved that this is true in general, a result known as the Weak Perfect Graph Theorem.

Theorem 11.4 (Weak Perfect Graph Theorem). [?] If G is a perfect graph, then its com-
plement is also a perfect graph.

Fulkerson had previously reduced the problem to showing that if G is perfect than G’ is
perfect, where G’ is the graph formed by taking some vertex v, making a copy v’ adjacent
to all of the same vertices as v, and connecting v and v' by an edge. This is what Lovész
proved.

Recall that C5 is not a perfect graph. More generally, it is true that any odd cycle of
length greater than or equal to five is not perfect. Such a cycle is called an odd hole. An odd
antihole is the complement of one of these cycles. A Berge graph is a graph that contains
no odd holes and no odd antiholes. The Strong Perfect Graph Theorem states that a graph
is perfect if and only if it is a Berge graph.

Theorem 11.5 (Strong Perfect Graph Theorem). [?] A graph if and only if it is a Berge
graph.

Lovasz gave an alternative characterization of perfect graphs:

Theorem 11.6. A graph G is perfect if and only if for all induced subgraphs G', a(G")w(G") >
n', where n' is the number of vertices in G'.

Note that one direction is obvious: If G is perfect, then x(G') = w(G’), and it is always
true that a(G’)x(G’) > n'. Finally, it is also possible to check whether or not a graph is
perfect in polynomial time.

Theorem 11.7. [?| There ezists a polynomial time algorithm to recognize perfect graphs.

11.2 Computing o, w, x, and y for perfect graphs

Now we consider the problem of computing «, w, x, and x for perfect graphs. Assume we
had a function f(G) such that for all G, the following held:

a(G) < f(G) < X(G)

Then since a(G) = x(G) for any perfect graph G, f(G) = a(G) = x(G). If f were com-
putable in polynomial time, we would be able to compute «(G) and x(G) for any perfect

LECTURE 11. THE LOVASZ ¥ FUNCTION 5

graph G in polynomial time. We would be able to compute w(G) and x(G) by computing
f(G). We can make a first attempt at finding such an f using a linear program P.

max E x;

eV
s.t. le <1 Vecliques C'in G (11.1)
ieC

Given a maximum independent set, setting x; = 1 if ¢ is in the set and x; = 0 otherwise
gives a feasible solution, so a(G) < Opt(P).
Consider the dual D:
min Z Yo

cliques C

s.t. Zyc >1 VieV (11.2)
Cai

yo > 0 Vcliques C in G

For a minimum clique cover, setting yo to 1 if C' is in the minimum clique cover ans yo = 0
otherwise gives a feasible solution, so Opt(D) < x(G). This means that setting f(G) :=
Opt(P) = Opt(D) satisfies a(G) < f(G) < x(G) as desired.

However, we cannot solve these linear programs for general graphs. Consider the separa-
tion oracle that, given = € RV with z > 0 decides whether or not there exists some clique C'
such that) . x; > 1. This solves the maximum weight clique problem, which is NP-hard.
If we could solve P for general graphs, we would have such a separation oracle. This means
that solving P must be NP-hard for general graphs. It is not clear now to solve D either, as
it has an exponential number of variables.

Can we solve the P and D at least for perfect graphs? It is not clear even how to do
that. So let’s try using semidefinite programs.

11.3 The Lovasz ¥ function

Lovész introduced a function 9 satisfying a(G) < 9(G) < x(G) [?]. We begin by developing
an SDP relaxation for y(G). We assign a unit vector v; to each vertex. If two vertices are
in the same clique of the minimum clique cover, we would like their vectors to be the same.
If two vertices are not in the same clique, we would like their vectors to be as far apart as

possible. Note that when k vectors are as spread out as possible, the dot product of any pair
of them is —ﬁ. This means that if we have a clique cover of size k, there is an assignment
of unit vectors to vertices such that every vertex in a clique is mapped to the same vector
and, if two vertices are not in the same clique, the dot product of their vectors is ——~. This

k=1
is shown for clique covers of size 2, 3, and 4 in Figure 11.4.

LECTURE 11. THE LOVASZ ¥ FUNCTION 6

Figure 11.4: Assigning unit vectors to vertices such that the vertices in the same clique of
the clique cover map to the same vector and vertices that are not in the same clique map to
maximally separated vectors.

This suggests the following SDP relaxation:

min k
1
s.t. <Ui,?)j> = —m Z,] € V,Z lead j,l 75] (113)
<'UZ',UZ‘> =1 VieV

where we use i ~ j to denote that (i,j) € E(G), and i » j to denote that (i,7) & E(G). We
can now define the Lovasz ¢ function.

Definition 11.8. Given G = (V, E), ¥(G) is the optimal value of the SDP in (11.3).
We can also write the following equivalent SDP:
min ¢
st. (vi,v5) =t i, jeViwji#]
<Ui’vi> =1 Vi eV

In this case, the optimum is equal to #(G). For a graph that is a clique, _k_il and ¢ both
go to —oo. Such graphs are not interesting to us, so this will not be a problem.

Theorem 11.9. a(G) < J(G) < x(G)

Proof. As described in the above discussion, any clique cover corresponds to a feasible solu-
tion of the SDP with an objective function value equal to the size of the clique cover. This
implies that ¥(G) < x(G). It remains to show that a(G) < ¥(G). Suppose that vy, ..., v,
are the SDP solution vectors corresponding to a maximal independent set of size s = a(G)
and let v =37 v;. Then v7v > 0. It is also true that

S T S S
vl = (sz> (sz> :Zv?vi—kaiij :s—i—ZUiij.

i=1 i=1 i=1 i#] i#j

LECTURE 11. THE LOVASZ ¥ FUNCTION 7

Then we have that s+ Z#j vl'v; > 0. There are s(s— 1) terms in the sum, so, by averaging,
there exist some distinct ¢ and j such that

Ty > s _ 1
PT= s(s—1) s—17
Since v} v; = —W by the SDP constraints, a(G) = s < J(G). Therefore, we can conclude
that a(G) < Y¥(G) < x(G). O

Note that ¥(G) may not be rational for non-perfect graphs. For example, x(C5) = 3,
a(Cs) = 2, and ¥(C5) = v/5. So we cannot hope to get the exact optimum. However, we
can solve the above semidefinite program to arbitrary accuracy using the ellipsoid algorithm,
resulting in the following theorem.

Theorem 11.10. For any € > 0, 9(G) can be computed to within € error in time poly(n,log %).

The polynomial-time computability of the values of the parameters «a, w, x, and x directly
follows.

Corollary 11.11. For any perfect graph G, a(G), w(G), x(G), and x(G) can be computed
in polynomial time.

11.3.1 Dual of the SDP
As an aside, the dual of the above SDP is the following SDP, with variables B = (b;;):

max Z bz'j
i,jEV
s.t. bUZO Z,]E‘/,ZNJ
SUEE
eV
B=0

(11.4)

We'll go through the process of deriving this dual program from the primal SDP in a future
homework.

11.4 Non-perfect graphs and ¥

We can also ask how closely ¥ approximated « for non-perfect graphs. Konyagin [?] con-
structed a graph G such that o(G) = 2 and 9(G) = Q(n'/?), which is the largest that ¥(G)
can be. Alon and Kahale generalized this result with the following theorem.

Theorem 11.12. [?] If a(G) < k, then ¥(G) < Cni+i for some constant C.
When « is not bounded, Feige showed the following result.

Theorem 11.13. [?] There exists a graph G such that a(G) = n°Y and 9(G) = n'=oW,

LECTURE 11. THE LOVASZ ¥ FUNCTION 8

Hastad’s results for the hardness of approximating the clique problem [?] also imply that
such a graph must exist.

Kleinberg and Goemans showed that 1 gives a 2-approximation for the size of the mini-
mum vertex cover.

Theorem 11.14. [?] For any graph G, 3VC(G) < n —9(G) < VC(G).

This is not very useful for approximating VC(G), as the greedy algorithm for minimum
vertex cover gives a 2-approximation. There are graphs for which this is tight, so we can do
no better.

11.5 Finding cliques, independent sets, coloring, and
clique covers of perfect graphs

Since we can compute « on perfect graphs, we can also find an independent set of size «
in polynomial time. Consider the following algorithm: Remove a vertex from the graph.
Calculate « for the resulting graph G'. If a(G’) = a(G) — 1, put the removed vertex back; it
must belong to the maximum independent set. Otherwise, leave it out. Repeat for the rest
of the vertices in the new graph. The maximum independent set will remain at the end. We
use the same method to find the maximum clique by noting that cliques are independent
sets in the complement of the graph.

We next consider the problem if finding an optimal clique cover, which corresponds to
an optimal coloring of the complement. In order to find an optimal clique cover, we need
to find a maximum weight clique instead of a maximum size clique. To do this, we use a
variant of the SDP in (11.4). Let w be non-negative vertex weights, which, without loss of
generality, we assume to be integers. Then consider the following SDP:

max Z \/Eb@« /W

i,jeEV
st by =0 i,jeV,inj
g J J (11.5)
>
eV
B+ 0

We define ¥(G,w) to be the optimal value of this SDP. Consider the graph G’ formed by
replacing each vertex ¢ with a clique of size w; such that two vertices in G’ not in the
same clique are adjacent if and only if the vertices in G corresponding to their cliques are
adjacent. It is true that 9(G,w) = ¥(G’). Let w(G,w) = w(G" and x(G,w) = x(G’). Then
w(G,w) <I(G,w) < x(G,w). Also, it is a fact that if G is perfect, then G’ is perfect. In this
case, w(G,w) = (G, w) = x(G,w).. Therefore, by solving (11.5) and using self-reducibility
as described above, we can find maximum weight cliques in perfect graphs.

We now give an algorithm to find a minimum clique cover, which corresponds to an
optimal coloring of the complement.

LECTURE 11. THE LOVASZ ¥ FUNCTION 9

Recall the primal-dual pair of linear programs P and D given above:

max E x;

2%
s.t. le <1 Vecliques C'in G
ieC

min Z Yo

cliques C
s.t.ZyC >1 VieV
C3i
yoc > 0 Vcliques C in G

These are the same as the linear programs (11.1) and (11.2) that we used in our initial
attempt to find an f such that o(G) < f(G) < x(G).

Step 1

Step 2

Step 3

Use the ellipsoid algorithm to solve the primal P. In order to do this, we need a
separation oracle. Solving (11.5) to find the maximum weight of a clique gives us this
separation oracle. The feasible region of P is a rational polyhedron, so we can find an
optimal solution in polynomial time.

Let Z = {C4,Cy, ..., C} be the set of polynomially-many cliques for which constraint
were violated while running the ellipsoid algorithm in Step 1. Now consider the fol-
lowing linear program, which we will call Ps:

max E ZT;

eV
s.t. sz <1 Vecliques C'in T
ieC

It is clear that Opt(Pr) > Opt(P). It cannot be true that Opt(Pr) > Opt(P). Other-
wise, running the ellipsoid algorithm on the constraints in for the cliques in Z would
give Opt(P) < Opt(Pr), which would contradict the correctness of the ellipsoid algo-
rithm. So Opt(Pr) must be equal to Opt(P).

Consider the dual of Pr, which we will call Dz. A feasible solution of Dz corresponds
to a feasible solution of D in which all yo such that C' ¢ Z are set to 0. We know
that Opt(Dz) = Opt(Pr), Opt(Pr) = Opt(P), and Opt(P) = Opt(D), so Opt(Dz) =
Opt(D). Now we can solve Dz in polynomial time to find an optimal solution of D.
Call this solution y*. Let C' be some clique such that yg > 0.

LECTURE 11. THE LOVASZ ¥ FUNCTION 10

Step 4 By complementary slackness, if * is any optimal solution of P, then

(me - 1) Yo = 0.
ieC

Since y& > 0, > ..ox; = 1 for any optimal solution z* of P. For any maximum
independent set, let x be a solution to P such that x; = 1 if 7 is in the set and z; = 0
otherwise. For perfect graphs, a(G) = Opt(P) = x(G), so z is an optimal solution to
P. By the above, } .. x; = 1. This implies that all maximum independent sets of &
contain exactly one vertex of C'. Removing C' from G therefore results in a graph G’
such that a(G") is one less than a(G). Thus, recursing on G’ gives us a clique cover of
size X(G) = a(G) as desired.

Bibliography

[AHKO05] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta algorithm and applications. Technical report, Princeton Univer-
sity, 2005.

[AKO07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidef-
inite programs. In STOC, pages 227-236, 2007.

[GKO07] Naveen Garg and Jochen Kénemann. Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems. SIAM J. Comput., 37(2):630—
652 (electronic), 2007.

[KL96] Philip Klein and Hsueh-I Lu. Efficient approximation algorithms for semidefinite
programs arising from MAX CUT and COLORING. In Proceedings of the Twenty-
eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA,
1996), pages 338-347, New York, 1996. ACM.

[Stel0] David Steurer. Fast sdp algorithms for constraint satisfaction problems. In SODA,
pages 684-697, 2010.

11

	The Lovász Function
	Perfect graphs
	Computing , , , and for perfect graphs
	The Lovász function
	Dual of the SDP

	Non-perfect graphs and
	Finding cliques, independent sets, coloring, and clique covers of perfect graphs

