
Lecture 4

Avis-Kaluzny and the Simplex
Method∗

Last time, we discussed some applications of Linear Programming, such as Max-Flow, Match-
ing, and Vertex-Cover. The broad range of applications to Linear Programming means that
we require efficient algorithms to solve it.

4.1 The Avis-Kaluzny Algorithm

The Avis-Kalunzy Algorithm is designed to find a basic feasible solution (BFS) of a given
set of constraints. Its input: A ∈ Rm×n and b ∈ Rm such that

Ax ≤ b

x ≥ 0

Note that this algorithm requires the nonnegativity constraint to be present. The algo-
rithm proceeds as follows:

4.1.1 The Algorithm

Terminology The set of equations obtained in step 1 is called the tableau or dictionary.
The set basic variables B is a set of variables, initially a set of slack variables, which has the
property that each variable is alone on one side of each equation.
All other variables are called non-basic variables.
A basic variable is said to ”exit the basis” when step 4 causes it to no longer be a basic
variable, and a non-basic variable is said to ”enter the basis” when step 4 causes it to
become a basic variable.
Starting the algorithm:

*Lecturer: Ryan O’Donnell. Scribe: Aaron Snook.

1



Step 1: Slack Introduce slack variables xn+1...xn+m for each of the inequalities in A,
turning them into equations. Obviously, but importantly, like the other variables, these
slack variables also must be nonnegative.

Step 2: Try it Set all non-basic variables to 0, and see if this results in a BFS (does this
cause the basic variables to be positive?) If it is, output the value of each variable under
this assignment (or just the non-slack variables).

Step 3: B-rule Take the basic variable of minimum index that is negative in the assign-
ment in step 2; call it xb. On the other side of the selected equation, if all coefficients are
negative, return this equation as evidence that the equation is INFEASIBLE. Otherwise,
select the non-basic variable of minimum index that has a positive coefficient; call it xn.

Step 4: Pivot Solve the selected equation for xn in Step 3. This means that xn enters
the basis, and xb exits the basis. For every instance of xn in other equations, substitute the
other side of the selected equation. Go to step 2.

4.1.2 Example

Suppose we were given the following set of equations:

x1 + 2x2 ≤ 6

2x1 + x2 ≤ 6

2x1 + 2x2 ≥ 7

x1, x2 ≥ 0

After performing step 1, our tableau is:

x3 = −x1 − 2x2 + 6

x4 = −2x1 − x2 + 6

x5 = 2x1 + 2x2 − 7

We perform step 2: Set non-basic variables to 0. In this case, x1 and x2 are our non-basic
variables. This means that

x3 = 6

x4 = 6

x5 = −7

This is not feasible as x5 < 0. x5 is the lowest-indexed variable below 0, so we proceed to
step 3. We select the equation x5 = 2x1 + 2x2 − 7 and note x1 has a positive coefficient, so
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we select it for the pivot step.

We perform step 4 and solve for x1: x1 = 1
2
x5 − x2 + 7

2
. Go to step 2.

Our tableau is currently:

x3 = −1

2
x5 − x2 +

5

2
x4 = −x5 + x2 − 1

x1 =
1

2
x5 − x2 +

7

2

We set non-basic variables to 0.

x3 =
5

2
x4 = −1

x1 =
7

2
x1, x2, x3, x4, x5 ≥ 0

This is not a basic feasible solution. We continue, selecting x2 to pivot about x4:

x3 = −3

2
x5 − x4 +

3

2
x2 = x5 + x4 + 1

x1 = −1

2
x5 − x4 +

5

2

With the basic variables set to 0, we obtain

x3 =
3

2
x2 = 1

x1 =
5

2

Thus the solution x1 = 5
2
, x2 = 1, x3 = 3

2
, x4 = 0, x5 = 0 works and we return x1 = 5

2
, x2 = 1

It can be verified that this is a solution of the original problem.

4.1.3 Correctness

Step 2 At each stage, a satisfying assignment to the tableau also satisfies the original
tableau, as each tableau is a linear combination of previous tableaus.
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Step 3 Suppose that you have an equation where the basic variable is negative when all
non-basic variables are 0, and the coefficient of all non-basic variables is negative. This
means that if the non-basic variables in the equation are non-negative, the basic variable is
a sum of nonpositive terms, at least one of which is negative, and thus it is impossible to
make the basic variable positive, thus making the entire system infeasible.
The most important thing to verify about this algorithm is that it actually terminates.

Theorem 4.1. The Avis-Kaluzny algorithm terminates.

Proof. First of all, note that there are only finitely many possible tableaus for any given set
of constraints, as a set of basic variables uniquely determines a tableau given a set of initial
constraints.

So if this algorithm does not terminate, there must be a cycle among the possible tableaus.

Suppose that we have a cycle in the set of possible tableaus. We will assume that xn+m

enters and leaves the basis during this cycle.

Justification Suppose that xn+m does not enter and leave the basis during this cycle.
Then it follows that the tableau formed by removing xn+m in all equations (remove the
equation containing xn+m if xn+m is a basic variable, and remove all instances of xn+m from
all equations otherwise) will also cycle, and we consider that tableau instead.

When xn+m enters the basis, there must be an equation of the form

xb = k +
∑

a∈{1..m+n}

caxa + cm+nxm+n

where ci for all i ∈ {1..m + n} is the coeffient of xi in this equation, k is a constant, ci ≤ 0
for all i < m + n, k < 0, and xb is the basis variable.
k < 0 because xb must be negative when the non-basic variables are 0, and xi for all i < m+n
must be nonpositive as otherwise they would be chosen over xm+n to be the pivot.

This means that every solution to these equations with x1...xn+m−1 ≥ 0 has xn+m > 0;
otherwise xb would be a sum of nonpositive values with at least one negative term.

When xn+m leaves, if all non-basic variables are set to 0, as xn+m is lexicographically last,
all basic variables must be nonnegative on this assignment in order for xn+m to be chosen.
This is an assignment such that x1...xn+m−1 ≥ 0 but xn+m < 0, contradicting the fact we
proved when xn+m entered the basis!
By contradiction, there is no cycle in the set of possible tableaus, and therefore the Avis-
Kaluzny algorithm terminates.
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4.2 The Simplex Algorithm

The Simplex algorithm is an algorithm that steps from a BFS to a better BFS, improving
the quantity that we are trying to maximize (or minimize) at every step of the way.

Its input: A ∈ Rm×n, b, c ∈ Rm such that

max c>x

s.t. Ax ≤ b

x ≥ 0

4.2.1 The algorithm

Step 1: Slack Introduce slack variables xn+1...xn+m for each of the inequalities in A,
turning them into equations. This equations become your ”extended” tableau, which is
simply a tableau with the maximizing condition added on. You assume that you already
have a BFS in the sense that you assume that if all non-basic variables are set to 0, then the
basic variables will be non-negative.

Step 2: Improve In the expression to maximize, select a variable with a positive coeffi-
cient. This is called the improving variable. If this does not exist, then simply set all basic
variables to

Step 3: Pivot Pivot on the equation that limits the improving variable the most (sets the
lowest upper bound on it) by solving for the improving variable in that equation and then
substituting for that variable in all other equations, including the equation for the quantity to
be improved. Note that the upper bounds are conservative and assume that other variables
are 0. If there is no limit on the improving variable, there is no limit to the quantity that
needs to be maximized either.

4.2.2 Intuition

This algorithm can be viewed as “crawling along the edges” of the polytope representing
the set of feasible solutions. In particular, this figure represents the crawl that we perform
below.
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Figure 4.1: The traversal through the polytope in the Simplex example

4.2.3 Example

Consider the following equation:

max z = x1 + x2

s.t − x1 + x2 ≤ 1

x2 ≤ 2

x1 ≤ 3

x1, x2 ≥ 0

In step 1, we would make the following extended tableau:

max z = x1 + x2

s.t x3 = 1 + x1 − x2

x4 = 3− x1

x5 = 2− x2

Note this state represents the BFS 0 in Figure 4.1. as when the non-basic variables are
set to 0 x1 = x2 = 0.

In step 2, suppose that we choose x2 as our improving variable. Note that x3 = 1+x1−x2

limits x2 to 1 as we assume x1 is 0 for these purposes (we do not want to introduce an equa-
tion that causes a negative basic variable when non-basic variables are set to 0). x5 = 2−x2

limits x2 to 2 but this is not as strict of a bound. x4 = 3− x1 does not relate to x2.

In step 3, we pivot, so the tablau now looks like this:
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max z = 1 + 2x1 − x3

s.t x2 = 1 + x1 − x3

x4 = 3− x1

x5 = 1− x1 + x3

Note this represents the BFS 1 in Figure 4.1, as when the non-basic variables are set to
0 x1 = 0 and x2 = 1.

Now, we must choose x1 as our improving variable. x1 is not limited by the x2 equation,
but is limited to 3 by the x4 equation and 1 by the x5 equation.
So we pivot on the x5 equation to obtain the tableau

max z = 3− 2x5 + x3

s.t x2 = 2− x5

x4 = 2− x3 + x5

x1 = 1− x5 + x3

Note this represents the BFS 2 in Figure 4.1, as when the non-basic variables are set to
0 x1 = 1 and x2 = 2.

We choose x3 as the improving variable. It is limited to 2 by the x4 but is not limited by
the x1 equation.
So we pivot on the x4 equation:

max z = 5− x5 − x4

s.t x2 = 2− x5

x3 = 2− x4 + x5

x1 = 3− x4

Note this represents the BFS 3 in Figure 4.1, as when the non-basic variables are set to
0 x1 = 3 and x2 = 2. Notice this point is optimal.

There is no improving variable anymore, so we set x5 = 0, x4 = 0 and thus x3 = 2,
x2 = 2, x1 = 3, and so we return x1 = 3 and x2 = 2 as the optimal solution.

4.2.4 Issues

Unbounded? If this is the case, there will at some point be an improving variable that
has no constraints on it.
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No improvement? If you get an upper bound of 0 on a variable, your pivot will not
increase the quality of the solution by making the non-basic variables 0. Simply continue on
in this case.

It is possibile for the simplex algorithm to stall! (see the homework)

Also, there are a few choices that you have to make in this algorithm. In step 2, there
are often several improving variables to choose. In step 3, how do you resolve ties between
two equally constraining equations?

These choices actually affect some key runtime properties of the Simplex algorithm.

Pivoting Rule(choice of improving variable) Can cycle? Can take exponential time?
Largest Coefficient Yes Yes
Largest Increase Yes Yes
Steepest-Edge(most parralel to obj. vector) Yes Yes
Lexicographical Rules (Bland’s rules) No! Yes
Least-Entered Yes Yes
Clairvoyant (we know best route to opt.) Yes ?

Hirch’s Conjecture stated that the edge-vertex graph of any polytope with n points in
d-dimensional space has diameter at most n-d, which implies that a clairvoyant Simplex
algorithm could reach the optimum in linear time. This was disproven in 2010 by Francisco
Santos Leal, but it is still possible (and an open problem) whether or not the diameter of a
polytope is polynomial in the number of points.
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