
Lecture 5

LP Duality∗

In Lecture #3 we saw the Max-flow Min-cut Theorem which stated that the maximum flow
from a source to a sink through a graph is always equal to the minimum capacity which
needs to be removed from the edges of the graph to disconnect the source and the sink. This
theorem gave us a method to prove that a given flow is optimal; simply exhibit a cut with
the same value.

This theorem for flows and cuts in a graph is a specific instance of the LP Duality
Theorem which relates the optimal values of LP problems. Just like the Max-flow Min-cut
Theorem, the LP Duality Theorem can also be used to prove that a solution to an LP
problem is optimal.

5.1 Primals and Duals

Consider the following LP

P = max(2x1 + 3x2)

s.t. 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1, x2 ≥ 0

In an attempt to solve P we can produce upper bounds on its optimal value.

• Since 2x1 + 3x2 ≤ 4x1 + 8x2 ≤ 12, we know OPT(P ) ≤ 12.

• Since 2x1 + 3x2 ≤ 1
2
(4x1 + 8x2) ≤ 6, we know OPT(P ) ≤ 6.

• Since 2x1 + 3x2 ≤ 1
3
((4x1 + 8x2) + (2x1 + x2)) ≤ 5, we know OPT(P ) ≤ 5.

In each of these cases we take a positive linear combination of the constraints, looking
for better and better bounds on the maximum possible value of 2x1 + 3x2. We can formalize
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this, letting y1, y2, y3 be the coefficients of our linear combination. Then we must have

4y1 + 2y2 + 3y2 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0

and we seek min(12y1 + 3y2 + 4y3)

This too is an LP! We refer to this LP as the dual and the original LP as the primal. The
actual choice of which problem is the primal and which is the dual is not important since
the dual of the dual is equal to the primal.

We designed the dual to serve as a method of constructing an upperbound on the optimal
value of the primal, so if y is a feasible solution for the dual and x is a feasible solution for
the primal, then 2x1 + 3x2 ≤ 12y1 + 3y2 + 4y3. If we can find two feasible solutions that
make these equal, then we know we have found the optimal values of these LP.

In this case the feasible solutions x1 = 1
2
, x2 = 5

4
and y1 = 5

16
, y2 = 0, y3 = 1

4
give the

same value 4.75, which therefore must be the optimal value.

5.1.1 Generalization

In general, the primal LP

P = max(c>x | Ax ≤ b, x ≥ 0, x ∈ Rn)

corresponds to the dual LP,

D = min(b>y | A>y ≥ c, y ≥ 0, y ∈ Rm)

where A is an m× n matrix.
When there are equality constraints or variables that may be negative, the primal LP

P = max(c>x)

s.t. aix ≤ bi for i ∈ I1
aix = bi for i ∈ I2
xj ≥ 0 for j ∈ J1

xj ∈ R for j ∈ J2

corresponds to the dual LP

D = min(b>y)

s.t. yi ≥ 0 for i ∈ I1
yi ∈ R for i ∈ I2

Ajy ≥ cj for j ∈ J1

Ajy = cj for j ∈ J2
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5.2 The Duality Theorem

The Duality Theorem will show that the optimal values of the primal and dual will be equal
(if they are finite). First we will prove our earlier assertion that the optimal solution of a
dual program gives a bound on the optimal value of the primal program.

Theorem 5.1 (The Weak Duality Theorem). Let P = max(c>x | Ax ≤ b, x ≥ 0, x ∈ Rn),
and let D be its dual LP, min(b>y | A>y ≥ c, y ≥ 0, y ∈ Rm). If x is a feasible solution for
P and y is a feasible solution for D, then c>x ≤ b>y.

Proof.

c>x = x>c

≤ x>(A>y) (Since y feasible for D and x ≥ 0)

= (Ax)>y

≤ b>y (Since x is feasible for P and y ≥ 0)

From this we can conclude that if P is unbounded (OPT(P ) =∞), then D is infeasible.
Similarly, if D is unbounded (OPT(D) = −∞), then P is infeasible.

Therefore we have the following table of possibilities for the feasibility of P and D.

P\D Unbounded Infeasible Feasible
Unbounded no yes no
Infeasible yes ??? ???
Feasible no ??? ???

The Duality Theorem allows us to fill in the remaining four places in this table.

Theorem 5.2 (Duality Theorem for LPs). If P and D are a primal-dual pair of LPs, then
one of these four cases occurs:

1. Both are infeasible.

2. P is unbounded and D is infeasible.

3. D is unbounded and P is infeasible.

4. Both are feasible and there exist optimal solutions x, y to P and D such that c>x = b>y.

We have already seen cases 2 and 3 as simple consequences of the Weak Duality Theorem.
The first case can easily be seen to occur: a simple example takes A to be a 0 matrix, b
to be strictly negative, and c to be strictly positive). Therefore the only remaining case of
interest is case 4.

Geometric Proof. Let P be the program max(c>x | Ax ≤ b, x ∈ Rn) and D be dual program
min(b>y | A>y = c, y ≥ 0).

Suppose x∗ is an optimal feasible solution for P . Let a>i x ≤ bi for i ∈ I be all the
constraints tight at x∗. We claim that the objective function vector c is contained in the
cone K = {x | x =

∑
i∈I λiai, λi ≥ 0} generated by the vectors {ai}i∈I .
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Figure 5.1: The objective vector lies in the cone spanned by the constraint vectors

Suppose for contradiction that c does not lie in this cone. Then there must exist a
separating hyperplane between c and K: i.e., there exists a vector d ∈ Rn such that a>i d ≤ 0
for all i ∈ I, but c>d > 0. Now consider the point z = x∗ + εd for some tiny ε > 0. Note the
following:

• For small enough ε, the point z satisifes the constraints Az ≤ b. Consider a>j z ≤ b
for j 6∈ I: since this constraint was not tight for x∗, we won’t violate it if ε is small
enough. And for a>j z ≤ b with j ∈ I we have a>j z = a>j x

∗ + εa>j d = b+ εa>j d ≤ b since
ε > 0 and a>j d ≤ 0.

• The objective function value increases since c>z = c>x∗ + εc>d > c>x∗.

This contradicts the fact that x∗ was optimal.
Therefore the vector c lies within the cone made of the normals to the constraints, so c is a

positive linear combination of these normals. Choose λi for i ∈ I so that c =
∑

i∈I λiai, λ ≥ 0
and set λj = 0 for j 6∈ I.

• We know λ ≥ 0.

• A>λ =
∑

i∈[m] λiai =
∑

i∈I λiai = c.

• b>λ =
∑

i∈I biλi =
∑

i∈I(aix
∗)λi =

∑
i∈I λiaix

∗ = c>x∗.

Therefore λ is a solution to the dual with c>x∗ = b>λ, so by The Weak Duality Theorem,
OPT(P ) = OPT(D).

A somewhat more rigorous proof not relying on our geometric intuition that there should
be a separating hyperplane between a cone and a vector not spanned by the cone relies on
a lemma by Farkas that often comes in several forms. The forms we shall use are as follows

Theorem 5.3 (Farkas’ Lemma (1894) - Form 1). Given A ∈ Rm×n and b ∈ Rm, exactly
one of the following statements is true.
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1. ∃x ≥ 0 such that Ax = b.

2. ∃y ∈ Rm such that y>A ≥ 0 and y>b < 0.

Theorem 5.4 (Farkas’ Lemma - Form 2). Given A ∈ Rm×n and b ∈ Rm, exactly one of the
following statements is true.

1. ∃x ∈ Rn such that Ax ≥ b.

2. ∃y ≥ 0, y>A = 0, and y>b > 0.

Proofs. Left to the reader (homework 2).

Duality Theorem using Farkas’ Lemma. Let P be the program min(c>x | Ax ≥ b, x ∈ Rn)
and D be dual program max(b>y | A>y = c, y ≥ 0).

Suppose the the dual is feasible and its maximum value is δ. Let P ′ = {x | Ax ≥ b, c>x ≤
δ}. If P ′ has a feasible solution, then P must also have a feasible solution with value at most
δ. The LP P ′ is also equivalent to {x | Ax ≥ b,−c>x ≥ −δ}.

Suppose for contradiction P ′ is infeasible. Then by Farkas’ Lemma (Form 2) there exists(
y
λ

)
≥ 0 such that

(y> λ)

(
A
−c>

)
= 0 and (y> λ)

(
b
−δ

)
> 0

This implies y>A− λc> = 0 and y>b− λδ > 0.

• If λ = 0, then y>A = 0 and y>b > 0. Choose z ≥ 0 such that A>z = c and b>z = δ.
Then for ε > 0,

A>(z + εy) = 0

z + εy ≥ 0 (Since y ≥ 0)

b>(z + εy) = δ + εb>y

> δ

so z + εy is a feasile solution of D with value greater than δ, a contradiction.

• Otherwise we can scale y and λ to make λ = 1 (since y, λ ≥ 0), so y>A = c> and
y>b > δ. This means y is a solution to D with value greater than δ, a contradiction.

Therefore P ′ is feasible, so P is feasible with value at most δ. By The Weak Duality
Theorem, OPT(P ) = δ = OPT(D).

In the next couple of lectures, we will continue to explore duality, and its applications.
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