
Lecture 1

LPs: Algebraic View∗

1.1 Introduction to Linear Programming

Linear programs began to get a lot of attention in 1940’s, when people were interested in
minimizing costs of various systems while meeting different constraints. We care about
them today because we can solve them efficiently and a very general class of problems can
be expressed as LPs. A linear program has variables, linear constraints on those variables,
and a linear objective function which we aim to maximize or minimize. This might look
something like the following:

x1 ≥ 0

x1 + x2 ≤ 2

x1 − x2 ≥ 1

x2 ≥ 2

min 3x1 + 2x2

The “feasible region”, the settings for x1, x2 that satisfy the above constraints, look like this:
trict
Here is a simple example of a linear program called the Diet problem. There are n foods

and m nutrients you need to have enough of in your diet. You’d like to spend the least money
possible while getting enough of each nutrient. So, let aij denote the amount of nutrient i
in each unit of food j, bi be the minimum amount of nutrient i you need in your diet, and
cj be the cost of one unit of food j, and xj be the variable representing the amount of food
j you are solving to buy. These constraints are written as:∑

j

aijxj ≥ bj

xj ≥ 0

*Lecturer: Anupam Gupta. Scribe: Jamie Morgenstern.

1

LECTURE 1. LPS: ALGEBRAIC VIEW 2

And the objective function to minimize is the cost:

min
∑

j

cjxj

As you might notice, we suggestively chose aij notation for the coefficients of the con-
straints: usually, we do write LPs with matrices. To rewrite this in matrix form, let A be
an m × n matrix with Aij = aij, B be a m × 1 column matrix with Bi = bi, x be a n × 1
column vector of variables, and c be the n × 1 column vector such that ci = ci. Then, we
write the constraints as

Ax ≥ b

x ≥ 0

and the objective as

min cTx

We will also find it useful to write A in two other ways: as a concatenation of its rows
or its columns:

A =

 | | . . . |
A1 A2 . . . An

| | . . . |

 =


— a1 —
— a2 —
— . . . —
— am —


There are several forms in which people write their LPs. The minimization of cTx can

be recast as a maximization of −cTx. Similarly, one can recast upper bound constraints of
the form

aix ≥ bi

to the equivalent lower bound constraints

−aix ≤ bi.

It is also easy to translate equality constraints into pairs of inequality constraints:

aix = bi ⇐⇒ aix ≤ bi and aix ≥ bi

One can starting from inequality constraints and get to equality constraints (along with
nonnegativity inequalities) as follows:

aix ≤ bi

becomes

aix+ si = bi,

si ≥ 0.

LECTURE 1. LPS: ALGEBRAIC VIEW 3

where we have introduced new variables si, the “slack” variables.
Finally, if we have unconstrained variables xi (which are allowed to be positive or neg-

ative), and we would like only non-negative variables, we could introduce two non-negative
variables x+

i ≥ 0 and x−i ≥ 0 for each such unconstrained xi, and replace each xi by x+
i −x−i .

This allows us to move between various forms of LPs: the two most common forms of
LPs are the general form, which is

min cTx

Ax ≥ b

and the equational (or standard) form, which is

min cTx

Ax = b

x ≥ 0

To go from the general form to the equational form, we need two things. First, we can add
slack variables for each constraint aix ≥ bi to get equality constraints aix− si = bi. Second,
since the general form doesn’t require x to be positive, we can use the idea of replacing
each xi with x+

i − x−i , where x+
i , x

−
i ≥ 0. Can you see why these two LPs have the same

feasible solution set? Going in the other direction is easier: just replacing aix = bi by two
inequalities aix ≥ bi and aix ≤ bi gives us an LP in general form.

Note that given m constraints and n variables, you may end up with O(m+n) constraints
and O(m+ n) variables in this conversion process. Note that if m� n this may not always
be a desireable conversion to make.

Formally, a feasible solution is some x ∈ Rn such that x satisfies all constraints. We say
that x is optimal if it maximizes the objective function subject to all constraints.

It is possible that LP’s have either bounded feasible sets or unbounded feasible sets. In
the case that the feasible set is unbounded, it may also be the case that the optimal value is
also unbounded.

1.2 Fourier–Motzkin elimination

The first way we’ll describe to solve LP’s is known as the Fourier–Motzkin elimination
algorithm. Consider an LP in general form:

min cTx

Ax ≥ b

Let us rewrite it using one additional variable in this slightly modified, but equivalent form:

minxn+1

Ax ≥ b

cTx ≤ xn+1

LECTURE 1. LPS: ALGEBRAIC VIEW 4

Now we will eliminate variables in the following way. For variable x1, arrange the constraints
we have into three groups: those where x1 has positive coefficients (let the indices for these
constraints belong to set P ⊆ [m]), those where it has negative coefficients (let N ⊆ [m] be
the set of these indices), and those which don’t involve x1 at all (let Z = [m] \ (P ∪ N) be
the indices for such constraints). Consider any constraints aix ≥ bi for i ∈ P : we can divide
out by the coefficient ai1 of x1 for each one, leaving you with constraints of the form:

x1 +
ai2

ai1

x2 + · · ·+ ain

ai1

≥ bi
ai1

xn

⇐⇒ x1 ≥
bi
ai1

−

(
n∑

j=2

aij

ai1

xj

)

Note that such constraints give us lower bounds for x1. Now we do a similar operation for
the constraints aix ≥ b for i ∈ N : remember that ai1 < 0 for these constraints, so we need to
take care that dividing by a negative number changes the inequality direction, leaving you
with constraints of the form:

ai1x1 + ai2x2 + · · ·+ ainxn ≥ bi

⇐⇒ x1 +
ai2

ai1

x2 + · · ·+ ain

ai1

xn ≤
bi
ai1

⇐⇒ x1 ≤
bi
ai1

−

(
n∑

j=2

aij

ai1

xj

)

Now we create new constraints as follows: for each i ∈ P and i′ ∈ N , we get blahi ≤ xi and
xi′ ≤ blahi′ , so we get the new constraint blahi ≤ blahi′ . More formally, for each such pair
i ∈ P, i′ ∈ N , we get the constraint:

bi
ai1

−

(
n∑

j=2

aij

ai1

xj

)
≤ bi′

ai′1
−

(
n∑

j=2

ai′j

ai′1
xj

)

(All the constraints in Z just get copied over to this new LP.) It is easy to check the following
lemma:

Lemma 1.1. Given LP1 on k variables, suppose eliminating x1 gives the new linear program
LP2. Show that (a) if (x1x2 · · ·xk) was feasible for LP1 then (x2x3 · · · xk) is feasible for
LP2, and if (x2 · · ·xk) is feasible for LP2 then there exists some value x′i ∈ R such that
(x′1x2x3 · · ·xk) is feasible for LP1.

Note that we took the |P |+ |N | constraints, and replaced them with |P | · |N | constraints.
Hence from the m constraints, we now have at most m2/4 constraints, but one fewer vari-
able. Continuing this process for each of the variables x2, x3, . . . , xn, we get at most m2n

constraints. And when we have a single variable xn+1 remaining, each constraint is of the
form xn+1 ≤ something, or xn+1 ≥ something else. These can be combined to get values
`, h, such that xn+1 ∈ [`, h]. (If ` > h then the LP is infeasible, and if there is no lower bound

LECTURE 1. LPS: ALGEBRAIC VIEW 5

then the LP is unbounded.) Now since the LP sought to minimize xn+1, we get that the
optimal value of the LP is xn+1 = `. Moreover, it is easy to proceed backwards through this
process to get settings for the eliminated variables x1, x2, . . . , xn such that

∑n
j=1 cjxj = `.

(Exercise!)

Note: Kevin asked what happens if, say, N was empty, and x1 only had lower bound constraints
(constraints in P). In that case there are no constraints in P ×N , and hence we would end up
throwing away all the constraints in P and N . Indeed, this makes sense, since whatever the
setting of variables x2, . . . , xn, having np upper bound constraints on x1 means we could set
x1 as large as needed to satisfy constraints involving x1.

1.2.1 Gaussian Elimination

This is a good time to just mention Gaussian elimination (converting a matrix to an upper
triangular matrix; this can be used to solve systems of linear equations Ax = b). If we just
had a collection of equality constraints, the elimination could proceed by taking the first
constraint

∑
j a1jxj = b1, rewriting this as x1 = a−1

11 (b1 −
∑n

j=2 a1jxj), and substituting this
into the other constraints. This is pretty much what we do using Gaussian elimination.

Gaussian elimination can be done in strongly polynomial time, meaning that

• The number of operations done is polynomial in n and m, and

• The size of the numbers in the intermediate stages of the algorithm are poly(n,m, log |aij|)
(i.e., the size of the input). Hence we can ensure the matrix entries don’t grow too
large during the algorithm.

It remains an interesting (and open) problem whether all of linear programming can be
done in strongly polynomial time.

Note: Remember that the size of numbers measures the number of bits used to represent the
numbers. Hence, if the entries of the matrix are aij ∈ {0, 1}, then 2n has size polynomial in
the size of the input, but 22n

does not.

Formally, let us define the size: for an integer k, define size(k) = 1 + dlog2(|k| + 1)e; for a
rational p/q (with p, q coprime, q > 0), define size(p/q) = size(p) + size(q); for a matrix
R = (rij) of rationals, define size(M) =

∑
i,j size(rij)

1.3 Equational Form Solving

We’ve seen that Fourier–Motzkin gives us a solution in at most m2n
time. Now let’s consider

a faster method for solving linear programs. For this section, assume our LP is in the
equational form

min{cTx | Ax = b, x ≥ 0}
Let us make two assumptions (without loss of generality). Firstly, we assume that Ax = b
has a solution (otherwise our LP is infeasible). And we can use Gaussian elimination to
check if Ax = b has a solution or not. Secondly, we assume that the rows of A are linearly
independent (otherwise there is some constraint which is superfluous and we can throw it
out).

LECTURE 1. LPS: ALGEBRAIC VIEW 6

With these assumptions, note that rank(A) = m, the number of constraints. Given a
subset B ⊆ [n], we define AB to be the concatenation of the B columns of A. Similarly, we
define xB to be the column vector consisting of the variables {xi | i ∈ B}. Suppose we had
some subset B with |B| = m such that AB’s columns were linearly independent. Then, AB

would have full rank, and thus be invertible, so

ABxB = b

would have a unique solution
xB = A−1

B b.

We can extend this xB to all n variables (by setting xi = 0 for all indices i 6∈ B): this vector
x we call a basic solution. Note that a basic solution satisfies Ax = b, but it may not satisfy
the non-negativity constraints. We say the basic solution is feasible (called a basic feasible
solution or BFS) if xB ≥ 0, i.e., it also satisfies the non-negativity constraints.

So suppose we knew that the optimal value was achieved at a BFS, we could just try
all
(

n
m

)
subsets of columns B with |B| = m which are linearly independent, and take the

optimal one. However, we don’t yet know this: we really have two questions at this point.
Firstly, what if there exists a solution to the LP, but no BFS exists? And secondly, what if
the optimum is attained only at non-BFS points? It turns out neither of these is a problem.

Fact 1.2. Every linearly independent set B with |B| = m gives exactly one basic solution
and at most one BFS.

Theorem 1.3. For any LP in equational form, one of the following holds

1. The LP is infeasible

2. The LP has unbounded optimum

3. The LP has a BFS which is optimal

Proof. Suppose our LP is feasible, and has a bounded optimum. Additionally, assume we
have some x∗ which is feasible (i.e., Ax∗ = b, x∗ ≥ 0). Now we will show that there exists
a BFS x with value cTx ≤ cTx∗. Hence, for any feasible solution, there is a BFS with no
higher value, and so there must exist an optimal BFS.

OK, so given x∗, pick a feasible solution x̃ among those that have cTx ≤ cTx∗, and where
x̃ has the fewest number of nonzero coordinates. Let

P = {i | x̃i > 0}

be the set of corrdinates that are strictly positive. (Note that since all the other coordinates
in x̃ are zero, we get

∑
j∈P Ajx̃j =

∑
j Ajx̃j = b, or AP x̃P = b.)

There are two cases. Case I is when the columns corresponding to the indices in P are
linearly independent. I.e., the columns of AP are linearly independent. Since A has full rank
(and so contains m linearly independent columns), if needed we can add some more columns

LECTURE 1. LPS: ALGEBRAIC VIEW 7

from [n] \ P to P , to get a set B with |B| = m such that AB’s columns are also linearly
independent, and so AB is invertible. Now consider

ABxB = b.

There is a unique solution xB to this equation (but we don’t know if that satisfies xB ≥ 0.)
No worries: we already know that x̃B is a solution to this equation, so it must be the unique
solution. And since x̃ is feasible, it is the BFS corresponding to B.

In case II, suppose the columns of Ap are not linearly independent, so there exists some
(not all zero) coefficients wi such that∑

j∈P

wjAj = 0 or, equivalently ApwP = 0.

By setting wj = 0 for all j 6∈ P , we get a vector w which is itself non-zero, but where Aw = 0.
Hence, if we consider the vector y = x̃− ε w, note that

Ay = A(x̃− εw) = b− ε 0 = b.

Moreover, since w is non-zero only in the coordinates in P , and x is strictly positive in those
coordinates, then for small enough ε, we know that y = x̃ − εw ≥ 0. So y is also a feasible
solution for small enough epsilon.

Suppose, fortuitously, cTw = 0. Then cTy = cT (x̃ − εw) = cT x̃. We can assume that
w has some positive entry, else we can negate all entries of w. So as we increase ε, we are
decreasing some of the (positive) entries in y, without changing the objective function. And
at some point we will make some entry zero, contradicting that x̃ had the fewest non-zeroes
among all x such that cTx ≤ cTx∗.

Now suppose cTw > 0 (if cTw < 0, we can just negate all entries of w to reduce to this
case). Again, if there existed one positive wj, we could do the same argument as above,
and get a contradiction. But maybe cTw > 0 and all of the entries of w are negative.
(Now flipping the signs does not help.) But this is now easy: note that now y = x̃ − εw
is non-negative and hence feasible for all ε ≥ 0. Moreover, the objective function value
cTy = cT x̃ − ε(cTw) goes to −∞ as ε → ∞. This contradicts the fact that the LP has a
bounded optimum, and we are done!

Note: Ankit asked a question about how Theorem 1.3 helped solve an equational form LP in
time

(
n
m

)
. Specifically, his question was this: Theorem 1.3 says that if the LP is feasible and

bounded, then the optimum is achieved at a BFS (and we could try all of them). But what if
the LP was unbounded or infeasible? How could we detect those cases in the same amount of
time? Here’s one way.

To start, Fact 2.1 says any equational form LP that is feasible has a BFS. So if all the basic
solutions are infeasible (i.e., there is no BFS), we can safely answer ”Infeasible”.

So now it suffices to differentiate between the bounded/unbounded subcases. So consider the
BFS that achieves the lowest objective function value among all the BFSs (assuming the LP
is a minimization LP). We know the optimal value is either this value (call it δ), or it is −∞.
Consider the LP obtained by adding in the new constraint c>x = δ − 1. This is another
equational form LP with m + 1 constraints, and we can use the above argument to decide its
feasibility. If this new LP is feasible, the original LP had optimum value latex −∞, else the
optimum of the original LP was latexδ.

	LP Duality
	Primals and Duals
	Generalization

	The Duality Theorem

