
Lecture 7

Duality Applications (Part II)∗

In this lecture, we’ll look at applications of duality to three problems:

1. Finding maximum spanning trees (MST). We know that Kruskal’s algorithm finds this,
and we’ll see a proof of optimality by constructing an LP for MST, and exhibiting a
feasible dual solution whose cost is equal to the MST.

2. Finding minimum cost arborescences. We’ll see an algorithm given independently by
Edmonds, Chu & Liu, and Bock, which uses the dual to guide the algorithm, and to
give a proof of the optimality of the solution.

3. Finally, we’ll look at an LP formulation of non-bipartite matchings : this formulation
is due to Edmonds, and we’ll give a proof (due to Schrijver) that shows the integrality
of all vertices of the perfect matching polytope we write down.

7.1 Maximum spanning tree

Given a graph G = (V,E), and edge weights we ≥ 0, the goal is to output a spanning tree
of maximum weight. To design a linear program for this problem, we use variables {xe}e∈E.

Notation 7.1. For a set S ⊆ V , we denote by δS the set of edges leaving S. For A ⊆ E,
define x(A) =

∑
e∈A xe.

Consider the following LP.

max
∑
e∈E

wexe

s.t. 1 ≥ xe ≥ 0∑
e∈E

xi = n− 1

x(δS) ≥ 1 ∀S 6= ∅, V

*Lecturer: Anupam Gupta. Scribe: Carol Wang.

1

LECTURE 7. DUALITY APPLICATIONS (PART II) 2

Note: In class we left it as an exercise to see whether every vertex of this LP was integral. It
is not : on the blog we later saw the following counterexample.

Figure 7.1:

The maximum weight spanning tree has weight 2. However, the LP solution given here (with
xe = 1/2 on the thin edges, and xe = 5/6 on the thick ones) has w>x = 3 · 5/6 = 2.5. It also
has

∑
e xe = 3 · 1/2 + 3 · 5/6 = |V | − 1, and you can check it satisfies the cut condition. (In

fact, the main gadget that allows us to show this LP has an “integrality gap” is to assign 1/2
to the edges of the thin triangle — much like for the naive non-bipartite matching LP you’ll
see later in this lecture.)

Well, we tried. Let’s consider a slightly different LP. For S ⊆ V , let ES denote all edges
between vertices in S. (For simplicity, we will assume in this lecture that all the edge weights
are non-negative.)

max
∑
e∈E

wexe

s.t. x(ES) ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 1 (P)

xe ≥ 0

Remark 7.2. Any spanning tree satisfies these constraints. Therefore, opt(P) is at least
the weight of the maximum spanning tree.

Recall that Kruskal’s algorithm starts with a forest consisting of all the vertices, and
iteratively adds the heaviest edge which connects two trees.

Theorem 7.3. There exists an integer optimum for the LP P, and Kruskal’s algorithm finds
it.

Proof. We will construct a dual solution such that its value is the value of the MST which
Kruskal finds. Let’s write down the dual.

Notation 7.4. For a set S, write r(S) := |S| − 1. (This is the size of a spanning tree on S.)

Then the dual of P is

min
∑
S 6=∅

r(S)yS

s.t.
∑

S:e∈ES

yS ≥ we ∀e ∈ E (D)

yS ≥ 0

That is, we should assign a value to each nonempty subset of vertices which gives
“enough” weight to each edge.

LECTURE 7. DUALITY APPLICATIONS (PART II) 3

a b

c d e

5

2

10

1

1
(a) Graph G

de

ac

cd ab

(b) Resulting tree

Figure 7.2: Example for Kruskal’s algorithm

Primal solution

Kruskal: Pick edges K = {e1, e2, . . . , en−1} with w(e1) ≥ w(e2) ≥ · · · ≥ w(en−1). Then a
primal solution is given by

xe =

{
1 e ∈ K
0 e /∈ K

.

The value of this solution is
∑

ewexe, which is exactly the value of the Kruskal solution.

Dual solution

Suppose that we run Kruskal on our graph. We consider the sequence of components satisfied
by the addition of each edge. This naturally induces a tree structure on the edges of the
MST, where the parent of a subtree corresponding to some component C is the first edge
added to the MST which leaves C.

For example, in Figure 7.2a, choosing the edges (c, d) and (a, b) satisfy the components
{a, b} and {c, d}, and adding (a, c) satisfies the entire component {a, b, c, d}. The final edge
(d, e) then satisfies the entire tree.

We will consider the tree induced by Kruskal’s algorithm.

Notation 7.5. Let V (ej) be the set of vertices spanned by the edges in the subtree rooted
at ej.

We will write T (ej) for this subtree.

Define a dual solution yS by

yS =

{
wej
− wparent(ej) S = V (ej) for some j

0 else
.

Example 7.6. For Figure 7.2b, we have y{c,d} = 10 − 2 = 8, y{a,b} = 5 − 2 = 3, y{a,b,c,d} =
2− 1 = 1, and y{a,b,c,d,e} = 1− 0 = 1.

We will show both that this solution is feasible, and that its value is exactly the value of
the maximum spanning tree, proving the theorem.

LECTURE 7. DUALITY APPLICATIONS (PART II) 4

Lemma 7.7. yS is feasible.

Proof. Kruskal’s algorithm is greedy, and the parent of any edge is added after that edge, so
yS ≥ 0.

To show
∑

S:e∈ES
yS ≥ we for every edge, fix an edge e. Consider the first time e lies in

T (ej) for some j, and consider a path p1 = ej, . . . , pk from ej to the root of our tree. e lies
in V (pi) for each i, and in particular, by nonnegativity,∑

S:e∈ES

yS ≥
∑
i

yV (pi) = wp1 − wp2 + · · ·+ wpk
= wp1 = wej

≥ we,

where in the last step we used the fact that if we were greater than wej
, then we would have

chosen e rather than ej.

Lemma 7.8. ∑
S 6=∅

r(S)yS =
∑
e∈K

we.

(Recall K is the spanning tree output by Kruskal.)

Proof. We prove by (strong) induction the slightly stronger statement that∑
S⊆V (ej)

r(S)yS =
∑

e∈T (ej)

we − r
(
V (ej)

)
wparent of ej

for every ej ∈ K.
We induct on the number of nodes in the subtree T (ej). In the base case, T (ej) is a leaf,

so |V (ej)| = 2 and the claim holds by our definition of yS.
Therefore, suppose that the claim holds for subtrees of ≤ k nodes, and consider T (ej) of

k + 1 nodes.

Case 1. ej has one child, e, in T (ej). Then V (ej) = V (e) ∪ {u} for some vertex u /∈ V (e). In
particular, r(V (e)) = r(V (ej))− 1. Then

∑
S⊆V (ej)

r(S)yS =

 ∑
S⊆V (e)

r(S)yS

+ r(V (ej))yV (ej)

=

 ∑
e∈T (e)

we − r(V (e))wej

+ r(V (ej))yV (ej),

using the inductive hypothesis.

Since r(V (e)) = r(V (ej))− 1 and yV (ej) = wej
− wparent(ej), the claim holds.

Case 2. ej has two children e, e′ in T (ej). Then V (ej) = V (e) ∪ V (e′), and V (e) ∩ V (e′) = ∅.
In particular, r(V (ej)) = r(V (e)) + r(V (e′)) + 1. Applying the inductive hypothesis to
T (e) and T (e′), we can simplify as in Case 1.

Recall that yS = 0 unless S = V (e) for some e ∈ K.

LECTURE 7. DUALITY APPLICATIONS (PART II) 5

Thus the maximum spanning tree LP has an integer optimum given by Kruskal’s algo-
rithm.

7.2 Minimum cost arborescence

Think of these as spanning trees on directed graphs. Given a directed graph G = (V,E)
with a root vertex r, an arborescence of G is a subgraph T = (V,ET) such that:

1. Every node is connected to r, and there are no cycles even if we ignore directions.

2. Every node has a directed path to r.

Remark 7.9. One often sees this definition with directed paths from r to other nodes, but
we will use this convention.

Remark 7.10. An arborescence may not exist for a given root r, but a certificate of infea-
sibility is a vertex with no path to r.

Note that it may also not be unique. Furthermore, the following example shows that
adapting Prim’s algorithm (greedily starting at the root) may not yield an optimal solution.

r

u

v

3

4

1

Notation 7.11. We write δ+S to denote the set of edges leaving S for any S ⊆ V .

We will assume ce ≥ 0 for every e. The primal LP is

min
∑
e∈E

cexe

s.t. x(δ+S) ≥ 1 S valid (P)

xe ≥ 0

and the dual is

max
∑
S valid

yS

s.t.
∑

S:e∈δ+S

yS ≤ ce ∀e (D)

ys ≥ 0

where we will call S ⊆ V valid if S is nonempty and r /∈ S.

LECTURE 7. DUALITY APPLICATIONS (PART II) 6

Algorithm for minimum cost arborescence

1. If zero-weight edges connect every v 6= r to r, then we get a (integral) primal solution
of value 0 (using depth first search or similar). A matching dual solution sets yS = 0
for every S. In particular, this is optimal.

2. Otherwise, consider the graph restricted to zero-weight edges. Choose a maximal
strongly connected component C of this subgraph. Then in the graph with all edges,
there are no zero-weight edges out of C. Let c∗ = mine∈δ+C ce. For each e ∈ δ+C,
define updated weights c′e = ce − c∗.
Run the algorithm recursively on G with C contracted to one vertex Ĉ and with the
updated weights to get optimal primal/dual solutions xe, yS for the contracted graph.
Inductively, xe will be integral.

Let A be an arborescence on C (of zero cost). Define primal/dual solutions x̂e, ŷS for
the uncontracted graph by

x̂e =


xe e /∈ C
1 e ∈ A
0 e ∈ C \ A

ŷS =


yS C 6⊆ S

yĈ + c∗ S = C

yS\C∪{Ĉ} C (S

.

Remark 7.12. If
∑
c′exe =

∑
yS (i.e., if the primal and dual solutions mutually certify

optimality), then
∑
cex̂e =

∑
ŷS. This holds since

∑
yS + c∗ =

∑
ŷS. Furthermore, in any

minimal arborescence on the contracted graph, exactly one edge from δ+C will be chosen.

Lemma 7.13. x̂e and ŷS are feasible.

Proof. x̂e is feasible because xe is feasible (and clearly the arborescence A satisfies the con-
ditions). To show ŷS is feasible, we only need to check

∑
S:e∈δ+S ŷS ≤ ce for e ∈ δ+C. It is

easy to see that this holds by definition of ŷS, since
∑
yS ≤ ce − c∗.

Note: This LP we wrote for arborascences is very similar to the one we first wrote for spanning
trees, but that one did not work, whereas this one does! Interesting. Indeed, this LP can be
used to give an algorithm for MSTs on undirected graphs.

Indeed, take an undirected graph and replace each undirected edge by two directed edges of the
same weight, pointing in opposite directions. Now the max-weight arborescence in this digraph
has the same weight as the maximum spanning tree in the original graph. So an LP that looks
pretty similar to the failed undirected one (namely max{w>x | x(∂v) = 1, x(∂S) ≥ 1, x ≥ 0})
on that specially constructed directed graph gives an arborescence that corresponds to an
integral maximum spanning tree on the original undirected graph.

7.3 Minimum cost perfect matching

We saw how to do this in the bipartite case, but suppose we just have a general graph.

LECTURE 7. DUALITY APPLICATIONS (PART II) 7

Here is the LP we were using before.

min
∑
e

cexe

s.t.
∑
e∈δv

xe = 1 v ∈ V

xe ≥ 0

This does not necessarily have integer vertices: consider an unweighted triangle. By
assigning each edge 1/2, we get a solution of value 1.5, but the maximum integral matching
has value 1.

But suppose we added the constraint x(δS) ≥ 1 for every odd set S. Now our LP is

min
∑
e

cexe

s.t.
∑
e∈δv

xe = 1 v ∈ V (P)

x(δS) ≥ 1 2 - |S|
xe ≥ 0

Note that in the second set of constraints, we can just consider S of size at least 3 and at
most |V |−3: if |S| = 1 or |V |−1, then the first set of constraints already implies x(∂S) = 1.
So just focus on

x(∂v) = 1 ∀v ∈ V
x(∂S) ≥ 1 ∀S ⊂ V, |S| odd , 3 ≤ |S| ≤ |V | − 3

x ≥ 0

Let us call this perfect matching polytope PM . We’ll call the first set of equalities the vertex
constraints, and the second set the odd-set inequalities.

Remark 7.14. The odd-set inequalities are satisfied by any perfect integral matching, be-
cause at least one vertex in an odd set must be matched to a vertex outside the set.

Theorem 7.15 (Edmonds). Every vertex of P is integral.

Proof. This was proven on the course blog. For completeness, the proof is copied here.

Suppose not, and suppose there exists graphs for which there is a fractional vertex.
Consider a minimal counterexample G = (V,E) (minimizing the sum of |V |+ |E|, say), and
some vertex solution x that is not integral. Clearly, |V | must be even, else it will not satisfy
the odd set constraint for S = V . First, the claim is that G cannot have a vertex of degree 1,
or be disconnected (else we’ll get a smaller counterexample) or be just an even cycle (where
we know this LP is indeed integral). Being connected implies that |E| ≥ |V |−1, and neither
being a cycle nor having a degree-1 vertex implies that |E| 6= |V |. So |E| > |V |.

LECTURE 7. DUALITY APPLICATIONS (PART II) 8

Recall there are |E| variables. So any vertex/BFS is defined by |E| tight constraints. If
any of these tight constraints are the non-negativity constraints xe ≥ 0, then we could drop
that edge e and get a smaller counterexample. And since at most |V | tight constraints come
from the vertex constraints. So at least one odd-set constraint should be tight. Say this
tight odd-set constraint is for the odd set W ⊆ V with |W | ≥ 3: i.e.,

x(∂W) = 1

Now consider the two graphs G/W and G/W obtained by contracting W and W to a single
new vertex respectively, and removing the edges lying within the contracted set. Since both
W and W have at least 3 vertices, both are smaller graphs.

Now x naturally extends to feasible solutions y and z for these new graphs. E.g., to get
y, set ye = xe for all edges e ∈ E \

(
W
2

)
. Note that if the set W got contracted to new vertex

ŵ in G/W , then the fact that x(∂W) = 1 implies that y(∂ŵ) = 1, and hence y is a feasible
solution to the perfect matching polytope for graph G/W . Similarly, z is a feasible solution
to the perfect matching polytope for graph G/W .

By minimality of G, it follows that the perfect matching LP is integral for both G/W
and G/W : i.e., the vertices of the perfect matching polytope for these smaller graphs all
correspond to perfect matchings. And that means that

y =
∑
i

λi · χMi
,

where χMi
is the natural vector representation of the perfect matching Mi in G/W , for values

λi ≥ 0,
∑

i λi = 1. Also, λi’s can be taken to be rational, since y is rational, as are χMi
.

Similarly, we have a rational convex combination

z =
∑
i

µi · χNi
,

where Ni are perfect matchings in G/W . Since λi, µi are rationals, we could have repeated
the matchings and instead written

y =
1

k

∑
i

χMi

z =
1

k

∑
i

χNi

Finally, we claim that we can combine these to get

x =
1

k

∑
i

χOi

where Oi’s are perfect matchings in G. How? Well, focus on edge e = {l, r} ∈ ∂W , with
l ∈ W . Note that ye = ze = xe. If we look at k matchings Mi in the sum for y: exactly xe
fraction of these matchings Mi – that is, kxe matchings – contain e. Similarly, exactly kxe

LECTURE 7. DUALITY APPLICATIONS (PART II) 9

of the matchings Ni in the sum for x contain e. Now we can pair such matchings (which
share a common edge in ∂W) up in the obvious way: apart from the edge e, such an Mi

contains edges only within W and matches up all the vertices in W except vertex r, and Ni

contains edges only within W and matches up all the vertices in W \ {l}. And e matches up
{l, r}. Hence putting together these perfect matchings Mi and Ni in G/W and G/W gets
us a perfect matching Oi for G.

So x can be written as a convex combination of perfect matchings of G. Hence, for x to
be an extreme point (vertex) itself, it must be itself a perfect matching, and integral. This
gives us the contradiction.

Max-Weight Matchings

We didn’t get to this, but suppose you want to write an LP whose vertices are precisely
(integral) matchings in G, not just the perfect matchings. Here is the polytope Edmonds
defined.

x(∂v) ≤ 1 ∀v ∈ V∑
e∈(S

2)
xe ≤ |S|−1

2
∀S ⊂ V, |S| odd

x ≥ 0

Clearly, all matchings in G are feasible for this LP. Moreover, one can use the Perfect
Matching Theorem above to show that every vertex of this polytope is also integral.

	Duality Applications (Part II)
	Maximum spanning tree
	Minimum cost arborescence
	Minimum cost perfect matching

