
Lecture 10

Semidefinite Programs and the
Max-Cut Problem∗

In this class we will finally introduce the content from the second half of the course title,
Semidefinite Programs. We will first motivate the discussion of SDP with the Max-Cut
problem, then we will formally define SDPs and introduce ways to solve them.

10.1 Max Cut

Let G = (V,E) with edge weights we > 0 for all e ∈ E where
∑

e∈E we = 1. Our goal is to
maximize

∑
e∈∂(A)we over A ⊆ V , or equivalently maximize

∑
uv∈E wuv1[A(u) 6= A(v)] over

functions A : V → {0, 1}.
Remark 10.1. Couple quick observations:

• Opt = 1⇔ G is bipartite

• Opt ≥ 1
2

Proof. (Algorithmic) Pick A : V → {0, 1} at random.

E [cut val] = E

[∑
uv∈E

wuv1 [A(u) 6= A(v)]

]
=
∑
uv∈E

wuv Pr[A(u) 6= A(v)]

=
∑
uv∈E

wuv
1

2

=
1

2

*Lecturer: Ryan O’Donnell. Scribe: Franklin Ta.

1

• G complete ⇒ Opt = 1
2

+ 1
2(n−1)

• Max-cut is NP-hard.

Integer Programming Formulation Now lets look at the IP formulation for Max-Cut.
For {xv}v∈V , {ze}e∈E ∈ {0, 1},

max
∑
uv∈E

wuvzuv

s.t. zuv ≤ xu + xv

zuv ≤ 2− (xu + xv)

Where x encodes which partition the vertex is in, and z encodes whether the edge is cut.
To see why this works, suppose that xu 6= xv, then zuv ≤ 1, zuv ≤ 1, so zuv = 1. Otherwise,
suppose xu = xv, then zuv ≤ 2, zuv ≤ 0, so zuv = 0.

Linear Programming Relaxation To get the LP relaxation, just let xv, ze ∈ [0, 1]. But
unfortunately, this LP relaxation isn’t very good. Set xv = 1

2
for all v, then ze = 1 for all e,

which makes LPOpt = 1 for all graph G.

Another Formulation Seeing that didn’t work, let’s try another formulation. For yv ∈ R,

max
∑
uv∈E

wuv

(
1

2
− 1

2
yuyv

)
s.t. yvyv = 1 ∀v ∈ V

Here we changed our indicator, yv, to use 1 or −1 to encode which partition we are in.
Note that if yu = yv, then

(
1
2
− 1

2
yuyv

)
= 0, and if yu 6= yv, then

(
1
2
− 1

2
yuyv

)
= 1.

SDP Relaxation[Delorme Poljak ’90] Note that the previous formulation is still exactly
Max-Cut (which is NP-hard) so we won’t be able to solve it. So to relax it, we can allow
~yv ∈ Rd: (this is the ‘SDP’)

max
∑
uv∈E

wuv

(
1

2
− 1

2
~yu · ~yv

)
s.t. ~yv · ~yv = 1 ∀v ∈ V

To visualize what this SDP is doing, note that since ||~yv|| = 1, it is possible to embed
{yv}v∈V onto a unit sphere:

2

Figure 10.1: Vectors ~yv embedded onto a unit sphere in Rd.

Denote σuv = ~yu · ~yv = cos(∠(~yu, ~yv)). Then for (u, v) ∈ E, we want σuv ≈ −1 as possible
since this will maximize the sum. Translating to the figure above, we want to have vectors
pointing away from each other as much as possible. Also note that if d is 1, the solution is
exact, so SDPOpt ≥ Opt. Also note that d ≤ n in general.

Example 10.2. Let’s see some examples of how this SDP compares with Opt.
Let G be K3. Clearly we can embed ~y1, ~y2, ~y3 120 degrees apart in the unit circle in R2,

so we get:

SDPOpt(G) ≥
∑
uv∈E

wuv

(
1

2
− 1

2
~yu~yv

)

=
3∑
i=1

1

3

(
1

2
− 1

2
cos

(
2π

3

))
=

3

4

This bound can be shown to be tight, so SDPOpt(G) = 3
4
. It can also be shown that

Opt(G) = 2
3

and LPOpt(G) = 1. Thus 8
9
SDPOpt(G) = Opt(G).

Another example is G being C5. In this case we have Opt(G) = .88SDPOpt(G)

Remark 10.3. Ellipsoid algorithm can (weakly) solve SDP in polytime. So assume you can
find optimal ~yv.

Randomized Rounding [Goemans Williamson ’94] At this point, we know we can
relax Max-Cut into a SDP, and we know we can solve SDPs, but we still need to somehow
convert that back to a solution for Max-Cut. We can do this using Goemans-Williamson
randomized rounding:

We want to cut the vectors {yv}v∈V with a random hyperplane through zero where
everything on one side of the hyperplane is in one partition, and everything on the other side

3

of the hyperplane is in the other. We do this by choosing ~g ∈ Rd \ {0} (where ~g is normal
to hyperplane) from any rotationally symmetric distribution. Then set yu = sgn(~g · ~yu) ∈
{−1, 1}.

Figure 10.2: Vectors being separated by a hyperplane with normal ~g.

Analysis of the rounding Fix (u, v) ∈ E. Then the probability that an edge (u, v) gets
cut is the same as the probability that the hyperplane splits ~yu and ~yv.

So consider just the 2-D plane containing ~yu, ~yv. Since the hyperplane was chosen from
a rotationally symmetric distribution, the probability that the hyperplane cuts these two
vectors is the same as the probability that a random diameter lies in between the angle θ of
the two vectors.

Figure 10.3: The plane of two vectors being cut by the hyperplane

Thus:

Pr[(u, v) gets cut] =
θ

π

=
cos−1(~yu · ~yv)

π

=
cos−1(σuv)

π

E[cut val] =
∑
uv∈E

wuv
cos−1(σuv)

π

Now recall that SDPOpt =
∑

uv∈E wuv(
1
2
− 1

2
σuv) ≥ Opt.

4

So if we find α such that

cos−1(σuv)

π
≥ α

(
1

2
− 1

2
σuv

)
∀σuv ∈ [−1, 1]

then we can conclude E[cut val] ≥ αSDPOpt ≥ αOpt
Plotting the above,

Figure 10.4: α
(
1
2
− 1

2
σ
)

vs cos−1(σuv)
π

we see that α = .87856... works.

Theorem 10.4. E[Goemans Williamson cut] ≥ .87856SDPOpt ≥ .87856Opt

Note that this gives a polytime “.878-factor approximation algorithm for Max-Cut”

10.2 Semidefinite Programming

10.2.1 Positive Semidefinite Matrices

Theorem 10.5. S ∈ Rn×n symmetric is positive semidefinite (P.S.D.) iff equivalently

1. S = Y >Y for some Y ∈ Rd×n, d ≤ n.

2. S’s eigenvalues are all greater than or equal to 0.

3. x>Sx =
∑

i,j xixjsij ≥ 0 for all x ∈ Rn.

4. S = LDL> where D diagonal, D ≥ 0, L unit lower-triangular (i.e., L =


1 0
∗ 1

∗ ∗ . . .
...

...
.

∗ ∗ . . . ∗ 1

).

5

5. There exist joint real random variables Z1, ..., Zn such that E[ZiZj] = sij

6. (S ∈ Rn×n) ∈ convex-hull of {xx> : x ∈ Rn}

Remark 10.6. 3 and 6 from Theorem 10.5 implies {S ∈ Rn2
: S PSD} is convex

Remark 10.7. Recall the SDP of Max-Cut is:

max
∑
uv∈E

wuv

(
1

2
− 1

2
σuv

)
s.t. σuv = ~yu · ~yv

σvv = 1 ∀v ∈ V

Thus,

∃Y =

~yv1 ~yv2 · · · ~yvn


s.t. (σuv)u,v∈V = Y Y >

⇔ matrix S = (σuv) is PSD by Theorem 10.5.1.

Definition 10.8. A semidefinite program is an LP over n2 variables σij with extra con-

straints S := (σij) is PSD. (This is really n(n+1)
2

variables since it is symmetric)

Theorem 10.9. Omitting technical conditions SDP can be solved in polytime.

10.2.2 Strong Separation Oracle for PSDness

Given symmetric matrix S ∈ Qn×n, we want to assert S is PSD or find x ∈ Qn s.t. x>Sx < 0.
Idea: Compute smallest eigenvalue of S. If it is greater than or equal to 0, then S is

PSD, otherwise we can use the corresponding eigenvector z to show that z>Sz < 0.

Theorem 10.10. ∃ Strongly polytime algorithm such that if S PSD, returns S = LDL>,
and if S not PSD, returns x s.t. x>Sx < 0. (L,D, x ∈ Q)

Bonus: Since can compute
√
D to any accuracy (square root each term in D) and S =

Y >Y , we compute Y =
√
DL>. Where columns of Y are “vectors”.

Proof. Do (symmetric) Gaussian Elimination on S:

S =


∗ ∗ . . . ∗
∗ ∗ . . . ∗
...

...
. . .

...
∗ ∗ . . . ∗



6

Clear out first column with L1 (which adds multiples of first row to other rows).
1 0
∗ 1
...

. . .

∗ 1


︸ ︷︷ ︸

L1

S =


∗ ∗ . . . ∗
0 ∗ . . . ∗
...

...
. . .

...
0 ∗ . . . ∗



Since symmetric, clear out first row with L>1 .

L1SL
>
1 =


∗ 0 . . . 0
0 ∗ . . . ∗
...

...
. . .

...
0 ∗ . . . ∗



Then clear out second row and column with L2 and L>2 , and so on.

L2L1SL
>
1 L
>
2 =


∗ 0 0 . . . 0
0 ∗ 0 . . . 0
0 0 ∗ . . . ∗
...

...
...

. . .
...

0 0 ∗ . . . ∗


...

Ln . . . L2L1︸ ︷︷ ︸
L

S L>1 L
>
2 . . . L

>
n︸ ︷︷ ︸

L>

= D

LSL> = D

S = L−1DL−>

This will run to completion unless we hit the following cases:

7

If you just finished pivoting with a negative number, stop and output not PSD:

LSL> =


∗ 0 0 . . . 0
0 −a 0 . . . 0
0 0 ∗ . . . ∗
...

...
...

. . .
...

0 0 ∗ . . . ∗



e>i LSL
>ei = e>i


∗ 0 0 . . . 0
0 −a 0 . . . 0
0 0 ∗ . . . ∗
...

...
...

. . .
...

0 0 ∗ . . . ∗

 ei

= −a
< 0

Output x = L>ei

If pivot is zero, and rows/cols of that pivot is not zero, stop and output not PSD:

LSL> =


0 . . . b
...

...
b . . . c



(
c . . . −b

)
LSL>


c
...
−b

 =
(

c . . . −b
)


0 . . . b
...

...
b . . . c




c
...
−b


= −cb2

≤ 0

If c 6= 0, output x = L>


c
...
−b

, else output x = L>


1
...
−b

.

In all other cases we can run to completion and output S = L−1DL−>

8

	Semidefinite Programs and the Max-Cut Problem
	Max Cut
	Semidefinite Programming
	Positive Semidefinite Matrices
	Strong Separation Oracle for PSDness

