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Abstract: An energy-preserving finite difference method is first presented for solving the nonlinear
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1. Introduction

This paper mainly focuses on constructing and analyzing an efficient energy-preserving finite
difference method (EP-FDM) for solving the nonlinear coupled space-fractional Klein-Gordon (KG)
equations:

utt − κ
2

d∑
k=1

∂αk
xk

u + a1u + b1u3 + c1uv2 = 0, (1.1)

vtt − κ
2

d∑
k=1

∂αk
xk

v + a2v + b2v3 + c2u2v = 0, (1.2)
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with (x, t) ∈ Ω × [0,T ] and the following widely used boundary and initial conditions

(u(x, t), v(x, t)) = (0, 0), (x, t) ∈ ∂Ω × [0,T ], (1.3)
(u(x, 0), v(x, 0)) = (ϕ1(x), ϕ2(x)) , x ∈ Ω̄, (1.4)
(ut(x, 0), vt(x, 0)) = (φ1(x), φ2(x)) , x ∈ Ω̄. (1.5)

Here, x = (x1, ..., xd)T (d = 1, 2, 3) ∈ Ω ⊂ Rd, ∂Ω is the boundary of Ω, Ω̄ = Ω
⋃
∂Ω, κ is a constant

and ai, bi, ci are all positive constants. ϕ1, ϕ2, φ1, φ2 are all known sufficiently smooth functions. u(x, t),
v(x, t) are interacting relativistic fields of masses, ∂αk

xk u and ∂αk
xk v stand for the Riesz fractional operator

with 1 < αk ≤ 2, (k = 1, ..., d) in xk directions, which are well defined as follows

∂αk
xk

u(x, t) = −
1

2 cos (αkπ/2)

[
−∞Dαk

xk
u(x, t) + xk D

αk
+∞u(x, t)

]
, (1.6)

where −∞Dαk
xk u(x, t) and xk D

αk
+∞u(x, t) are the left and right Riemann-Liouville fractional derivative.

Plenty of physical phenomena, such as the long-wave dynamics of two waves, are represented by
the system (1.2). For example, these equations are used to study a number of issues in solid state
physics, relativistic mechanics, quantum mechanics, and classical mechanics [1–4].

Especially, when αk tends to 2, the fractional derivative ∂αk
xk would converge to the second-order

Laplace operator, and thus Eqs (1.1) and (1.2) reduce to the classical system of multi-dimensional
coupled KG equations [5–7]. The system has the following conserved energy, which is mentioned in
detail in [11],

E(t) =
1
2

∫
Ω

[
1
c1

(ut)2 +
κ2

c1
|∇u|2 +

1
c2

(vt)2 +
κ2

c2
|∇v|2 + 2G(u, v)

]
dΩ = E(0),

where
G(u, v) =

b1

4c1
u4 +

b2

4c2
v4 +

a1

2c1
u2 +

a2

2c2
v2 +

1
2

u2v2.

The coupled KG equations is initially introduced in [8] and is applied to model the usual motion of
charged mesons within a magnetic field. There have been many works for solving the classical KG
equations. Tsutsumi [9] considered nonrelativistic approximation of nonlinear KG equations and
proved the convergence of solutions rigorously. Joseph [10] obtained some exact solutions for these
systems. Deng [11] developed two kinds of energy-preserving finite difference methods for the
systems of coupled sine-Gordon (SG) equations or coupled KG equations in two dimensions. He [12]
analyzed two kinds of energy-preserving finite element approximation schemes for a class of
nonlinear wave equation. Zhu [13] developed the finite element method and the mesh-free deep neural
network approach in a comparative fashion for solving two types of coupled nonlinear
hyperbolic/wave partial differential equations. Deng [14] proposed a two-level linearized compact
ADI method for solving the nonlinear coupled wave equations. More relevant and significant
references can be found in [15–17].

However, it has been found that fractional derivatives can be used to describe some physical
problems with the spatial non-locality of anomalous diffusion. Therefore, more attentions have been
paid to fractional KG equations. There are also some related numerical methods for the related
models. These methods may be applied to solve the fractional KG systems. For example, Cheng [18]
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constructed a linearized compact ADI scheme for the two-dimensional Riesz space fractional
nonlinear reaction-diffusion equations. Wang [19] proposed Fourier spectral method to solve space
fractional KG equations with periodic boundary condition. Liu [20] presented an implicit finite
difference scheme for the nonlinear time-space-fractional Schrödinger equation. Cheng [21]
constructed an energy-conserving and linearly implicit scheme by combining the scalar auxiliary
variable approach for the nonlinear space-fractional Schrödinger equations. Similar scalar auxiliary
variable approach can also be found in [22, 23]. Wang et al. [24, 25] developed some
energy-conserving schemes for space-fractional Schrödinger equations. Meanwhile, the equations are
also investigated by some analytical techniques, such as the Fourier transform method [26], the Mellin
transform method [27] and so on. Besides, the spatial disccretization of the KG equations usually
gives a system of conservative ordinary differential equations. There are also some energy-conserving
time discretizations, such as the implicit midpoint method [28], some Runge–Kutta methods [28, 29],
relaxation methods [30–32] and so on [33, 34]. To the best of our knowledge, there exist few reports
on numerical methods for coupled space-fractional KG equations. Most references focus on the KG
equations rather than the coupled systems.

The main purpose of this paper is to develop an EP-FDM for the system of nonlinear coupled
space-fractional KG equations. Firstly, we transform the coupled systems of KG equations into an
equivalent general form and provide energy conservation for the new system. Secondly, we propose
a second-order consistent implicit three-level scheme by using the finite difference method to solve
problems (1.1) and (1.2). Thirdly, we give the proof of the discrete energy conservation, boundedness
of numerical solutions and convergence analysis in discrete L2 norm. More specifically, the results
show that the proposed schemes are energy-conserving. And the schemes have second-order accuracy
in both the temporal and spatial directions. Finally, numerical experiments are presented to show the
performance of our proposed scheme in one and two dimensions. They confirm our obtained theoretical
results very well.

The rest of the paper is organized as follows. Some denotations and preliminaries are given in
Section 2. An energy-preserving scheme is constructed in Section 3. The discrete conservation law
and boundedness of numerical solutions are given in Section 4. The convergence results are given in
Section 5. Several numerical tests are offered to validate our theoretical results in Section 6. Finally,
some conclusions are given in Section 7.

Throughout the paper, we set C as a general positive constant that is independent of mesh sizes,
which may be changed under different circumstances.

2. Denotations and preliminaries

We first rewrite Eqs (1.1) and (1.2) into an equivalent form

αutt − β

d∑
k=1

∂αk
xk

u +
∂G
∂u

(u, v) = 0, (2.1)

γvtt − σ

d∑
k=1

∂αk
xk

v +
∂G
∂v

(u, v) = 0, (2.2)
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with the widely used boundary and initial conditions

(u(x, t), v(x, t)) = (0, 0), (x, t) ∈ ∂Ω × [0,T ], (2.3)
(u(x, 0), v(x, 0)) = (ϕ1(x), ϕ2(x)) , x ∈ Ω̄, (2.4)
(ut(x, 0), vt(x, 0)) = (φ1(x), φ2(x)) , x ∈ Ω̄, (2.5)

where G(u, v) = b1
4c1

u4 + b2
4c2

v4 + a1
2c1

u2 + a2
2c2

v2 + 1
2u2v2, and α = 1/c1, β = κ2/c1, γ = 1/c2, σ = κ2/c2. A

similar treatment is mentioned in [11]. The definition of operator ∂αk
xk is already presented in Eq (1.6),

where the left and right Riemann-Liouville fractional derivatives in space of order α are defined as

−∞Dα
x u(x, t) =

1
Γ(2 − α)

∂2

∂x2

∫ x

−∞

u(ξ, t)
(x − ξ)α−1 dξ, ∀(x, t) ∈ Ω,

xDα
+∞u(x, t) =

1
Γ(2 − α)

∂2

∂x2

∫ ∞

x

u(ξ, t)
(ξ − x)α−1 dξ, ∀(x, t) ∈ Ω.

Theorem 1. Let u(x, t), v(x, t) be the solutions of this systems (2.1)–(2.5), the energy conservation law
is defined by

E(t) =
1
2

α∥ut∥
2
L2 + β

d∑
k=1

∥∂αk/2
xk

u∥2L2 + γ∥vt∥
2 + σ

d∑
k=1

∥∂αk/2
xk

v∥2L2 + 2 ⟨G(u, v), 1⟩

 . (2.6)

Namely, E(t) = E(0), where ∥u(·, t)∥2L2 =
∫
Ω
|u(x, t)|2dx and ⟨G(u, v), 1⟩ =

∫
Ω

G(u, v)dx.

Proof. Taking inner product of Eqs (2.1) and (2.2) with ut and vt , then summing the obtained
equations, and finally applying a integration over the time interval [0, t], it yields the required result.

The finite difference method is used to achieve spatial and temporal discretization in this paper. We
now denote temporal step size by τ, let τ = T/N, tn = nτ. For a list of functions {wn}, we define

wn̄ =
wn+1 + wn−1

2
, δtwn =

wn+1 − wn

τ
, µtwn =

wn+1 + wn

2
,

Dtwn =
wn+1 − wn−1

2τ
=
δtwn + δtwn−1

2
, δ2

t wn =
wn+1 − 2wn + wn−1

τ2 =
δtwn − δtwn−1

τ
.

Let Ω = (a1, b1) × · · · (ad, bd), with the given positive integers M1, · · · ,Md, for the convenience of
subsequent proofs, we have set it uniformly to M, so we get hk = (bk − ak)/Mk = h (k = 1, · · · , d) be
the spatial stepsizes in xk-direction, then the spatial mesh is defined as Ω̄h = {(xk1 , xk2 , · · · , xkd ) | 0 ≤
ks ≤ Ms, s = 1, · · · , d}, where xks = as + kshs.

Moreover, we define the spaceV0
h as follows by using the grid function on Ωh,

V0
h := {v = vn

k1···kd
| vn

k1···kd
= 0 for (k1, · · · , kd) ∈ ∂Ωh},

where 1 ≤ ks ≤ Ms − 1, s = 1, · · · , d, 0 ≤ n ≤ N. Then we write δx1uk1···kd =
uk1+1···kd−uk1 ···kd

h . Notations
δxsuk1···kd (s = 2, · · · , d) are defined similarly.

We then introduce the discrete norm, respectively. For u, v ∈ V0
h, denote

(u, v) = hd
M1−1∑
k1=1

· · ·

Md−1∑
kd=1

uk1···kd vk1···kd , ∥u∥ =
√

(u, u),
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|U |2H1
=

d∑
s=1

∥δxsU∥
2, ∥u∥s =

hd
M1−1∑
k1=1

· · ·

Md−1∑
kd=1

(uk1···kd )s


1
s

.

Based on the definitions, we give the following lemmas which are important for this paper.

Lemma 1. ( [35]) Suppose p(x) ∈ L1(R) and

p(x) ∈ C2+α(R) :=
{

p(x) |
∫ +∞

−∞

(1 + |k|)2+α | p̂(k)| dk < ∞
}
,

where p̂(k) is the Fourier transformation of p(x), then for a given h, it holds that

−∞Dα
x p(x) =

1
hα

+∞∑
k=0

w(α)
k p(x − (k − 1)h) + O

(
h2

)
,

xDα
+∞p(x) =

1
hα

+∞∑
k=0

w(α)
k p(x + (k − 1)h) + O

(
h2

)
,

where w(α)
k are defined by {

w(α)
0 = λ1g(α)

0 , w(α)
1 = λ1g(α)

1 + λ0g(α)
0 ,

w(α)
k = λ1g(α)

k + λ0g(α)
k−1 + λ−1g(α)

k−2, k ≥ 2,
(2.7)

where λ1 =
(
α2 + 3α + 2

)
/12, λ0 =

(
4 − α2

)
/6, λ−1 =

(
α2 − 3α + 2

)
/12 and g(α)

k = (−1)k

(
α

k

)
.

In addition, we arrange in this section some of the lemmas that are necessary for the demonstration
of later theorems in this paper.

Lemma 2. ( [36]) For any two grid functions u, v ∈ V0
h, there exists a linear operator Λα such that

−(δαx u, v) = (Λ
α
2 u,Λ

α
2 v), where the difference operator Λ

α
2 is defined by Λ

α
2 u = Lu, and matrix L

satisfying C = LT L is the cholesky factor of matrix C = 1/(2hα cos(απ/2))(P + PT ) with

P =



w(α)
1 w(α)

0
w(α)

2 w(α)
1 w(α)

0
... w(α)

2 w(α)
1

. . .

w(α)
M−2

...
. . .

. . . w(α)
0

w(α)
M−1 w(α)

M−2 · · · w(α)
2 w(α)

1


(M−1)×(M−1)

.

While for multi-dimensional case, we give a further lemma.

Lemma 3. ( [18]) For any two grid functions u, v ∈ V0
h, there exists a linear operator Λ

αk
2

k such that

−(δαk
xk u, v) = (Λ

αk
2

k u,Λ
αk
2

k v), k = 1, · · · , d, whereΛ
αk
2

k is defined byΛ
αk
2

k u = [2 cos(αkπ/2)hαk]−1/2Lku, and
matrix Lk is given by −I ⊗ · · ·Dαk ⊗ I = [2 cos (αkπ/2) hαk]−1 LT

k Lk. I is a unit matrix and matrix Dαk

is given by Dαk = −1/ (2 cos (αkπ/2) hαk)
(
Pk + PT

k

)
, Pk is the matrix P in the case α = αk as defined in

Lemma 2.
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Lemma 4. ( [11]) Let g(x) ∈ C4(I), then ∀x0 ∈ I, x0 + ∆x ∈ I, we have

g (x0+∆x)−2g (x0)+g (x0−∆x)
∆x2 = g′′ (x0)+

∆x2

6

∫ 1

0

[
g(4) (x0+λ∆x)+g(4) (x0−λ∆x)

]
(1−λ)3dλ,

g (x0+∆x)+g (x0−∆x)
2

= g (x0)+∆x2
∫ 1

0

[
g′′ (x0+λ∆x)+g′′ (x0−λ∆x)

]
(1−λ)dλ.

Lemma 5. ( [11]) Let u(x, t), v(x, t) ∈ C4,4(Ω × [0,T ]), and G(u, v) ∈ C4,4
(
R1 × R1

)
. Then we have

G
(
un+1, vn

)
−G

(
un−1, vn

)
un+1 − un−1 =

∂G
∂u

(u (x, tn) , v (x, tn)) + O
(
τ2

)
,

G
(
un, vn+1

)
−G

(
un, vn−1

)
vn+1 − vn−1 =

∂G
∂v

(u (x, tn) , v (x, tn)) + O
(
τ2

)
.

Lemma 6. For any grid function u ∈ V0
h, it holds that

∥u∥p ≤ C∥u∥Cp1

(
Cp2 |u|H1 +

1
l
∥u∥

)Cp3

, 2 ≤ p < ∞,

where Cp1 ,Cp2 ,Cp3 are constants related to p, l = min {l1, · · · , ld}, and d is the dimension of spaceV0
h.

Specially, for two-dimensional case, the parameters Cp1 =
2
p , Cp2 = max

{
2
√

2, p
√

2

}
and Cp3 = 1− 2

p
are shown in [37, 38].

While in the case of three dimensions, Cp1 =
p+6
4p , Cp2 = max

{
2
√

3, p
√

3

}
and Cp3 =

3p−6
4p , the proof is

given in Appendix.

Lemma 7. ( [39]) For M ≥ 5, 1 ≤ α ≤ 2 and any v ∈ V0
h, there exists a positive constant C1, such that

∥v∥2 <
cos(απ/2)

C1 ln 2
(
δαx v, v

)
= −

cos(απ/2)
C1 ln 2

∥∥∥Λ α
2 v

∥∥∥2
.

Specially, for multi-dimensional case, it can be written as ∥v∥2 < C
∑d

k=1

∥∥∥∥∥Λ αk
2

k v
∥∥∥∥∥2

, where C is a positive
constant.

Lemma 8. ( [40]) Assume that {gn | n ≥ 0} is a nonnegative sequence, ψ0 ≥ 0, and the nonnegative
sequence {Gn | n ≥ 0} satisfies

Gn ≤ ψ0 + τ

n−1∑
l=0

Gl + τ

n∑
l=0

gl, n ≥ 0.

Then it holds that

Gn ≤ enτ

ψ0 + τ

n∑
l=0

gl

 , n ≥ 0.

Lemma 9. For any grid function u ∈ V0
h , V0

h is defined in Section 2 for the the three-dimensional case,
let p ≤ r ≤ q, α ∈ [0, 1] satisfying 1

r =
α
p +

1−α
q , then

∥u∥r ≤ ∥u∥αp · ∥u∥
1−α
q .
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Proof. By using Hölder inequality, we have

h1h2h3

M1−1∑
i=1

M2−1∑
j=1

M3−1∑
k=1

∣∣∣ui jk

∣∣∣r = h1h2h3

M1−1∑
i=1

M2−1∑
j=1

M3−1∑
k=1

∣∣∣ui jk

∣∣∣αr+(1−α)r

≤

h1h2h3

M1−1∑
i=1

M2−1∑
j=1

M3−1∑
k=1

∣∣∣ui jk

∣∣∣αr p
αr


αr
p
h1h2h3

M1−1∑
i=1

M2−1∑
j=1

M3−1∑
k=1

∣∣∣ui jk

∣∣∣(1−α)r q
(1−α)r


(1−α)r

q

= ∥u∥rαp · ∥u∥
r(1−α)
q .

This completes the proof.

3. The energy-preserving scheme

Now we are ready to construct the fully-discrete numerical scheme for systems (2.1) and (2.2).
With the help of Lemma 1 and for clarity of description, we will denote the space fractional operator

under one-dimensional case firstly.

δαx,+v
n
j =

1
hα

j∑
k=0

w(α)
k vn

j−k+1, δαx,−v
n
j =

1
hα

M− j∑
k=0

w(α)
k vn

j+k−1,

δαx vn
j = −1/(2 cos(απ/2))

(
δαx,+v

n
j + δ

α
x,−v

n
j

)
,

where w(α)
k is given in Eq (2.7). In the multi-dimensional case, the definitions of δαk

xk are similar to it.
For numerically solving systems (2.1)–(2.5), we propose a three-level scheme. We firstly define the

following approximations.
Let un

k1···kd
= u(x, tn) and vn

k1···kd
= v(x, tn), for ease of presentation, we shall henceforth write un

k1···kd

for un. Denote numerical solutions of un and vn by Un and Vn, respectively.
With the definition of G(u, v) in systems (2.1) and (2.2) and by using Lemma 5, then we have

G
(
un+1, vn

)
−G

(
un−1, vn

)
un+1 − un−1 =

∂G
∂u

(u (x, tn) , v (x, tn)) + O
(
τ2

)
, (3.1)

G
(
un, vn+1

)
−G

(
un, vn−1

)
vn+1 − vn−1 =

∂G
∂v

(u (x, tn) , v (x, tn)) + O
(
τ2

)
, (3.2)

which is given in [11]. Further, using the space fractional operator which is already introduced above
and second-order centered finite difference operator to approximate at node (x, tn), it holds that

αδ2
t un − β

d∑
i=1

δαi
xi

un̄ +
G

(
un+1, vn

)
−G

(
un−1, vn

)
un+1 − un−1 = Rn

1, 2 ≤ n ≤ N − 1, (3.3)

γδ2
t vn − σ

d∑
i=1

δαi
xi

vn̄ +
G

(
un, vn+1

)
−G

(
un, vn−1

)
vn+1 − vn−1 = Rn

2, 2 ≤ n ≤ N − 1, (3.4)

and

u1 = ϕ1 (x) + τφ1 (x) +
τ2

2α

β d∑
i=1

δαi
xi
ϕ1 (x) −

∂G
∂u

(ϕ1 (x) , ϕ2 (x))

 + R1
1, (3.5)
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v1 = ϕ2 (x) + τφ2 (x) +
τ2

2γ

σ d∑
i=1

δαi
xi
ϕ2 (x) −

∂G
∂v

(ϕ1 (x) , ϕ2 (x))

 + R1
2, (3.6)

where Rn
1 and Rn

2 are the truncation errors.
Let u(x, t), v(x, t) ∈ C4,4(Ω × [0,T ]). Combining Lemma 4 with Eqs (3.1) and (3.2), the truncation

errors can be estimated as follows.

max
1≤n≤N−1

{∥∥∥Rn
1

∥∥∥2
,
∥∥∥Rn

2

∥∥∥2
}
≤ C

(
τ2 + h2

1 + · · · + h2
d

)2
, (3.7)

where C is a positive constant and d means the dimension of space.
Omitting the truncation errors in Eqs (3.3)–(3.6), we can get the three-level EP-FDM:

αδ2
t Un − β

d∑
i=1

δαi
xi

U n̄ +
G

(
Un+1,Vn

)
−G

(
Un−1,Vn

)
Un+1 − Un−1 = 0, (3.8)

γδ2
t Vn − σ

d∑
i=1

δαi
xi

V n̄ +
G

(
Un,Vn+1

)
−G

(
Un,Vn−1

)
Vn+1 − Vn−1 = 0, (3.9)

and

Un = Vn = 0, x ∈ ∂Ωh, 0 ≤ n ≤ N, (3.10)

U1 = ϕ1 (x) + τφ1 (x) +
τ2

2α

β d∑
i=1

δαi
xi
ϕ1 (x) −

∂G
∂u

(ϕ1 (x) , ϕ2 (x))

 , (3.11)

V1 = ϕ2 (x) + τφ2 (x) +
τ2

2γ

σ d∑
i=1

δαi
xi
ϕ2 (x) −

∂G
∂v

(ϕ1 (x) , ϕ2 (x))

 , (3.12)

where U1 and V1 are obtained by applying Taylor expansion to expand u(x, τ) and v(x, τ) at (x, 0), and
by Eq (2.4) we know that U0 = ϕ1 (x), V0 = ϕ2 (x).

For contrast, by doing explicit treatment of nonlinear terms ∂G
∂u and ∂G

∂v , we introduce an explicit
scheme as follows

αδ2
t Un − β

d∑
i=1

δαi
xi

U n̄ +
∂G
∂u

(Un,Vn) = 0, (3.13)

γδ2
t Vn − σ

d∑
i=1

δαi
xi

V n̄ +
∂G
∂v

(Un,Vn) = 0, (3.14)

Un = Vn = 0, x ∈ ∂Ωh, 0 ≤ n ≤ N, (3.15)

U1 = ϕ1 (x) + τφ1 (x) +
τ2

2α

β d∑
i=1

δαi
xi
ϕ1 (x) −

∂G
∂u

(ϕ1 (x) , ϕ2 (x))

 , (3.16)

V1 = ϕ2 (x) + τφ2 (x) +
τ2

2γ

σ d∑
i=1

δαi
xi
ϕ2 (x) −

∂G
∂v

(ϕ1 (x) , ϕ2 (x))

 , (3.17)

which will be used in Section 6 later.
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4. Boundedness of the numerical solutions and discrete conservation law

In this section, we give the energy conservation of the fully-discrete schemes (3.8)–(3.12) and
boundedness of numerical solutions. Here, the lemmas given in Section 2 are applied.

Now, we present the energy conservation of the EP-FDMs (3.8)–(3.12).

Theorem 2. Let Un,Vn ∈ V0
h be numerical solutions of the three-level FDMs (3.8)–(3.12). Then, the

energy, which is defined by

En =
α

2
∥δtUn∥2 +

β

2

d∑
k=1

µt∥Λ
αk
2

k Un∥2 +
γ

2
∥δtVn∥2 +

σ

2

d∑
k=1

µt∥Λ
αk
2

k Vn∥2

+
1
2

hd
M1−1∑
k1=1

· · ·

Md−1∑
kd=1

[
G(Un+1

k1···kd
,Vn

k1···kd
) +G(Un

k1···kd
,Vn+1

k1···kd
)
]

(4.1)

is conservative. Namely, En = E0, for n = 1, · · · ,N − 1, where Λ
αk
2

k is already introduced by Lemma 3.

Proof. Multiplying hdDtUn
k1···kd

to both sides of Eq (3.8), summing them overΩh, by using Lemma 3,
we obtain

α

2τ

(
∥δtUn∥2 − ∥δtUn−1∥2

)
+
β

4τ

d∑
k=1

(
∥Λ

αk
2

k Un+1∥2 − ∥Λ
αk
2

k Un−1∥2
)

+
1
2τ

hd
M1−1∑
k1=1

· · ·

Md−1∑
kd=1

[
G(Un+1

k1···kd
,Vn

k1···kd
) −G(Un−1

k1···kd
,Vn

k1···kd
)
]
= 0, (4.2)

where the second term can be reduced to

∥Λ
αk
2

k Un+1∥2 − ∥Λ
αk
2

k Un−1∥2 = 2
(
µt∥Λ

αk
2

k Un∥2 − µt∥Λ
αk
2

k Un−1∥2
)
,

then Eq (4.2) turned into

α

2τ

(
∥δtUn∥2 − ∥δtUn−1∥2

)
+
β

2τ

d∑
k=1

(
µt∥Λ

αk
2

k Un∥2 − µt∥Λ
αk
2

k Un−1∥2
)

+
1
2τ

hd
M1−1∑
k1=1

· · ·

Md−1∑
kd=1

[
G(Un+1

k1···kd
,Vn

k1···kd
) −G(Un−1

k1···kd
,Vn

k1···kd
)
]
= 0. (4.3)

Similarly, multiplying hdDtVn
k1···kd

to both sides of Eq (3.9), summing them over Ωh, by using
Lemma 3, we obtain

γ

2τ

(
∥δtVn∥2 − ∥δtVn−1∥2

)
+
σ

2τ

d∑
k=1

(
µt∥Λ

αk
2

k Vn∥2 − µt∥Λ
αk
2

k Vn−1∥2
)

+
1
2τ

hd
M1−1∑
k1=1

· · ·

Md−1∑
kd=1

[
G(Un

k1···kd
,Vn+1

k1···kd
) −G(Un

k1···kd
,Vn−1

k1···kd
)
]
= 0. (4.4)

Adding up Eqs (4.3) and (4.4) yields that (En − En−1)/τ = 0, which infers that En = En−1.
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By Theorem 2, we present the following estimation.

Theorem 3. Let Un,Vn ∈ V0
h be numerical solutions of the EP-FDMs (3.8)–(3.12). Then, the following

estimates hold:

max
1≤n≤N

{
∥δtUn∥ , ∥δtVn∥ , ∥Un∥ , ∥Vn∥ ,

∥∥∥∥∥Λ αk
2

k Un
∥∥∥∥∥ , ∥∥∥∥∥Λ αk

2
k Vn

∥∥∥∥∥} ≤ C, (4.5)

where C is a positive constant independent of τ and h and 1 ≤ αk ≤ 2. Specially, when αk = 2, it holds
that |Un|H1 ≤ C, |Vn|H1 ≤ C.

Proof. It follows from Theorem 2, there exists a constant C such that

En =
α

2
∥δtUn∥2 +

β

2

d∑
k=1

µt∥Λ
αk
2

k Un∥2 +
γ

2
∥δtVn∥2 +

σ

2

d∑
k=1

µt∥Λ
αk
2

k Vn∥2

+
1
2

hd
M1−1∑
k1=1

· · ·

Md−1∑
kd=1

[
G(Un+1

k1···kd
,Vn

k1···kd
) +G(Un

k1···kd
,Vn+1

k1···kd
)
]
= E0 = C,

then, we obtain
∥δtUn∥ ≤ C, ∥δtVn∥ ≤ C, ∥Λ

αk
2

k Un∥ ≤ C, ∥Λ
αk
2

k Vn∥ ≤ C.

By ∥δtUn∥ ≤ C, we have ∥Un+1 − Un∥ ≤ Cτ, then it is easy to check that

∥Un∥ = ∥U0 + τ

n−1∑
i=0

δtU i∥ ≤ ∥U0∥ + τ

n−1∑
i=0

∥δtU i∥ ≤ C.

This completes the proof.

5. Convergence analysis

In this section, the convergence analysis of the proposed scheme is given, which is based on some
important lemmas presented in Section 2.

We first give the error equations of the EP-FDMs (3.8) and (3.9). Let en = un − Un, θn = vn − Vn

and for more readability we denote

ε1

(
un+1,Un+1

)
=

G
(
un+1, vn

)
−G

(
un−1, vn

)
un+1 − un−1 −

G
(
Un+1,Vn

)
−G

(
Un−1,Vn

)
Un+1 − Un−1 , (5.1)

ε2

(
vn+1,Vn+1

)
=

G
(
un, vn+1

)
−G

(
un, vn−1

)
vn+1 − vn−1 −

G
(
Un,Vn+1

)
−G

(
Un,Vn−1

)
Vn+1 − Vn−1 . (5.2)

By deducting Eqs (3.8) and (3.9) from Eqs (3.3) and (3.4), we have

αδ2
t en − β

d∑
i=1

δαi
xi

en̄ + ε1

(
un+1,Un+1

)
= Rn

1, 1 ≤ n ≤ N − 1, (5.3)

γδ2
t θ

n − σ

d∑
i=1

δαi
xi
θn̄ + ε2

(
vn+1,Vn+1

)
= Rn

2, 1 ≤ n ≤ N − 1, (5.4)
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en = θn = 0, x ∈ ∂Ωh, 1 ≤ n ≤ N − 1, (5.5)
e0 = θ0 = 0, x ∈ Ω̄h, (5.6)
∥e1∥ ≤ c1τ

3, x ∈ Ωh, (5.7)
∥θ1∥ ≤ c2τ

3, x ∈ Ωh. (5.8)

Before giving a proof of convergence, we provide the following estimates for Eqs (5.1)–(5.2).

Lemma 10. On Ω̄h, we have

(
ε1

(
un+1,Un+1

)
,Dten

)
≤C

 d∑
k=1

∥∥∥∥∥Λ αk
2

k θ
n
∥∥∥∥∥2

+

d∑
k=1

∥∥∥∥∥Λ αk
2

k en+1
∥∥∥∥∥2

+

d∑
k=1

∥∥∥∥∥Λ αk
2

k en−1
∥∥∥∥∥2

+∥δten∥
2+

∥∥∥δten−1
∥∥∥2

, (5.9)

(
ε2

(
vn+1,Vn+1

)
,Dtθ

n
)
≤C

 d∑
k=1

∥∥∥∥∥Λ αk
2

k en
∥∥∥∥∥2

+

d∑
k=1

∥∥∥∥∥Λ αk
2

k θ
n+1

∥∥∥∥∥2

+

d∑
k=1

∥∥∥∥∥Λ αk
2

k θ
n−1

∥∥∥∥∥2

+∥δtθ
n∥

2+
∥∥∥δtθ

n−1
∥∥∥2

, (5.10)

where C > 0 is a constant, independent of grid parameters τ, h1, · · · , hd.

Proof. Recalling the definition of G(u, v), we can obtain

ε1

(
un+1,Un+1

)
=

b1

2c1

{[(
un+1

)2
+

(
un−1

)2
]

un̄ −

[(
Un+1

)2
+

(
Un−1

)2
]

U n̄
}

+
[
(vn)2

(
un̄

)
− (Vn)2 U n̄

]
+

a1

c1
en̄ =

3∑
k=1

Qk.

Noting that Uk = uk − ek and Vk = vk − θk (k = n − 1, n, n + 1), then we get

Q1 =
b1

2c1

[
2un+1en+1 −

(
en+1

)2
+ 2un−1en−1 −

(
en−1

)2
]

un̄

+
b1

2c1

[(
un+1

)2
− 2un+1en+1 +

(
en+1

)2
+

(
un−1

)2
− 2un−1en−1 +

(
en−1

)2
]

en̄, (5.11)

Q2 =2un̄vnθn − un̄ (θn)2 + (Vn)2 en̄. (5.12)

When d = 2, combining Theorem 3, Lemma 6 with Lemma 7,we can get the estimation of ∥em∥44, ∥em∥66,
∥em∥88, that is

∥em∥
4
4 ≤ ∥e

m∥
2
(
2 |em|H1 +

1
l
∥em∥

)2

≤ ∥em∥
2
[
8
(
|um|

2
H1 + |Um|

2
H1

)
+

2
l2

(
∥um∥

2 + ∥Um∥
2
)]

≤ C ∥em∥
2
≤ C

d∑
k=1

∥∥∥∥∥Λ αk
2

k em
∥∥∥∥∥2

. (5.13)

The same reasoning can be used to prove that

∥em∥
6
6 ≤ C

d∑
k=1

∥∥∥∥∥Λ αk
2

k em
∥∥∥∥∥2

, ∥em∥
8
8 ≤ C

d∑
k=1

∥∥∥∥∥Λ αk
2

k em
∥∥∥∥∥2

, (5.14)

Networks and Heterogeneous Media Volume 18, Issue 3, 957–981.



968

Smilarly, when d = 3 the results can be found in the same way.
By using Cauchy-Schwarz inequality and the widely used inequality [(a+ b)/2]s ≤ (as + bs)/2 (a ≥

0, b ≥ 0, s ≥ 1), multiplying both sides of Eq (5.11) by hdDten, then summing it on wholeΩh, it follows
that

(Q1,Dten) ≤
b1

4c1

[
5M2

2

(∥∥∥en+1
∥∥∥2
+

∥∥∥en−1
∥∥∥2

)
+

(
3M +

1
4

) (∥∥∥en+1
∥∥∥4

4

+
∥∥∥en−1

∥∥∥4

4

)
+

1
2

(∥∥∥en+1
∥∥∥6

6
+

∥∥∥en−1
∥∥∥6

6

)
+

1
8

(∥∥∥en+1
∥∥∥8

8
+

∥∥∥en−1
∥∥∥8

8

)]
+

b1

4c1

(
5M2 + 6M + 1

)
∥Dten∥

2

≤C
d∑

k=1

(∥∥∥∥∥Λ αk
2

k en+1
∥∥∥∥∥2

+

∥∥∥∥∥Λ αk
2

k en−1
∥∥∥∥∥2)
+

b1

8c1

(
5M2 + 6M + 1

) (
∥δten∥

2 +
∥∥∥δten−1

∥∥∥2
)
, (5.15)

the last inequality is derived by inequalities (5.13) and (5.14), similarly, we can also obtain

(Q2,Dten) ≤ M2 ∥θn∥
2 +

M
2
∥θn∥

4
4 +

M2

4

(∥∥∥en+1
∥∥∥2
+

∥∥∥en−1
∥∥∥2

)
+

(
3M2

4
+

M
4

)
∥Dten∥

2

≤ C
d∑

k=1

(∥∥∥∥∥Λ αk
2

k θ
n
∥∥∥∥∥2

+

∥∥∥∥∥Λ αk
2

k en+1
∥∥∥∥∥2

+

∥∥∥∥∥Λ αk
2

k en−1
∥∥∥∥∥2)

+

(
3M2

4
+

M
4

) (
∥δten∥

2 +
∥∥∥δten−1

∥∥∥2
)
, (5.16)

(Q3,Dten) ≤
a2

1C

4c2
1

d∑
k=1

(∥∥∥∥∥Λ αk
2

k en+1
∥∥∥∥∥2

+

∥∥∥∥∥Λ αk
2

k en−1
∥∥∥∥∥2)
+

1
4

(
∥δten∥

2 +
∥∥∥δten−1

∥∥∥2
)
, (5.17)

combine inequalities (5.15)–(5.17), then we get inequality (5.9) is proved. We can demonstrate that
inequality (5.10) is likewise true using techniques similar to inequality (5.9). This completes the proof.

Now we further investigate the accuracy of the proposed scheme with the help of the above lemmas,
see Theorem 4.

Theorem 4. Assume that u(x, t), v(x, t) ∈ C4,4(Ω× [0,T ]) are exact solutions of systems (2.1)–(2.5), let
un

k1···kd
= u(x, t) and vn

k1···kd
= v(x, t), denote numerical solutions by Un

k1···kd
and Vn

k1···kd
, define en = un−Un,

θn = vn −Vn(1 ≤ n ≤ N). Then suppose that τ is sufficiently small. The error estimates of the EP-FDM
are

d∑
k=1

∥Λ
αk
2

k en∥2 ≤ C(τ2 + h2
1 + · · · + h2

d)2, ∥en∥ ≤ C(τ2 + h2
1 + · · · + h2

d),

d∑
k=1

∥Λ
αk
2

k θ
n∥2 ≤ C(τ2 + h2

1 + · · · + h2
d)2, ∥θn∥ ≤ C(τ2 + h2

1 + · · · + h2
d),

where C is a positive constant, independent of grid parameters τ, h1, · · · , hd.
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Proof. Noting that at every time level, the systems defined in Eqs (3.8) and (3.9) is a linear PDE.
Obviously, the existence and uniqueness of the solution can be obtained.

For ease of expression, we write

In = α∥δten∥2 + β

d∑
k=1

µt∥Λ
αk
2

k en∥2 + γ∥δtθ
n∥2 + σ

d∑
k=1

µt∥Λ
αk
2

k θ
n∥2.

Apparently, we have that I1 ≤ C(τ2 + h2
1 + · · · + h2

d)2.
Multiplying hdDten and hdDtθ

n to both sides of Eqs (5.3) and (5.4), then summing it over the whole
Ωh respectively. Then adding up the obtained results, it follows that

In − In−1

2τ
+ (ε1

(
un+1,Un+1

)
,Dten) + (ε2

(
vn+1,Vn+1

)
,Dtθ

n) = (Rn
1,Dten) + (Rn

2,Dtθ
n), (5.18)

by using Cauchy-Schwarz inequality, we have

In − In−1

2τ
≤|(ε1

(
un+1,Un+1

)
,Dten)| + |(ε2

(
vn+1,Vn+1

)
,Dtθ

n)|

+
1
2
∥Rn

1∥
2 +

1
4

(∥δten∥2 + ∥δten−1∥2)

+
1
2
∥Rn

2∥
2 +

1
4

(∥δtθ
n∥2 + ∥δtθ

n−1∥2), (5.19)

multiplying 2τ to both sides of inequality (5.19) , and using Lemma 10, then we get

In − In−1 ≤ 2Cτ(In + In−1) + τ∥Rn
1∥

2 + τ∥Rn
2∥

2. (5.20)

Thus, ∀K(2 ≤ n ≤ K ≤ N − 1), summing n from 2 to K , we get

(1 − 2Cτ)IK ≤ I1 + 4Cτ
K−1∑
n=1

In +

K∑
n=2

τ(∥Rn
1∥

2 + ∥Rn
2∥

2), (5.21)

when Cτ ≤ 1
3 , inequality (5.21) is turned into

IK ≤ 3I1 + 12Cτ
K−1∑
n=1

In + 3τ
K∑

n=2

(∥Rn
1∥

2 + ∥Rn
2∥

2), (5.22)

then by using Lemma 8 and inequality (3.7), we obtain

IK ≤ enτ(3I1 + 3τ
K∑

n=2

(∥Rn
1∥

2 + ∥Rn
2∥

2))

≤ C(τ2 + h2
1 + · · · + h2

d)2. (5.23)

By the definition of I, it is easy to conclude that

d∑
k=1

∥Λ
αk
2

k en∥2 ≤ C(τ2 + h2
1 + · · · + h2

d)2, ∥δten∥ ≤ C(τ2 + h2
1 + · · · + h2

d),
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d∑
k=1

∥Λ
αk
2

k θ
n∥2 ≤ C(τ2 + h2

1 + · · · + h2
d)2, ∥δtθ

n∥ ≤ C(τ2 + h2
1 + · · · + h2

d),

furthermore, we have

∥en∥ = ∥e0 + τ

n−1∑
i=0

δtei∥ ≤ τ

n−1∑
i=0

∥δtei∥ ≤ C(τ2 + h2
1 + · · · + h2

d).

Similarly, ∥θn∥ ≤ C(τ2 + h2
1 + · · · + h2

d). This completes the proof.

6. Numerical experiments

We carry out several numerical examples to support the theoretical results in this section. All
computations are performed with Matlab. Throughout the experiments, the spatial domain is divided
into M parts in every direction uniformly, that is, in the 1D case, we set M1 = M, while in the 2D
case, we set M1 = M2 = M, and the time interval [0,T ] is also divided uniformly into N parts. Then
we use the discrete L∞-norm to measure the global error of the scheme, namely,

Eu(M,N) = ∥UN − u(T )∥∞, Ev(M,N) = ∥VN − v(T )∥∞,

Example 1. Consider the following one-dimensional coupled KG model

utt − κ
2∂αx u + a1u + b1u3 + c1uv2 = g, (x, t) ∈ Ω × [0,T ],

vtt − κ
2∂αx v + a2v + b2v3 + c2u2v = g, (x, t) ∈ Ω × [0,T ],

with Ω = [0, 1]. The initial and boundary conditions are determined by the exact solutions

u(x, t) = x4(1 − x)4e−t, v(x, t) = x5(1 − x)5 cos(1 + t),

as well as the source term g. Here, we take a1 = a2 = 1, b1 = −1, b2 = −2, c1 = 1, c2 = 0.5 and κ = 1.

The precision of the scheme in spatial direction is first tested by fixing N = 1000. We compute
the global errors at T = 1 with different mesh sizes, and the numerical results with α = 1.2, 1.5, 1.8
are listed in Table 1 and Table 2. As can be seen in the table, the proposed scheme can have second
order convergence in space, which confirms the results of theoretical analysis in Theorem 4. To track
the evolution of the discrete energy, we preserve the initial value condition in this case and set the
source term to g = 0. Additionally, for the terminal time T = 50, we fix h = 0.05 and τ = 0.05. The
evolutionary trend image for scheme1 (3.8)–(3.12) and explicit scheme2 (3.13)–(3.17) with various α
are displayed in Figure 1. Then we further verify that the proposed scheme1 (3.8)–(3.12) preserves the
discrete energy very well but scheme2 (3.13)–(3.17) does not .

Table 1. L∞ error and spatial convergence rates of scheme1 (3.8)–(3.12) for Example 1.

α=1.2 α=1.5 α=1.8
————————— ————————— —————————

M Eu(M,N) order(u) Eu(M,N) order(u) Eu(M,N) order(u)
32 1.51e-05 * 5.86e-06 * 4.30e-06 *
64 3.69e-06 2.03 1.46e-06 2.01 1.09e-06 1.98
128 9.18e-07 2.01 3.66e-07 2.00 2.74e-07 1.99
256 2.28e-07 2.01 9.08e-08 2.01 6.75e-08 2.02
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Table 2. L∞ error and spatial convergence rates of scheme1 (3.8)–(3.12) for Example 1.

α=1.2 α=1.5 α=1.8
————————— ————————— —————————

M Ev(M,N) order(v) Ev(M,N) order(v) Ev(M,N) order(v)
32 1.61e-06 * 3.33e-06 * 2.21e-06 *
64 4.11e-07 1.97 8.14e-07 2.03 5.30e-07 2.06
128 1.04e-07 1.99 2.02e-07 2.01 1.31e-07 2.01
256 2.60e-08 2.00 5.06e-08 2.00 3.28e-08 2.00

Figure 1. The long time discrete energy of Example 1 with h = 0.05, τ = 0.05 for scheme1
(3.8)–(3.12) and explicit scheme2 (3.13)–(3.17).

Example 2. Consider the following two-dimensional coupled KG model

utt − κ
2∂α1

x u − κ2∂α2
y u + a1u + b1u3 + c1uv2 = g, (x, y, t) ∈ Ω × [0,T ],

vtt − κ
2∂α1

x v − κ2∂α2
y v + a2v + b2v3 + c2u2v = g, (x, y, t) ∈ Ω × [0,T ],

with Ω = [0, 2] × [0, 2]. The initial and boundary conditions are determined by the exact solutions

u(x, y, t) = x2(2 − x)2y2(2 − y)2e−t, v(x, y, t) = x4(2 − x)4y4(2 − y)4 sin(1 + t),

as well as the source term g. Here, we take a1 = a2 = 1, b1 = −1, b2 = −2, c1 = 1, c2 = 0.5 and κ = 1.

Similar to Example 1, we verify the convergence orders of the scheme in spatial direction at T = 1.
For spatial convergence order, we still set N = 1000 and thus the temporal error of the scheme can
be negligible. The numerical results are presented in Table 3 and Table 4 with different values of α1

and α2 which are in the x and y directions, respectively. The second-order accuracy of the scheme is
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achieved. Moreover, for the terminal time T = 100, Figure 2 shows the evolution of discrete energy
for scheme1 (3.8)–(3.12) and explicit scheme2 (3.13)–(3.17) when g(x, y, t) = 0. The figure indicate
that the discrete conservation law holds very well if the proposed scheme1 (3.8)–(3.12) are used. In
contrast, scheme2 (3.13)–(3.17) cannot preserve the discrete energy. Both tables and figure further
confirm the theoretical results.

Table 3. L∞ error and spatial convergence rates of scheme1 (3.8)–(3.12) for Example 2.

α1=1.3, α2=1.6 α1=1.5, α2=1.5 α1=1.7, α2=1.2
————————— ————————— —————————

M Eu(M,N) order(u) Eu(M,N) order(u) Eu(M,N) order(u)
8 3.76e-02 * 3.76e-02 * 3.82e-02 *
16 9.44e-03 2.00 9.28e-03 2.02 9.63e-03 1.99
32 2.32e-03 2.03 2.30e-03 2.01 2.37e-03 2.02
64 5.70e-04 2.02 5.65e-04 2.03 5.85e-04 2.02

Table 4. L∞ error and spatial convergence rates of scheme1 (3.8)–(3.12) for Example 2.

α1=1.3, α2=1.6 α1=1.5, α2=1.5 α1=1.7, α2=1.2
————————— ————————— —————————

M Ev(M,N) order(v) Ev(M,N) order(v) Ev(M,N) order(v)
8 2.98e-01 * 3.02e-01 * 2.77e-01 *
16 6.16e-02 2.28 6.13e-02 2.30 5.72e-02 2.28
32 1.46e-02 2.08 1.45e-02 2.08 1.36e-02 2.08
64 3.60e-03 2.02 3.56e-03 2.02 3.34e-03 2.02

Figure 2. The long time discrete energy of Example 2 with h = 0.1, τ = 0.05 for scheme1
(3.8)–(3.12) and explicit scheme2 (3.13)–(3.17).
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Example 3. Consider the following two-dimensional coupled KG model

utt − κ
2∂α1

x u − κ2∂α2
y u + a1u + b1u3 + c1uv2 = 0, (x, y, t) ∈ Ω × [0,T ],

vtt − κ
2∂α1

x v − κ2∂α2
y v + a2v + b2v3 + c2u2v = 0, (x, y, t) ∈ Ω × [0,T ],

and
(u(x, y, t), v(x, y, t)) = (0, 0), (x, y, t) ∈ ∂Ω × [0,T ],
(u(x, y, 0), v(x, y, 0)) = (u0(x, y), v0(x, y)) , (x, y) ∈ Ω̄,
(ut(x, y, 0), vt(x, y, 0)) = (0, 0), (x, y) ∈ Ω̄,

with Ω = [0, 1] × [0, 1].

Here, we take
u0(x, y) = 2[1 − cos(2πx)][1 − cos(2πy)] sech(x + y),

v0(x, y) = 4 sin(πx) sin(πy) tanh(x + y)

and
a1 = 10, a2 = 4, b1 = 6, b2 = 5, c1 = 2, c2 = 3, κ = 1.

The scheme1 (3.8)–(3.12) with
τ = h = 0.05, α1 = α2 = 1.5

are used to Example 3. Figure 3 and Figure 4 show the surfaces of Un
i j and Vn

i j at different times,
respectively. The significant dynamical evolutionary features of the numerical solutions Un

i j and Vn
i j,

such as radiation and oscillation, can be found in Figure 3 and Figure 4.

Figure 3. Surfaces of Un
i j at different times of Example 3 with α1 = α2 = 1.5 for scheme1

(3.8)–(3.12).
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Figure 4. Surfaces of Vn
i j at different times of Example 3 with α1 = α2 = 1.5 for scheme1

(3.8)–(3.12).

7. Conclusions

In this paper, the three-level energy-preserving scheme is proposed for the space-fractional coupled
KG systems. The scheme is derived by using the finite difference method. The discrete conservation
law, boundedness of numerical solutions and the global error of the scheme are further discussed. It
is shown that the scheme can have second order convergence in both temporal direction and spatial
direction. Several numerical examples are performed to support the theoretical results in the paper.
Moreover, due to the nonlocal derivative operator and considering that the implicit methods involve
Toeplitz matrices, fast methods are fairly meaningful to reduce the computational cost of the proposed
scheme; refer to the recent work [41, 42] for this issue.
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AppendixA

In the following, we present the proof of Lemma 6.

Proof of Lemma 6: Obviously, the result holds for p = 2. We prove the conclusion for p > 2.

For any m, s = 1, 2, . . . ,M1 − 1, and m > s, using mean value theorem, we have

∣∣∣um jk

∣∣∣ p
3 −

∣∣∣us jk

∣∣∣ p
3 =

m−1∑
i=s

(∣∣∣ui+1, jk

∣∣∣ p
3 −

∣∣∣ui jk

∣∣∣ p
3

)
=

p
3

m−1∑
i=s

(∣∣∣ui+1, jk

∣∣∣ − ∣∣∣ui jk

∣∣∣) ξ p
3−1
i jk ,

where

ξi jk ∈
(
min

{∣∣∣ui jk

∣∣∣ , ∣∣∣ui+1, jk

∣∣∣} ,max
{∣∣∣ui jk

∣∣∣ , ∣∣∣ui+1, jk

∣∣∣}) .
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Then, ∣∣∣um jk
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It is easy to verify the above inequality also holds for m ≤ s. Thus, we have
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Multiplying the above inequality by h1 and summing up for s from 1 to M1 − 1, we have
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Dividing the result by l1, and noticing that the above inequality holds for m = 1, 2, . . . ,M1−1, we have
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Multiplying the above inequality by h2h3 and summing over j, k, then applying the Cauchy-Schwarz
inequality, we obtain

h2h3

M2−1∑
j=1

M3−1∑
k=1

max
1≤i≤M1−1

∣∣∣ui jk

∣∣∣ p
3

≤ ph2h3

M2−1∑
j=1

M3−1∑
k=1

h1

M1−1∑
i=1

∣∣∣ui jk

∣∣∣ 2p
3 −2


1
2 h1

M1−1∑
i=1

∣∣∣δx1ui jk

∣∣∣2
1
2

+
1
l1

(
∥u∥ p

3

) p
3

≤ p

h2h3

M2−1∑
j=1

M3−1∑
k=1

h1

M1−1∑
i=1

∣∣∣ui jk

∣∣∣ 2p
3 −2


1
2
h2h3

M2−1∑
j=1

M3−1∑
k=1

h1

M1−1∑
i=1

∣∣∣δx1ui jk

∣∣∣2
1
2

+
1
l1

(
∥u∥ p

3

) p
3

= p
(
∥u∥ 2p

3 −2

) p
3−1
·
∥∥∥δx1u

∥∥∥ + 1
l1

(
∥u∥ p

3

) p
3
. (A.1)

Multiply both sides of inequality (A.1) by (h2h3)
1
2 , it follows easily that there exists a constant C such

that (h2h3)
1
2 ≤ C, we obtain

(h2h3)
1
2

M2−1∑
j=1

M3−1∑
k=1

max
1≤i≤M1−1

∣∣∣ui jk

∣∣∣ p
3 ≤ Cp

(
∥u∥ 2p

3 −2

) p
3−1
·
∥∥∥δx1u

∥∥∥ + C
l1

(
∥u∥ p

3

) p
3
. (A.2)
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Similarly to the previous analysis, we have

(h1h3)
1
2

M1−1∑
i=1

M3−1∑
k=1

max
1≤ j≤M2−1

∣∣∣ui jk

∣∣∣ p
3 ≤ Cp

(
∥u∥ 2p

3 −2

) p
3−1
·
∥∥∥δx2u

∥∥∥ + C
l2

(
∥u∥ p

3

) p
3
. (A.3)

(h1h2)
1
2

M1−1∑
i=1

M2−1∑
j=1

max
1≤k≤M3−1

∣∣∣ui jk

∣∣∣ p
3 ≤ Cp

(
∥u∥ 2p

3 −2

) p
3−1
·
∥∥∥δx3u

∥∥∥ + C
l3

(
∥u∥ p

3

) p
3
. (A.4)

Using the Cauchy-Schwarz inequality, we have

(
∥u∥ p

3

) p
3
= h1h2h3

M1−1∑
i=1

M2−1∑
j=1

M3−1∑
k=1

∣∣∣ui jk

∣∣∣ p
3 = h1h2h3

M1−1∑
i=1

M2−1∑
j=1

M3−1∑
k=1

∣∣∣ui jk

∣∣∣ · ∣∣∣ui jk

∣∣∣ p
3−1
≤ ∥u∥ ·

(
∥u∥ 2p

3 −2

) p
3−1

.

Substituting the above inequality into inequalities (A.2)–(A.4), we have

(h2h3)
1
2

M2−1∑
j=1

M3−1∑
k=1

max
1≤i≤M1−1

∣∣∣ui jk

∣∣∣ p
3 ≤ C

(
∥u∥ 2p

3 −2

) p
3−1
·

(
p
∥∥∥δx1u

∥∥∥ + 1
l1
∥u∥

)
. (A.5)

(h1h3)
1
2

M1−1∑
i=1

M3−1∑
k=1

max
1≤ j≤M2−1

∣∣∣ui jk

∣∣∣ p
3 ≤ C

(
∥u∥ 2p

3 −2

) p
3−1
·

(
p
∥∥∥δx2u

∥∥∥ + 1
l2
∥u∥

)
. (A.6)

(h1h2)
1
2

M1−1∑
i=1

M2−1∑
j=1

max
1≤k≤M3−1

∣∣∣ui jk

∣∣∣ p
3 ≤ C

(
∥u∥ 2p

3 −2

) p
3−1
·

(
p
∥∥∥δx3u

∥∥∥ + 1
l3
∥u∥

)
. (A.7)

We now estimate ∥u∥pp,

∥u∥pp = h1h2h3

M1−1∑
i=1

M2−1∑
j=1

M3−1∑
k=1

∣∣∣ui jk

∣∣∣p
= (h1h2)

1
2

M1−1∑
i=1

M2−1∑
j=1

(h1h3)
1
2 (h2h3)

1
2

M3−1∑
k=1

∣∣∣ui jk

∣∣∣ 2p
3
∣∣∣ui jk

∣∣∣ p
3


≤ (h1h2)

1
2

M1−1∑
i=1

M2−1∑
j=1

 max
1≤k≤M3−1

∣∣∣ui jk

∣∣∣ p
3 · (h1h3)

1
2 (h2h3)

1
2

M3−1∑
k=1

∣∣∣ui jk

∣∣∣ 2p
3


≤

(h1h2)
1
2

M1−1∑
i=1

M2−1∑
j=1

(
max

1≤k≤M3−1

∣∣∣ui jk

∣∣∣ p
3

) ·
M1−1∑

i=1

M2−1∑
j=1

(h1h3)
1
2 (h2h3)

1
2

M3−1∑
k=1

∣∣∣ui jk

∣∣∣ 2p
3


≤

(h1h2)
1
2

M1−1∑
i=1

M2−1∑
j=1

(
max

1≤k≤M3−1

∣∣∣ui jk

∣∣∣ p
3

) ·
(h2h3)

1
2

M2−1∑
j=1

M3−1∑
k=1

(
max

1≤i≤M1−1

∣∣∣ui jk

∣∣∣ p
3

)
·

(h1h3)
1
2

M1−1∑
i=1

M2−1∑
j=1

M3−1∑
k=1

∣∣∣ui jk

∣∣∣ p
3


≤

(h1h2)
1
2

M1−1∑
i=1

M2−1∑
j=1

(
max

1≤k≤M3−1

∣∣∣ui jk

∣∣∣ p
3

) ·
(h2h3)

1
2

M2−1∑
j=1

M3−1∑
k=1

(
max

1≤i≤M1−1

∣∣∣ui jk

∣∣∣ p
3

)
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·

(h1h3)
1
2

M1−1∑
i=1

M3−1∑
k=1

(
max

1≤ j≤M2−1

∣∣∣ui jk

∣∣∣ p
3

)
≤ C3

(
∥u∥ 2p

3 −2

)p−3
·

(
p
∥∥∥δx1u

∥∥∥ + 1
l1
∥u∥

)
·

(
p
∥∥∥δx2u

∥∥∥ + 1
l2
∥u∥

)
·

(
p
∥∥∥δx3u

∥∥∥ + 1
l3
∥u∥

)
, (A.8)

the last inequality is obtained by inequalities (A.5)–(A.7).
In addition, we set l = min {l1, l2, l3}, by using mean value inequality then we have(

p
∥∥∥δx1u

∥∥∥ + 1
l1
∥u∥

)
·

(
p
∥∥∥δx2u

∥∥∥ + 1
l2
∥u∥

)
·

(
p
∥∥∥δx3u

∥∥∥ + 1
l3
∥u∥

)
≤

(
p
∥∥∥δx1u

∥∥∥ + 1
l
∥u∥

)
·

(
p
∥∥∥δx2u

∥∥∥ + 1
l
∥u∥

)
·

(
p
∥∥∥δx3u

∥∥∥ + 1
l
∥u∥

)
≤ p3

∥∥∥δx1u
∥∥∥ · ∥∥∥δx2u

∥∥∥ · ∥∥∥δx3u
∥∥∥ + p

l2 ∥u∥
2 ·

(∥∥∥δx1u
∥∥∥ + ∥∥∥δx2u

∥∥∥ + ∥∥∥δx3u
∥∥∥)

+
p2

l
∥u∥ ·

(∥∥∥δx1u
∥∥∥ · ∥∥∥δx3u

∥∥∥ + ∥∥∥δx2u
∥∥∥ · ∥∥∥δx3u

∥∥∥ + ∥∥∥δx1u
∥∥∥ · ∥∥∥δx2u

∥∥∥) + 1
l3 ∥u∥

3

≤

(
p
√

3

)3

·

(∥∥∥δx1u
∥∥∥2
+

∥∥∥δx2u
∥∥∥2
+

∥∥∥δx3u
∥∥∥2

) 3
2
+

√
3p
l2 ∥u∥

2 ·

(∥∥∥δx1u
∥∥∥2
+

∥∥∥δx2u
∥∥∥2
+

∥∥∥δx3u
∥∥∥2

) 1
2

+
p2

l
∥u∥ ·

(∥∥∥δx1u
∥∥∥2
+

∥∥∥δx2u
∥∥∥2
+

∥∥∥δx3u
∥∥∥2

)
+

1
l3 ∥u∥

3

=

(
p
√

3

)3

|u|3H1 +

√
3p
l2 |u|H1 · ∥u∥2 +

p2

l
|u|2H1 · ∥u∥ +

1
l3
∥u∥3

=

(
p
√

3
|u|H1 +

1
l
∥u∥

)3

. (A.9)

Combining inequalities (A.8) and (A.9) yields

(
∥u∥p

)p
≤ C3

(
∥u∥ 2p

3 −2

)p−3
·

(
p
√

3
|u|H1 +

1
l
∥u∥

)3

. (A.10)

We consider the case p ≥ 6, applying Lemma 9 for p ≥ 6, it holds(
∥u∥ 2p

3 −2

)p−3
≤ ∥u∥

p+6
p−2

(
∥u∥p

) p(p−6)
p−2

.

Substituting the above inequality into inequality (A.10), we get

(
∥u∥p

) 4p
p−2
≤ C3∥u∥

p+6
p−2 ·

(
p
√

3
|u|H1 +

1
l
∥u∥

)3

,

that is

∥u∥p ≤ C3∥u∥
p+6
4p ·

(
p
√

3
|u|H1 +

1
l
∥u∥

) 3p−6
4p

. (A.11)
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Thus, we have proved the result for p ≥ 6. Taking p = 6 in inequality (A.11) yields

∥u∥6 ≤ C3∥u∥
1
2 ·

(
2
√

3|u|H1 +
1
l
∥u∥

) 1
2

. (A.12)

When 2 < p < 6, using Lemma 9 and inequality (A.12), we have

∥u∥p ≤ ∥u∥
6−p
2p ∥u∥

3(p−2)
4p

6 ≤ C3∥u∥
6−p
2p

∥u∥ 1
2 ·

(
2
√

3|u|H1 +
1
l
∥u∥

) 1
2


3p−6
4p

= C3∥u∥
p+6
4p

(
2
√

3|u|H1 +
1
l
∥u∥

) 3p−6
4p

.

This completes the proof.
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