Lecture 10

Semidefinite Programs and the
Max-Cut Problem*

In this class we will finally introduce the content from the second half of the course title,
Semidefinite Programs. We will first motivate the discussion of SDP with the Max-Cut
problem, then we will formally define SDPs and introduce ways to solve them.

10.1 Max Cut

Let G = (V, E) with edge weights w. > 0 for all e € E where ) __,w. = 1. Our goal is to
maximize ) cy4) We over A C 'V, or equivalently maximize }°, o pwi,L[A(u) # A(v)] over
functions A : V' — {0, 1}.

Remark 10.1. Couple quick observations:
e Opt =1 & (G is bipartite
e Opt > %

Proof. (Algorithmic) Pick A : V — {0, 1} at random.

E [cut val] = Z Wy 1 [A(u) # A(v)]

uwveE

=) wu Pr[A(u) # A(v)]

wek
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e (G complete = Opt = % Ty

e Max-cut is NP-hard.

Integer Programming Formulation Now lets look at the IP formulation for Max-Cut.
For {xv}veVa {Ze}eEE S {07 ]-}7

max E Wy Zuw

wekr
st. zZuw <y + 2y
Zuv S 2 - (Iu +x”u)
Where x encodes which partition the vertex is in, and z encodes whether the edge is cut.

To see why this works, suppose that =, # x,, then z,, < 1,2,, <1, so z,, = 1. Otherwise,
Suppose T, = &,, then z,, < 2, 2,, <0, s0 2, = 0.

Linear Programming Relaxation To get the LP relaxation, just let x,, z. € [0, 1]. But
unfortunately, this LP relaxation isn’t very good. Set z, = % for all v, then 2z, =1 for all e,
which makes LPOpt =1 for all graph G.

Another Formulation Seeing that didn’t work, let’s try another formulation. For y, € R,

1 1
max Z Wy (5 - 5%%)

wekl
st. yy, =1 YveV

Here we changed our indicator, y,, to use 1 or —1 to encode which partition we are in.

Note that if y, = vy, then (% — lyuyv) =0, and if y, # y,, then (% — %yuyv) =1.

SDP Relaxation[Delorme Poljak '90] Note that the previous formulation is still exactly
Max-Cut (which is NP-hard) so we won’t be able to solve it. So to relax it, we can allow
7, € R%: (this is the ‘SDP’)

1 1.
maXZwuv (§_§yuyv>
st Go-o=1 YweVv

To visualize what this SDP is doing, note that since ||7,|| = 1, it is possible to embed
{y» }vev onto a unit sphere:



Y
Figure 10.1: Vectors ¢, embedded onto a unit sphere in R

Denote 0y, = Uy Yp = c08(ZL(Yu, ¥)). Then for (u,v) € E, we want o, ~ —1 as possible
since this will maximize the sum. Translating to the figure above, we want to have vectors
pointing away from each other as much as possible. Also note that if d is 1, the solution is
exact, so SDPOpt > Opt. Also note that d < n in general.

Example 10.2. Let’s see some examples of how this SDP compares with Opt.
Let G be K3. Clearly we can embed 1, 2, 73 120 degrees apart in the unit circle in R?,
so we get:

1 1
DP > et 7/
SDPOpt(G) > E Wy (2 2yuyv)
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This bound can be shown to be tight, so SDPOpt(G) = 3. It can also be shown that

Opt(G) = 2 and LPOpt(G) = 1. Thus § SDPOpt(G) = Opt(G).
Another example is G being Cs. In this case we have Opt(G) = .88 SDPOpt(G)

Remark 10.3. Ellipsoid algorithm can (weakly) solve SDP in polytime. So assume you can
find optimal 7.

Randomized Rounding [Goemans Williamson ’94] At this point, we know we can
relax Max-Cut into a SDP, and we know we can solve SDPs, but we still need to somehow
convert that back to a solution for Max-Cut. We can do this using Goemans-Williamson
randomized rounding;:

We want to cut the vectors {y,},ev with a random hyperplane through zero where
everything on one side of the hyperplane is in one partition, and everything on the other side



of the hyperplane is in the other. We do this by choosing § € R¢\ {0} (where § is normal
to hyperplane) from any rotationally symmetric distribution. Then set y, = sgn(g - 4.,) €

{~1,1}.

Figure 10.2: Vectors being separated by a hyperplane with normal g.

Analysis of the rounding Fix (u,v) € E. Then the probability that an edge (u,v) gets
cut is the same as the probability that the hyperplane splits ¥, and .

So consider just the 2-D plane containing #,, 4,. Since the hyperplane was chosen from
a rotationally symmetric distribution, the probability that the hyperplane cuts these two
vectors is the same as the probability that a random diameter lies in between the angle 6 of
the two vectors.
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Figure 10.3: The plane of two vectors being cut by the hyperplane

Thus:

Pr{(u,v) gets cut] =

T
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So if we find « such that

cos™H(oyy) 1 1
S GV Y (i 11

- _oz<2 QJW) Vou, € [—1,1]
then we can conclude E[cut val] > a SDPOpt > aOpt

Plotting the above,

we see that o = .87856... works.
Theorem 10.4. E[Goemans Williamson cut] > .87856 SDPOpt > .878560pt
Note that this gives a polytime “.878-factor approximation algorithm for Max-Cut”

10.2 Semidefinite Programming

10.2.1 Positive Semidefinite Matrices

Theorem 10.5. S € R™" symmetric is positive semidefinite (P.S.D.) iff equivalently
1. S=Y'Y for someY € R™*" d <n.

2. S’s eigenvalues are all greater than or equal to 0.

3. xSy = Z” x;x;8;; > 0 for all z € R™.

4. S = LDL" where D diagonal, D > 0, L unit lower-triangular (i.e., L = | *



5. There exist joint real random variables Zy, ..., Z, such that E[Z;Z;] = s;;

6. (S € R™™) € convez-hull of {xz" : x € R"}
Remark 10.6. 3 and 6 from Theorem 10.5 implies {S € R™ : S PSD} is convex
Remark 10.7. Recall the SDP of Max-Cut is:

Thus,

Y = gm gvz gl}n

St (Cup)uwey =YY
& matrix S = (0y,) is PSD by Theorem 10.5.1.

Definition 10.8. A semidefinite program is an LP over n? variables o;; with extra con-
straints S := (0;;) is PSD. (This is really @ variables since it is symmetric)

Theorem 10.9. Omitting technical conditions SDP can be solved in polytime.

10.2.2 Strong Separation Oracle for PSDness

Given symmetric matrix S € Q™*", we want to assert S is PSD or find z € Q" s.t. 'Sz < 0.
Idea: Compute smallest eigenvalue of S. If it is greater than or equal to 0, then S is
PSD, otherwise we can use the corresponding eigenvector z to show that z' Sz < 0.

Theorem 10.10. 3 Strongly polytime algorithm such that if S PSD, returns S = LDLT,
and if S not PSD, returns x s.t. ' Sx < 0. (L, D,z € Q)

Bonus: Since can compute v D to any accuracy (square root each term in D) and S =
Y'Y, we compute Y = vV DL". Where columns of Y are “vectors”.

Proof. Do (symmetric) Gaussian Elimination on S:

S = .
* % *



Clear out first column with L; (which adds multiples of first row to other rows).

1 0 * %
* 1 0 =*
S=1.
* 1 0 =* *
I

Since symmetric, clear out first row with L] .

* 0 . 0

0 x . *
L,SL] = . .

0 = *

Then clear out second row and column with L, and L, , and so on.

* 00 0

0 % 0 0

Lol SL{Ly = [0 0 *

0 0 = *
Ly...Loly SL{Ly...L) =D

L LT
LSL" =D
S=L"'DL7T

This will run to completion unless we hit the following cases:



If you just finished pivoting with a negative number, stop and output not PSD:

* 0 0 0
0 —a 0 ... 0
LSLT =10 0 = ... %
0 0 =% *
* 0 0 . 0
0 —a O
@ZTLSLT@Z-ZQ;F 0 0 t S S e;
0 0 = *
= —a
<0

Output =z = L'e;

If pivot is zero, and rows/cols of that pivot is not zero, stop and output not PSD:

0 ... b
LSLT = :
b . c
c 0 ... b c
(¢ ~b )LSLT =( ¢ -b )|
—b b ... ¢ —b
= —cb?
<0
& 1
Ifc#0,output x =L" | : |,elseoutput x =LT | :
—b —b

In all other cases we can run to completion and output S = L='DL~T
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