Lecture 9

Ellipsoid 11:
Grotschel-Lovasz-Schrijver theorems™

I Ldszlé Lovdsz.

Ryan O’Donnell

We saw in the last lecture that the Ellipsoid Algorithm can solve the optimization problem

max CTQT

s.t. Az <b

in time poly({A), (b), (c)), where by (z) we mean the representation size of z. In proving
this, we mostly disregarded numerical issues, such as how irrational numbers should be dealt
with. In addition, we mostly stated the algorithm in terms of a general convex set K rather
than just a polytope, but then we neglected the whole host of issues surrounding general
convex sets. In this lecture, we will fill in the remaining details. Largely these are either
numerical or conceptual issues that require great length to be treated formally. As a result,
this lecture will be relatively informal; a more precise and complete treatment is provided
by Grétschel, Lovész, and Schrijver in [GLSS8S].

9.1 LP runtime

One loose end that we would like to mention quickly first is that it seems we should be
able to do without the dependence on (b) and (c) in the Ellipsoid runtime. In some sense,
the “real complexity” of the optimization problem should only depend on the polytope, not
the direction of optimization. This intuition was proven correct by E. Tardos in [Tar86],
in which she showed that the Ellipsoid Algorithm can solve linear programs in poly({A))
time, via a reduction to linear programs of poly((A)) size. One consequence of this is that
if, for example, A is a matrix whose entries are in {—1,0, 1}, then solving the linear program
can be done in strongly polynomial time. Matrices of this form do occur for many natural
problems, max flow perhaps most prominent among them.

“Lecturer: Ryan O’Donnell. Scribe: John Wright.

LECTURE 9. ELLIPSOID II: GROTSCHEL-LOVASZ-SCHRLJVER THEOREMS 2

9.2 Numerical details

We now treat the numerical issues that arise in the Ellipsoid Algorithm. First, we summarize
the algorithm. Its task is to determine the feasibility (nonemptiness) of a convex set K in
R™. It receives two inputs:

1. A radius R € @Q such that K C B(0, R).
2. A positive € € Q.
It outputs one of two things:
1. A point s € K.
2. An ellipsoid E O K such that vol(F) < e.

The running time of the Ellipsoid Algorithm is poly(n, (R), (¢), “(K)”), where by “(K)” is
meant something to do with the size of K. When we're solving linear programs, this is
(A) + (b) + (c); for more general convex programs, we’'ll return to this issue.

The algorithm is iterative. At each step, it maintains an ellipsoid F(s, Q) with center s
and matrix) which contains K. The algorithm begins each step by testing whether s is in
K. If so, then it outputs s. Otherwise, it (somehow) finds a vector a such that a'z < a's
for all z € K. This is the “separating hyperplane”. Using this, it performs an update
E(s,Q) — E(¢,Q") to a new ellipsoid with center s’ and matrix ', and then it starts this
process all over again. The update rule for the new ellipsoid is:

1 1 0
— . . a
n+1l /aTQa

;L n? 2 Qaa'Q
@ _n2—1(Q_n+1' aTQa>

/
s =S

(9.1)

One important thing to note is the square root in the denominator of Equation (9.1). We
will return to this shortly. The point of this update rule is to produce a new ellipsoid of
significantly smaller volume which contains the half ellipsoid formed by intersecting E(s, Q)
with the set {x : a"x < a's}. By the choice of a we know that this half ellipsoid contains
K. The precise decrease in volume we proved in the last lecture was:

Theorem 9.1. vol(E(s,Q’))/vol(E(s,Q)) < e/ <1 — L.

n

Unfortunately, that square root means the possibility of irrational numbers, so that the
Ellipsoid Algorithm couldn’t update to E(s’, Q') even if it wanted to. To fix this, we’ll need
to show that if we perform approximate computations which are accurate to a sufficient
degree, then everything comes out okay anyway. By necessity, this involves mucking around
in some tedious numerical waters. To begin with, let N be the total number of iterations,
which we will pin down later. Then we’ll modify the Ellipsoid Algorithm so that, when
doing computations, it rounds all numbers to precision 277, where p is set to 100N. This
solves the irrational number problem, but introduces a new one: the rounding changes the

LECTURE 9. ELLIPSOID II: GROTSCHEL-LOVASZ-SCHRLJVER THEOREMS 3

center of the updated ellipsoid, and this will cause it not to contain the half ellipsoid that
it was supposed to cover. To compensate for this, we adjust the algorithm so that it “blows
up” each ellipsoid by a factor of (1 4+ ﬁ) in each dimension. This is sufficient to make
the ellipsoids completely contain the exact ellipsoids they are approximating, but it again
introduces a new problem, which is that we can no longer guarantee as strong a bound as
in Theorem 9.1. Hopefully, we can still get a strong enough bound, similar to Theorem 9.1
but with, say, a 1 — wLn rather than a 1 — ?%n, and if this is the case then we can just set the
number of iterations N to be something suitably large. In particular, taking

1
N :=10n (n log(2R) + log (—)) (9.2)
€
is sufficient.

Why it’s okay. We must ensure that the factor we have chosen to blow the ellipsoids up
by does not blow them up too much. Doing this blow-up makes our approximating ellipsoid
have (1 + 15)" &~ (1 + 35-) times the volume of the exact ellipsoid. On the other hand,
each exact ellipsoid has (1 — %) times the volume of the previous ellipsoid. The net effect
of these two opposing forces is that when we perform this rounding and blowing up, the
updated ellipsoid has (1 + wLn)(l — 3%) times the volume of the original ellipsoid. This is
no more than (1 — 10%) times the volume of the original ellipsoid. The coefficient of 10 in
Equation 9.2 is large enough so that the number of iterations yields a sufficiently small final
ellipsoid.

There are some additional technical details that we need to attend to to ensure that

everything still works after adding the rounding. For example,

Lemma 9.2. In the exact version of the Ellipsoid Algorithm, let B(sy, Qx) be the ellipsoid
at step k, and let Ny, be the minimum eigenvalue of Q. Then |si, |Qxll, 1/ e < R -22%, for
all k.

In particular, all of these bounds are at most R - 22". This is the key fact used to show
that the rounding errors do not get magnified too much when being multiplied by matrices.
Specifically, we just need p to be large enough so that 277 <« Rg.ﬁ, and taking p ~ O(N)

is sufficient.

9.3 Separation oracles

With that taken care of, we turn to applying the Ellipsoid Algorithm to more general convex
sets. A difficulty that arises is that for a general convex set K, we may not have as convenient
a description of it as we did in the case of sets of linear equations describing polytopes.
Quickly glancing at the algorithm reveals that what we actually require from K is quite
limited: we should be able to test whether s € K (so-called “membership testing”), and if it
isn’t, we should be able to find a separating hyperplane. This minimal interface is formalized
below in the definition of a separation oracle.

LECTURE 9. ELLIPSOID II: GROTSCHEL-LOVASZ-SCHRLJVER THEOREMS 4

Definition 9.3. A strong separation oracle for K, when given as input s € Q", either
returns “s € K7, or a € Q" such that a'x < a's for all z € K.

There’s one more tiny condition that we enforce on these oracles, and it is that the
separating hyperplane it returns should have a manageable bit complexity—polynomial in
the relevant parameters. Without this constraint, one could design a malicious separation
oracle which always returns separating hyperplanes of exponential bit complexity, and then
there’s nothing the Ellipsoid Algorithm can do, no matter how clever we are in designing it.

We’ve already constructed a separation oracle, implicitly, for polytopes in the Ellipsoid
Algorithm for linear programs last lecture. Let’s go through an example for a different type
of convex set. Let K be the unit ball, i.e. K = B(0,1). Given s € QQ", the separation oracle
for K is

o If ||s]|* < 1, return “s € K”. Otherwise, return s.

That s is a good separating hyperplane is verified by the following simple calculation, which
holds for x € K:
sta < |lsl| - flzfl < [Isl < [Is]* = s"s.

The first inequality is by Cauchy-Schwarz, the second is because ||z|| < 1, and the third is
because ||s|| > 1.

Implementing the separation oracle is easy for the unit ball, but it may not be quite so
easy for some less explicit convex set. Indeed, why would you want to run the Ellipsoid
Algorithm on a general convex set? If you could compute the separation oracle, you might
well be able to compute feasibility already. Well, we’d like to maximize a linear function
over the set, the problem

max CTiL'

st. xe K.

Recall that to solve this using a feasibility tester such as the Ellipsoid Algorithm, we do a
binary search over the possible optimum values 7, at each step of the search testing feasibility
of the region K’ := K N{x : ¢z > ~}. Say that we were given SEP, a separation oracle
for K. We would somehow also need to design a separation oracle for K’. Fortunately, this
quite easy. Given s € QQ", the separation oracle for K’ is

o If ¢"s <, return —c. Otherwise, return SEP(s).

9.4 General convex sets

This looks promising for optimizing a linear function over K, but when should we stop the
binary search? With a linear program, we could stop in a fixed number of steps because
we knew the optimal was a rational of bounded repesentation size. For a general K, on the
other hand, it is possible, for instance, that the optimum is irrational, meaning that we have
no hope of finding it. Examples of this aren’t too hard to cook up. Consider

max x+y
st. 22 +2y2 <1

LECTURE 9. ELLIPSOID II: GROTSCHEL-LOVASZ-SCHRLJVER THEOREMS 5

The optimum is 4/3/2.

The issues aren’t specific to the binary search either; the Ellipsoid Algorithm simply
cannot test feasibility for general convex sets. The Ellipsoid Algorithm works by generating
a series of smaller and smaller ellipsoids which contain K. In the case of linear programs,
we were able to guarantee that either the associated polytope was infeasible, or it contained
a ball of large enough radius. Thus, when the ellipsoids reach a certain small size, we can
guarantee that their centers must be contained in the polytope, if it exists. But we cannot
make a similar guarantee for a general convex set. In the extreme, the set may be a single
point, in which case the Ellipsoid Algorithm can never hone in on K completely.

Finally, even if the set K starts out large, it is possible that the Ellipsoid Algorithm
nonetheless has to determine feasibility of extremely small regions, due to the binary search.
It could be that the convex set K N{c"x > v} is quite small. This is illustrated in Figure 9.1,
where the binary search reduces the region the size of the feasible region.

S

Figure 9.1: Binary search on the region K

At this point, we must either give up all hope of optimizing over general convex sets or
define a relaxed notion of what it means to optimize (we’ll opt for the latter). The relaxed
notion of optimization involves demanding that the optimization only be approximate, in
two separate ways. First, we saw that one of the two issues with optimizing over general K
is that K may be too small. To rectify this, we introduce two approximate versions of K,

Kt :={y:|ly—z| <e forsomexe K}

and K “:={x: B(z,e) C K}.

Think of K¢ as the set of points “almost in K, and K¢ as the set of points “deep in
K”. Note that if K is not full dimensional, then K¢ is empty. In our relaxed form of
approximation, we will only require the algorithm to optimize with respect to these sets.

The other area where we must allow for some approximation is in the objective value of
the solution. Instead of requiring that it be optimal, we require only that it be near-optimal.
With these notions in place, we can now state the following key definition:

LECTURE 9. ELLIPSOID II: GROTSCHEL-LOVASZ-SCHRLJVER THEOREMS 6

Definition 9.4. The task of weak optimization of

max CTI'

s.t. xe K.
is, when given a positive € € @), to
e Either output “K~¢" is empty;
e Or,finday € K*¢such that ¢’z < c'y+eforall z € K

As stated before, we may never find a point exactly in K, or a point which optimizes
exactly in K. So we must settle for weak optimization. One benefit of this is that we will
only need a “weak” separation oracle to carry out weak optimization.

Definition 9.5. A weak separation oracle for K, when given as input s € Q" and a positive
§ € Q, asserts “s € K+ if this is true, and otherwise returns a € Q" such that ||a|. = 1
and a'z < a's+ 4 for all z in K9.

The constraint on the infinity norm of a is needed, because without it, setting a := 0
would always satisfy the approximate separating hyperplane constraint. Why can we now
get away with using a weak separation oracle? Well, we’re to have precision errors in the
Ellipsoid Algorithm anyway, so a slight lack of precision here is (0 := 277) will not matter.
With this in place, we are now ready to state the following general theorem:

Theorem 9.6. Given R and a weak separation oracle for a convex K C B(0, R), we can
weakly optimize over K in time poly(n, (R), (€)).

As a preview of things to come, we will use this to solve semidefinite programs in the
next lecture.

9.5 Even more theorems

The remainder of this lecture will focus on a couple of the other results from [GLS88|. These
are quite difficult to prove, so the discussion will be of a lighter nature.

9.5.1 Membership oracles

To start with, say you don’t have a separation oracle for K, just a membership oracle.
Recall that a membership oracle can test s € K. This is a much more natural concept than
a separation oracle, and it would be peachy if it were sufficient. Can we optimize over K, or
even perform feasibility testing? Unfortunately, the answer is no. With only a membership
oracle it’s easy to see that an “adversarial set” K can “evades” any points you query; you
may never even “find” the set. However, say that in addition to a membership oracle, you
are given a small ball that inhabits K: a point s € Q" and a radius » > 0 such that
B(sg,r) C K. Then the following theorem says that this is sufficient to weakly optimize.

LECTURE 9. ELLIPSOID II: GROTSCHEL-LOVASZ-SCHRLJVER THEOREMS 7

Theorem 9.7. [YN76, GLS88] Given positive R, r € Q, a point s € Q" such that
B(sg,7) € K C B(sg, R) and a weak membership oracle for K, then one can weakly op-
timize over K in time poly(n, (R), (r), (€), (so)).

(Here is the definition of a weak membership oracle: when given s € Q™ and a positive
§ € @, it reports either that s € K*° or s ¢ K9.)

Ryan was not completely positive on how the proof of this goes, but here is what he
thinks is the general outline. Basically, you want to use the weak membership oracle and
the small ball of radius r to implement some sort of separation oracle. Then you can appeal
to Theorem 9.6. Remember that a separation oracle, given a point s, does a membership
test and, if that fails, returns a separating hyperplane. We have a membership oracle, so
the membership test is easy, but what to do for the separating hyperplane is a little more
complicated.

Figure 9.2: Crossing the boundary of K.

In this case, we know (roughly) that s ¢ K, and we also that the point sg is in K. Thus,
if we draw a line segment from s to sg, there is a point on the line segment where the line
segment crosses the boundary of K. If we sample points on the line at intervals of roughly
1/e from each other, as in Figure 9.2, we can find “adjacent” points on the line which lie on
either side of the boundary of K. Now, if we test a lot of directions in a small ball around
these points, we can find what is roughly the the tangent to the boundary, and we can use
this direction as the separating hyperplane. The main problem with this is that it runs
in time poly(1/e) rather than poly({€)), but there is a variant of the Ellipsoid Algorithm
(“Shallow Cut”) for which this is sufficient.

9.5.2 General convex functions

A natural question is whether the functions we optimize must be linear, or whether they can
be more general. Indeed, the results hold for any convezr function f : R™ — R. Recall that
a convex function is one in which for all points z,y € R™ and t € [0, 1],

fltz+ (L =t)y) <tf(x) + (1 —t)f(y).

LECTURE 9. ELLIPSOID II: GROTSCHEL-LOVASZ-SCHRLJVER THEOREMS 8

As always, we have to worry about what interface we have with f: an oracle for f, when
given z € Q" and a positive 6 € @, outputs a y € Q such that |f(x) —y| < d. Furthermore,
the oracle should run in time poly({x), (4)). Given this, we have the following theorem:

Theorem 9.8. Let f be a convex function. Given positive R, r € QQ, a point s € Q" such
that B(sg,r) € K C B(sg, R) and a weak membership oracle for K, then one can weakly
optimize f over K in time poly(n, (R), (r), (€), (so)).

We can even give a short “proof” of this (omitting a few easy-to-work-out details), by
converting it into the case covered by Theorem 9.7. First, note that the region L := {(z,7) €
R™™ . f(z) < 7} is convex. Then weakly optimizing f over K is equivalent to weakly
optimizing the following program:

max 0-z+(—1)-v
st. ze€K, (x,7)€lL,

which is just optimizing a linear constraint over a convex region.

9.5.3 Solving large LPs

For our last topic, we’ll cover the well-known case of solving linear programs with exponen-
tially many constraints (and only a separation oracle). Why is this any different from what
we have already covered? The biggest problem is that the linear program may not be full
dimensional. For example, in the following figure, we see centers s; drawing nearer to the
region K and the ellipsoids growing taller and flatter, but they never actually find K.

Figure 9.3: Ellipsoids closing in on a region K not of full dimension.

This difficulty is quite inherent and cannot be easily evaded. How could one try to resolve
it? Well, the ellipsoids are getting really flat, so they seem to identify a lower dimensional
subspace. So if we could identify this subspace and “jump” into it, we could continue testing

LECTURE 9. ELLIPSOID II: GROTSCHEL-LOVASZ-SCHRLJVER THEOREMS 9

for feasibility of K in a subspace in which it is full-dimensional. This is indeed the idea
behind the resolution of the problem. How to do this “subspace identification” is a difficult
matter and it involves something called “simultaneous diophantine approximation”. The
scenario in simultaneous diophantine approximation is that there’s a list of numbers, all
almost expressible as integers over a certain bounded denominator, and the task is to find
this denominator. This problem can be approximately solved by the so-called LLL algorithm,
created by Lenstra, Lenstra, and Lovédsz. (The third major contribution in the area involving
Lovész!)

The wonderful result of this is that we are able to get the following your-wildest-dreams-
can-come-true theorem for large linear programs.

Theorem 9.9. Let K be {x : Ax < b} C R", with each inequality a'xz < b satisfying
(a), (by < l. (The number of inequalities here must be finite.) Assume access to a strong
separation oracle for K. Then in time poly(n,l), you can:

e Perform feasibility/unboundedness testing.

e Perform exact optimization of primal and dual.
e Find an optimal vertex.

e cic.

In essence, with this result, anything you can think of, you can do. The one downside is
that in exchange for this, the proof is really hard.

Wrap-up. We've seen that the Ellipsoid Algorithm is capable of solving a diversity of con-
vex optimization problems. In spite of its being relatively inefficient in practice, it has great
theoretical value. Next lecture, we will apply the Ellipsoid Algorithm to solve semidefinite
programs, an important class of optimization problems.

Bibliography

[GLS88] Martin Grotschel, Laslo Lovasz, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer, 1988. 9, 9.5, 9.7

[Tar86] Eva Tardos. A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Operations Research, 34(2):250-256, 1986. 9.1

[YN76] David Yudin and Arkadi Nemirovski. Informational complexity and effective meth-

ods of solution of convex extremal problems. Fconomics and mathematical methods,
12:357-369, 1976. 9.7

10

	More on Ellipsoid: Grötschel-Lovász-Schrijver theorems
	LP runtime
	Numerical details
	Separation oracles
	General convex sets
	Even more theorems
	Membership oracles
	General convex functions
	Solving large LPs

