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Abstract: Background: Previous studies revealed that the epithelial component is associated with the 
modulation of the ovarian tumor microenvironment (TME). However, the identification of key 
transcriptional signatures of laser capture microdissected human ovarian cancer epithelia remains 
lacking. Methods: We identified the differentially expressed transcriptional signatures of human 
ovarian cancer epithelia by meta-analysis of GSE14407, GSE2765, GSE38666, GSE40595, and 
GSE54388. Then we investigated the enrichment of KEGG pathways that are associated with 
epithelia-derived transcriptomes. Finally, we investigated the correlation of key epithelia-hub 
genes with the survival prognosis and immune infiltrations. Finally, we investigated the genetic 
alterations of key prognostic hub genes and their diagnostic efficacy in ovarian cancer epithelia. 
Results: We identified 1339 differentially expressed genes (DEGs) in ovarian cancer epithelia 
including 541upregulated and 798 downregulated genes. We identified 21 (such as E2F4, FOXM1, 
TFDP1, E2F1, and SIN3A) and 11 (such as JUN, DDX4, FOSL1, NOC2L, and HMGA1) master 
transcriptional regulators (MTRs) that are interacted with upregulated and the downregulated genes 
in ovarian tumor epithelium, respectively. The STRING-based analysis identified hub genes (such as 
CDK1, CCNB1, AURKA, CDC20, and CCNA2) in ovarian cancer epithelia. The significant clusters of 
identified hub genes are associated with the enrichment of KEGG pathways including cell cycle, DNA 
replication, cytokine-cytokine receptor interaction, pathways in cancer, and focal adhesion. The 
upregulation of SCNN1A and CDCA3 and the downregulation of SOX6 are correlated with a shorter 
survival prognosis in ovarian cancer (OV). The expression level of SOX6 is negatively correlated with 
immune score and positively correlated with tumor purity in OV. Moreover, SOX6 is negatively 
correlated with the infiltration of TILs, CD8+ T cells, CD4+ Regulatory T cells, cytolytic activity, T 
cell activation, pDC, neutrophils, and macrophages in OV. Also, SOX6 is negatively correlated with 
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various immune markers including CD8A, PRF1, GZMA, GZMB, NKG7, CCL3, and CCL4, indicating 
the immune regulatory efficiency of SOX6 in the TME of OV. Furthermore, SCNN1A, CDCA3, and 
SOX6 genes are genetically altered in OV and the expression levels of SCNN1A and SOX6 genes 
showed diagnostic efficacy in ovarian cancer epithelia. Conclusions: The identified ovarian cancer 
epithelial-derived key transcriptional signatures are significantly correlated with survival prognosis and 
immune infiltrations, and may provide new insight into the diagnosis and treatment of epithelial 
ovarian cancer. 

Keywords: ovarian cancer epithelia; meta-analysis; hub genes; survival prognosis; diagnostic efficacy 

 

1. Introduction 

Ovarian cancer is the most lethal gynecological malignancy worldwide [1]. The most common 
type of ovarian cancer is epithelial ovarian cancer and is the substantial cause of death in female 
cancer patients every year [2]. At the diagnosis stage, 58% of ovarian cancers are metastatic with 
a 5-year relative survival of only 30% of patients [2]. Ovarian surface epithelial carcinoma cells 
are capable of initiating ovarian cancer cells and are crucial for the malignant progression of 
cancer [3]. In the tumor microenvironment, epithelial component from high grade serous ovarian 
cancer is associated with cancer invasion, progression, and pathogenesis [4]. The differentially 
expressed genes of the epithelial component in ovarian cancer are associated with cell proliferation, 
invasion, motility, chromosomal instability, and gene silencing [5]. The epithelial component of 
ovarian cancer tissue also provided the prognostic factors, immunological factors, and molecular 
factors [6]. In ovarian cancer, key immune cells and soluble molecules in the TME regulated the 
prognosis [7]. These studies provide the clue that the human ovarian cancer epithelial-derived 
transcriptomes are associated with cancer initiation, invasion, migration, and metastasis. 

Previous studies revealed the association of coding and non-coding biomarkers including 
differentially expressed genes (DEGs), mRNA, and miRNA on ovarian cancer pathogenesis. Ting 
Gui et al. identified biomarkers including key hub genes and signaling pathways that are involved 
with epithelial ovarian cancer progression [8]. Another study identified the biomarkers including 
DEGs, key hub genes, prognostic genes, significant clusters of genes, and functional enrichment 
analysis in epithelial ovarian cancer [9]. Daniela Matei et al. identified mRNA levels that are 
significantly deregulated in primary cultures of ovarian epithelial cells derived from epithelial 
ovarian carcinoma [10]. Immunogenic mRNA and protein expression by cell cultures of epithelial 
ovarian cancer are also crucial factors to identify the disease progression [11]. MicroRNA (miRNA), 
the substantial onco-regulators in cancer, is associated with clinicopathological characteristics of 
epithelial ovarian cancer [12]. MiRNA regulating the initiation, proliferation, cell cycle, survivability, 
and resistance of chemosensitivity in ovarian cancer [13]. Some studies demonstrated the 
significance of bioinformatics analysis, data mining, gene regulatory networks, and prediction of 
biomarkers in human diseases [14–17]. Altogether, these studies provide the clue that the 
bioinformatics strategies could identify the epithelial-derived transcriptomes that are associated with 
the pathogenesis of ovarian cancer. 

Herein, we identified the deregulated transcriptional signatures in laser capture microdissected 
human ovarian cancer epithelia. Then we identified the TFs that are associated with regulating the 
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deregulated transcriptional signatures in ovarian cancer epithelia. Moreover, we identified the key hub 
genes and hub genes associated clusters from the PPI network. Furthermore, we investigated the 
correlation of key genes with survival prognosis and immune infiltrations. Finally, we investigated the 
genetic alterations of key prognostic hub genes and their diagnostic efficacy in ovarian cancer. The 
study may provide novel insights to investigate the functional regulatory mechanisms of 
immune-related biomarkers and help to develop immune-related targeted therapy in the treatment of 
ovarian cancer. Also, this study will help the experimental biologists to further carry out their research 
to explore the clinical association of these identified biomarkers to treat ovarian cancer patients. 

2. Materials 

2.1. Datasets 

We searched the NCBI gene expression omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) 
using the keywords “epithelial”, “ovarian epithelial”, “ovarian surface epithelium tumor”, 
“cancer-associated epithelial”, “ovarian cancer”, and "tumor epithelial", and identified five ovarian 
epithelial gene expression datasets from the same platform. These included five datasets have the 
following criteria: the datasets extracted from the same platform (Affymetrix human genome U133 
plus 2.0 array), the study organisms had to be Homo sapiens, the datasets had to contain ovarian 
epithelial cancer and normal ovarian epithelial tissue samples, and the sample size is greater than 20 
with minimum 5 control samples. The five selected datasets are GSE14407 [3], GSE27651 [18], 
GSE38666 [19,20], GSE40595 [4], and GSE54388 [21]. The total samples included 120 ovarian 
epitheial tumors and 43 control epithelial. Moreover, we downloaded the TCGA ovarian cancer 
cohort (n = 307) (https://portal.gdc.cancer.gov/) and normalized it by base-2 log transformation. 
Finally, we downloaded the clinical data of the TCGA ovarian cancer cohort for analyzing the 
survival differences between the two groups (https://portal.gdc.cancer.gov/). 

The GEO datasets (GSE14407, GSE27651, GSE38666, GSE40595, and GSE54388) used in 
this study are available in The National Biotechnology Information Center Gene (NCBI-Gene) 
database (https://www.ncbi.nlm.nih.gov/gene). TCGA-OV cohort is downloaded from the Cancer 
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). Genetical data of OV was utilized 
from the cBioPortal (http://www.cbioportal.org/). 

2.2. Identification of differentially expressed genes (DEGs)  

We used Network Analyst [22] to identify the DEGs between ovarian epithelial tumor and 
normal samples by a meta-analysis of five epithelial gene expression profiling datasets (GSE14407 [3], 
GSE27651 [18], GSE38666 [19,20], GSE40595 [4], and GSE54388 [21]). Datasets were normalized 
by quantile normalization or base-2 log transformation. We removed the batch effects of multiple 
datasets by using the ComBat method [23]. A total of 20,184 common genes were found by 
integrating the datasets from five datasets using the Network Analyst [22] tool. We used the R 
package “limma” for identifying the DEGs between tumor and normal samples, and Cochran’s 
combination test for performing the meta-analysis [24]. The false discovery rate (FDR) [25] was 
used to adjust for multiple tests. We identified the DEGs using a threshold of absolute combined 
effect size (ES) > 1.50 and FDR < 0.05. 
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2.3. Identification of master transcriptional regulators (MTRs) that are significantly associated with 
the DEGs 

We utilized Cytoscape [26] plug-in iRegulon [27] to identify the MTRs for the upregulated and 
downregulated DEGs. In the Cytoscape plug-in iRegulon [27], a minimum normalized enrichment 
score (NES) > 3.0 was selected for each TFs. For this purpose, we used an extensive collection of TF 
motifs and a large collection of ChIP-seq tracks. The iRegulon method depends on a 
ranking-and-recovery system where all genes of the human genome are scored by a motif discovery 
step integrating the clustering of binding sites within cis-regulatory modules (CRMs) and the 
potential distal location of CRMs upstream or downstream of the transcription start site (TSS ± 10 kb). 
The recovery step calculates the normalized enrichment score (NES) of TFs for each set of genes, 
input for each of the individual analyses, leading to the prediction of the TFs based on NES and their 
putative direct target genes which exist in the input lists. This methodology optimizes the linking of 
TFs to motifs using both explicit annotations and predictions of TF orthologs and motif similarity. A 
transcription factor NES was computed for each group where an NES > 3.0 corresponds, and the 
maximum false discovery rate (FDR) on motif similarity was set as 0.001 [28]. 

2.4. Gene-set enrichment analysis 

We performed gene-set enrichment analysis of the DEGs by using the GSEA [29]. We inputted 
all significant upregulated and downregulated DEGs into the GSEA tool [29] for identifying 
deregulated pathways. The KEGG [30] pathways significantly associated with the upregulated DEGs 
and the downregulated DEGs were identified, respectively. The P-value < 0.05 was considered 
significant when selecting the pathways. 

2.5. Identifying hub genes and modular analysis from protein-protein interaction (PPI) network of DEGs 

To better know the relationship among these identified DEGs, the PPI network was 
established using the STRING-based analysis [31]. To identify the rank of hub genes, we used 
Cytoscape plug-in tool cytoHubba [32]. Hub genes were identified based on the degree of 
interactions with neighbor genes. We selected the minimum required interaction score is 0.40 for 
identifying the PPI of DEGs. Hub genes were defined as a gene that was connected to a minimum 
of 10 other DEGs in the PPI. We visualize the PPI networks by utilizing the Cytoscape 3.6.1 
software [26]. A Cytoscape plug-in molecular complex detection (MCODE) was employed to 
detect the modules from the PPI network [33]. We identified the significant modules based on the 
MCODE score and node number. The threshold of the MCODE was Node Score Cut-off: 0.2, 
Haircut: true, K-Core: 2, and maximum depth from Seed: 100. 

2.6. Survival analysis of key hub genes 

We used the R package “survival” to investigate the survival prognosis of ovarian cancer 
patients [34]. We used the clinical data of the TCGA OV cohort for analyzing the survival differences. 
We compared the overall survival (OS) of ovarian cancer patients that are classified based on gene 
expression levels (expression levels > median versus expression levels < median). Kaplan-Meier 
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survival curves were used to show the survival differences, and the log-rank test (P < 0.05) was 
utilized to evaluate the significance of survival differences between the groups. 

2.7. ESTIMATE algorithmic for quantifying immune score and stromal score 

ESTIMATE is an algorithmic tool based on the R package for predicting tumor purity, immune 
score (predicting the infiltrations of immune cells), and stromal score (predicting the infiltrations 
of stromal cells) which uses the gene expression profiles of 141 immune genes and 141 stromal 
genes [35]. The presence of infiltrated immune cells and stromal cells in tumor tissues were 
calculated using related gene expression matrix data, represented by immune score and stromal score, 
respectively [35]. Then we calculated the correlations of key genes with immune scores and stromal 
scores. The threshold value of correlation is R > 0.20, and P-value is not less than 0.001 (Spearman’s 
correlation test). 

2.8. Single-sample gene-set enrichment analysis (ssGSEA) and correlation of immune signatures 
with prognostic genes 

One of the extension packages of GSEA, single-sample gene-set enrichment analysis (ssGSEA) 
was used to identify the enrichment scores of immune cells for each pairing of a sample and gene set 
in the tumor samples [36]. We collected the marker gene set for immune signatures and utilizing each 
gene set to quantify the ssGSEA scores of specific immune signatures [37–40]. We identified the 
enrichment levels (ssGSEA scores) of ten immune signatures included TILs, B cells, CD8+ T cells, 
CD4+ regulatory T cells, cytolytic activity, T cells activations, CAFs, pDC, macrophages, and 
neutrophils. All of the marker genes are displayed in Supplementary Table S1. Then we investigated 
Spearman’s correlation between the ssGSEA scores and specific prognostic genes. The threshold of 
correlation of immune cells is the absolute value is not less than 0.20 with P-value < 0.05. 

2.9. Genetic alterations analysis of prognostic hub genes 

We identified the genetic alterations associated with prognostic hub genes by using the 
cBioPortal (http://www.cbioportal.org/), an open-access tool for exploring and analyzing genetical 
alterations of multidimensional cancer studies [41]. In this study, we selected the TCGA OV 
epithelial data that contains 311 samples with mutation data and copy number alteration data 
(https://www.cbioportal.org/study/summary?id=ov_tcga). 

2.10. Diagnostic efficacy evaluation for prognostic key genes 

To assess diagnostic values of the prognostic genes, the receiver operating characteristic (ROC) 
curve was plotted and the area under the ROC curve (AUC) was calculated using the “pROC” R 
package [42] to evaluate the capability of distinguishing ovarian cancer epithelia and normal 
epithelia. The greater AUC value of individual genes indicated the differences between tumor and 
normal samples, and the key gene of AUC > 0.5 in the integrated five datasets was defined as a 
diagnostic efficiency of the gene [43]. If the P-value < 0.05, the selection of the prognostic genes are 
considered statistically significant. 
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2.11. Statistical and computational analysis 

We evaluated Pearson’s or Spearman’s correlation test to verify the significant levels between 
the two variables. For analyzing the correlations between the expression levels of hub genes and the 
enrichment levels (ssGSEA scores) of immune signatures, we used Spearman’s correlation test 
because these data were not normally distributed [44]. For analyzing the correlations between the 
expression levels of hub genes with the expression levels of other marker genes, we utilized 
Pearson’s correlation test because these data were normally distributed [44]. We utilized the Network 
Analyst [22] tool for calculating the average expression of a gene having multiple probes in the same 
expression dataset. We used the R package “ggplot2” for plotting the graphs in this study [45]. 

3. Results 

3.1. Identification of differentially expressed genes in ovarian epithelium by a meta-analysis 

Table 1. Gene expression pattern of top 25 upregulated genes in ovarian tumor 
epithelium relative to ovarian normal epithelium. 

Entrez ID Gene symbol Combined ES Adjusted P-value 

64321 SOX17 3.6554 0 

100133941 CD24 3.6041 7.24E-07 

55765 INAVA 3.4924 0 

2122 MECOM 3.4549 4.69E-12 

4751 NEK2 3.404 2.02E-09 

51514 DTL 3.3758 5.58E-07 

10406 WFDC2 3.3672 0 

51523 CXXC5 3.2352 0 

1063 CENPF 3.1671 0.00011 

4582 MUC1 3.1454 1.28E-13 

701 BUB1B 3.1136 6.41E-10 

4072 EPCAM 3.0962 3.57E-14 

24137 KIF4A 3.0737 1.57E-13 

7849 PAX8 3.0656 0 

79581 SLC52A2 3.0212 0 

1164 CKS2 2.9878 0 

10112 KIF20A 2.9847 6.01E-07 

57565 KLHL14 2.9794 1.89E-08 

54845 ESRP1 2.9359 0 

11130 ZWINT 2.9358 5.54E-05 

81610 FAM83D 2.8954 8.96E-05 

332 BIRC5 2.8935 0.000116 

29968 PSAT1 2.8885 1.42E-13 

1356 CP 2.8825 0 

We identified 1339 differentially expressed genes (DEGs) between the ovarian epithelial tumor 
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and normal epithelial, which included 541 upregulated (Tables 1 and S2) and 798 downregulated 
(Tables 2 and S3) genes in the tumor ovarian epithelial when compared with normal ovarian 
epithelial based on combined Effect size (ES). ES is the difference between two group means divided 
by standard deviation, which is considered combinable and comparable across different studies [22]. 
Table 1 describes the regulatory status of the top 25 (The highest combined effect size) upregulated 
genes including SOX17, CENPF, CD24, INAVA, MECOM, NEK2, DTL, WFDC2, PAX8, MUC1, and 
CXXC5. Lin Zhao et al. reported that the expression of SOX17, INAVA, WFDC2, and CD24 are 
upregulated in ovarian cancer [46]. It was found that PAX8 and SOX17 regulate tumor angiogenesis 
in vitro and in vivo in ovarian cancer [47]. NEK2, another upregulated gene in ovarian tumor 
epithelia, is associated with drug resistance in ovarian cancer [48]. 

Table 2. Gene expression pattern of top 25 downregulated genes in ovarian tumor 
epithelium relative to ovarian normal epithelium. 

Entrez ID Gene symbol Combined ES Adjusted P-value 

55600 ITLN1 -8.0963 1.96E-06 

150622 SILC1 -5.8072 2.46E-05 

10351 ABCA8 -5.5625 2.58E-08 

10216 PRG4 -5.3043 1.05E-06 

316 AOX1 -5.264 1.87E-14 

590 BCHE -5.199 1.66E-05 

8854 ALDH1A2 -5.039 1.76E-06 

4886 NPY1R -4.8974 8.46E-06 

125 ADH1B -4.872 3.77E-08 

65055 REEP1 -4.8554 0 

93663 ARHGAP18 -4.8506 0.00026109 

4753 NELL2 -4.8473 6.74E-05 

79804 HAND2-AS1 -4.7844 1.42E-06 

4969 OGN -4.7596 1.24E-07 

84709 MGARP -4.7055 2.86E-06 

51555 PEX5L -4.7042 0 

126 ADH1C -4.6513 1.57E-08 

9737 GPRASP1 -4.6473 2.23E-05 

8622 PDE8B -4.6407 1.49E-08 

56245 C21orf62 -4.6073 3.14E-06 

339896 GADL1 -4.5668 9.75E-09 

80310 PDGFD -4.5255 5.88E-13 

139221 PWWP3B -4.3353 1.34E-12 

3957 LGALS2 -4.2859 3.33E-05 

In addition, Table 2 describes the regulatory status of the top 25 (The lowest combined effect size) 
downregulated genes including ITLN1, SILC1, ABCA8, PRG4, AOX1, BCHE, ALDH1A2, NPY1R, 
ADH1B, and REEP1. It was found that the downregulation of mesothelial cell-derived ITLN1 in the 
omental tumor microenvironment facilitates ovarian cancer progression [49]. In the ovarian cancer cell 
line, ABCA8 was significantly downregulated and is associated with drug-resistant [50]. A tumor 
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suppressor, ALDH1A2, was strongly downregulated 36-fold in 779 epithelial ovarian cancer cases 
compared with 18 normal controls [51]. Altogether, it indicates that the ovarian cancer 
epithelia-derived deregulated transcriptomes are associated with ovarian cancer pathogenesis. 

3.2. Master transcriptional regulators (MTRs) are significantly associated with the DEGs 

 

Figure 1. Regulatory networks of the master transcriptional regulators (MTRs) and their 
targeted differentially expressed genes (DEGs) between ovarian tumor epithelium and 
normal epithelium. A. Regulatory network of the top 5 MTRs and their targeted upregulated 
genes in ovarian tumor epithelium. B. Regulatory network of the top 5 MTRs and their 
targeted downregulated genes in ovarian tumor epithelium. The Green color octagon 
indicates MTRs, and the purple color oval indicates DEGs in ovarian tumor epithelial. 
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MTRs are crucial cancer-associated biomarkers and targets for metabolism-targeted cancer 
therapy [52]. To identify the significant MTRs that regulating the DEGs, we used the Cytoscape 
plug-in iRegulon tool. We identified 21 (E2F4, FOXM1, TFDP1, E2F1, SIN3A, PIR, SMAD1, 
E2F7, UBP1, NFYC, BDP1, E2F1, NFYA, MYBL2, TCF12, MTHFD1, TEAD4, MZF1,  EP300, 
FHL2, and GRHL1) and 11 (JUN, DDX4, FOSL1, NOC2L, HMGA1, JUND, TCF12, EP300, 
NFIC, ZSCAN9, and FOS) MTRs for the upregulated and the downregulated genes in ovarian 
tumor epithelial, respectively (Table S4). We built the regulatory networks between the top 5 
MTRs and upregulated DEGs (Figure 1A). In addition, we built the regulatory networks between 
the top 5 MTRs and downregulated DEGs (Figure 1B). In the networks, E2F4, top MTRs for 
upregulated genes, targeted 267 upregulated genes, and JUN, top-scored MTRs for downregulated 
genes, targeted 146 downregulated genes. Interestingly, three members of the E2 factor (E2F) 
family of transcription factors (E2F1, E2F7, and E2F1) were the MTRs that regulated the 
upregulated genes in ovarian tumors epithelium (Figure 1A). Deregulation of E2F transcription 
factors is associated with both proliferation-promoting and proliferation-inhibiting and their 
cross-talk is involved in the tumor biology of ovarian cancer and influences the clinical outcome of 
ovarian cancer [53,54]. Transcription factor JUN is associated with cellular proliferation, 
malignant transformation, and invasion in various tumors including ovarian cancer [55]. 

3.3. Epithelium-derived transcriptomes are associated with the enrichment of KEGG pathways 

 

Figure 2. Significantly enriched KEGG pathways that are associated epithelium-derived 
DEGs. A. Significantly enriched 13 KEGG pathways that are associated with upregulated 
DEGs. B. Significantly enriched top 20 KEGG pathways that are associated with 
downregulated DEGs. FDR is false discovery rate. 

The significantly enriched upregulated and downregulated biological pathways were identified 
by using the GSEA tool (Figure 2). GSEA identified 13 KEGG pathways that are significantly 
associated with upregulated DEGs (Figure 2A). The upregulated pathways included cell cycle, 
Oocyte meiosis, pathways in cancer, progesterone-mediated oocyte maturation, DNA replication, 
homologous recombination, and small cell lung cancer (Figure 2A). Besides, we identified the 42 
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KEGG pathways that are significantly linked with downregulated DEGs (Table S5). Some of these 
downregulated pathways are involved with immune regulation, including complement and 
coagulation cascades, cytokine-cytokine receptor interaction, Fc gamma R-mediated phagocytosis, 
apoptosis, and endocytosis (Table S5 and Figure 2B). Moreover, metabolic pathways including drug 
metabolism - cytochrome P450, metabolism of xenobiotics by cytochrome P450, tyrosine 
metabolism, histidine metabolism, arginine and proline metabolism, and steroid hormone 
biosynthesis are downregulated in the epithelium of ovarian cancer (Figure 2B). 

3.4. STRING-based PPI analysis identified epithelial-derived hub genes and significant modules in 
ovarian cancer 

We investigated the PPI of all significant epithelial-derived DEGs. The PPI information of 
STRING is inputted into the Cytoscape for identifying and visualizing the hub genes and significant 
clusters. We identified the 460 hub genes (minimum degree of interaction is 10 with other DEGs) 
(Table S6). The top 20 hub genes (with the maximum degree of interaction) including CDK1, 
CCNB1, AURKA, CDC20, CCNA2, BUB1, TOP2A, BUB1B, CCNB2, and  CDC45 are shown in 
Figure 3. The overexpression of CDK1 is associated with cancer growth and survival rate in 
epithelial ovarian cancer [56]. CCNB1, another top hub gene, is abnormally expressed and 
significantly involved in carboplatin-resistant epithelial ovarian cancer [57]. The expression level of 
CCNB2 is distinguished between ovarian cancer and normal tissues [58]. 

 

Figure 3. The top 20 hub genes and their degree of protein-protein interaction. The PPI 
network was established using the STRING-based analysis. Cytoscape plug-in 
cytoHubba tool was used to identify their degree of interactions. 
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We investigated the significant cluster-based analysis of 460 hub genes. The MCODE-based 
analysis identified 7 clusters (Score of MCODE > 5.0) from the original PPI networks. The 
description of MCODE derived clusters with their interacting gene lists is illustrated in Table 3. The 
top significant cluster 1 included 103 nodes and 4571 edges (Table 3). We identified the functional 
enrichment of KEGG pathways for all clusters by using the GSEA [29]. Interestingly, we found that 
all seven of the clusters are associated with the enrichment of KEGG pathways (FDR < 0.05). Gene 
set of cluster 1 is associated with the enrichment of the cell cycle and other cellular differentiation 
pathways (Table 3). Gene set of cluster 2 is mainly involved with immune regulation and cellular 
signaling (Table 3). Gene set of clusters 4 and 5 is mainly involved with cancer-associated pathways 
including pathways in cancer, Hedgehog signaling pathway, basal cell carcinoma, melanoma, Wnt 
signaling pathway, endocytosis, cytokine-cytokine receptor interaction, focal adhesion, regulation of 
actin cytoskeleton, MAPK signaling pathway,  and TGF-beta signaling pathway (Table 3). 
Altogether, these results indicate that the epithelial tumor tissue-derived transcriptomes are 
contributed to ovarian cancer pathogenesis. 

Table 3. MCODE identified significant 7 clusters from the PPI networks of DEGs and 
GSEA identified enrichment of KEGG pathways (FDR < 0.05) for a specific gene set of 
the individual cluster.  

Cluster Score of 

MCODE 

Nodes Edges Node symbol Enrichment of KEGG pathways 

(FDR < 0.05) 

1 89.627 103 4571 DEPDC1B, FOXM1, E2F8, KIF18B, 

AURKA, NUSAP1, PBK, TYMS, HJURP, 

DEPDC1, TOP2A, MCM2, RACGAP1, 

KIF20A, PRC1, CCNA2, CDC45, ECT2, 

MKI67, CDCA3, KIF4A, CDCA8, KIF2C, 

CEP55, TTK, TPX2, STIL, CENPF, CDCA5, 

CENPA, MELK, TACC3, KIF15, RAD51, 

SPAG5, FEN1, ESCO2, BIRC5, HMMR, 

CENPI, KIAA0101, MCM10, SPC25, 

RAD54L, CDC7, CASC5, CENPE, UHRF1, 

MND1, SGOL1, DTL, NEIL3, KIF11, 

TROAP, SKA3, NCAPG, ZWINT, DLGAP5, 

EXO1, TRIP13, FAM83D, FANCI, CENPU, 

NUF2, CDCA7, CDC25A, CCNE2, CDK1, 

PTTG1, DSCC1, CDC20, CKS2, E2F7, 

RRM2, SMC4, UBE2C, CKS1B, BUB1, 

PKMYT1, MAD2L1, MCM4, CCNB2, 

KIF23, BUB1B, KIF18A, GINS2, ESPL1, 

FAM64A, CCNB1, NCAPH, RAD51AP1, 

CDC6, OIP5, CENPM, ASF1B, CHEK1, 

CDKN3, KPNA2, CENPK, EZH2, NEK2, 

KIF14, TK1 

Cell cycle, Oocyte meiosis, 

Progesterone-mediated oocyte 

maturation, p53 signaling pathway, 

DNA replication 

Continued on next page
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Cluster Score of 

MCODE 

Nodes Edges Node symbol Enrichment of KEGG pathways 

(FDR < 0.05) 

2 16 16 120 GNG12, GPSM2, NPY1R, CXCL6, GNG2, 

BDKRB1, HEBP1, CX3CL1, ADRA2C, 

APLNR, CXCR4, GNG11, LPAR3, ANXA1, 

PTGER3, GNAI1 

Chemokine signaling pathway, 

Neuroactive ligand-receptor 

interaction, Cytokine-cytokine 

receptor interaction, Leukocyte 

transendothelial migration, Axon 

guidance  

3 7.6 26 95 SOX9, CP, EPCAM, TIMP1, SPARCL1, 

FOXO1, ALDH1A1, KAT2B, CALCRL, 

STC2, CD24, LAMB1, GPR39, PTGDR, 

SDC2, PTGER4, KLF4, PTH2R, VWA1, 

CHGB, GOLM1, MEF2C, RAMP3, SCTR, 

ADCYAP1, CHRDL1 

Neuroactive ligand-receptor 

interaction 

4 7.6 31 114 LRP2, MMP7, PJA2, SYT1, TRIM4, WNT2B, 

NANOG, FBXL3, FBXL5, SPSB1, RCHY1, 

FGF13, GATA6, PACSIN3, STON2, MCAM, 

MUC1, PDGFRA, NOTCH1, BMP2, 

SH3GL2, CAV1, SFRP1, FBXL7, DAB2, 

FGF9, WNT7A, BMP4, SCARB2, MET, 

KITLG 

Pathways in cancer, Hedgehog 

signaling pathway, Basal cell 

carcinoma, Melanoma, Wnt signaling 

pathway, Endocytosis, 

Cytokine-cytokine receptor 

interaction, Melanogenesis, Focal 

adhesion, Regulation of actin 

cytoskeleton, MAPK signaling 

pathway, TGF-beta signaling pathway

5 6 9 24 ANXA5, FGF2, VEGFA, KDR, SNAI2, ZEB2, 

VIM, FGF1, ZEB1 

Pathways in cancer, Melanoma, 

VEGF signaling pathway, Focal 

adhesion, Regulation of actin 

cytoskeleton, Cytokine-cytokine 

receptor interaction, MAPK signaling 

pathway 

6 5.273 12 29 RAB33A, PTX3, RAB39B, IL18, LCN2, 

NFKB1, HPSE, RAB31, RAB27B, GSDMD, 

JUP, RAB8B 

Cytosolic DNA-sensing pathway, 

Acute myeloid leukemia,  NOD-like 

receptor signaling pathway 

7 5 5 10 MAP1LC3B, NBR1, GABARAPL2, PIK3C3, 

ATG101 

Regulation of autophagy 

3.5. Epithelial derived hub transcriptomes are correlated with survival prognosis in ovarian cancer 

We investigated the survival significance of the epithelium-derived all 460 significant hub genes 
in TCGA OV data. Our analysis revealed that the epithelium-derived upregulated genes included 
SCNN1A and CDCA3 (Figure 4A,B) and downregulated SOX6 gene (Figure 4C) is significantly 
correlated with shorter survival time of ovarian cancer patients (Figure 4). The overexpression of 
SCNN1A exerts substantial roles in cell growth, invasion, and migration in ovarian cancer through 
regulating the epithelial to mesenchymal transition, and is a potential indicator for a patient’s 
prognosis [59]. Chongxiang Chen et al. reported that the expression of the CDCA3 gene is associated 
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with the survival and tumorigenesis through the PLK1 pathway in ovarian cancer [60]. SOX6, a 
tumor suppressor, is downregulated in various cancers and associated with the inhibition of cellular 
proliferation, invasion, and tumor cell-induced angiogenesis of ovarian cancer cells [61]. 

 

Figure 4. Identification of prognostic hub genes in ovarian cancer. A-B. Upregulated genes that 

included SCNN1A and CDCA3 are significantly correlated with shorter survival time in ovarian cancer. 

C. Downregulated SOX6 gene is significantly correlated with shorter survival time in ovarian cancer. 

D. The GEO dataset GSE9891 was used for the analysis of survival differences in the SurvExpress 

tool. three prognostic gene signatures are significantly associated with shorter overall survival time in 

the high-risk groups. 

To verify the survival significance of the key three genes (SCNN1A, CDCA3, and SOX6), we 
inputted these prognostic three gene signatures into the SurvExpress tool 
(http://bioinformatica.mty.itesm.mx/SurvExpress) [62]. We used a GEO dataset GSE9891 (n = 285) [63] 
that is a built-in dataset in the SurvExpress tool (http://bioinformatica.mty.itesm.mx/SurvExpress). 
SurvExpress split the samples into two groups (high-risk group and low-risk group) based on the 
prognostic index and identify the significant survival differences between the two groups. Interestingly, 
we found that the three gene signatures are prognostic in overall survival (Figure 4D). The high-risk 
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group patients had significantly lower survival times than low-risk group patients (Figure 4D). 

3.6 Epithelial tumor-derived prognostic hub genes are associated with immune infiltrations in 
ovarian cancer 

 

Figure 5. The expression level of SOX6 is associated with the tumor microenvironment and immune 

infiltration in ovarian cancer. A. The expression level of SOX6 is negatively correlated with immune scores 

(R = -0.34, P < 0.001). B.  The expression level of SOX6 is positively correlated with tumor purity (R= 0.27, P 

< 0.001). C. The expression level of SOX6 is negatively correlated with ssGSEA scores of TILs, CD8+ T 

cells, CD4+ Regulatory T cells, cytolytic activity, T cell activation, pDC, neutrophils, and macrophages. 

(Spearman’s correlation test, P < 0.001). 
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Table 4. Correlated immune markers with SOX6 in ovarian cancer (TCGA OV cohort). R 
is Pearson’s correlation; P is p-value; FDR is false discovery rate. 

Immune 

signatures 

ID Immune 

markers 

Name R P value FDR value

CD8 T cell 925 CD8A CD8a molecule -0.26 5.87E-06 8.74E-05 

Cytolytic activity 3001 GZMA granzyme A -0.27 1.73E-06 3.45E-05 

5551 PRF1 perforin 1 -0.30 1.25E-07 4.38E-06 

T cell activation 3001 GZMA granzyme A -0.27 1.73E-06 3.45E-05 

3002 GZMB granzyme B -0.27 1.31E-06 2.74E-05 

4818 NKG7 natural killer cell granule protein 7 -0.26 3.72E-06 6.16E-05 

5551 PRF1 perforin 1 -0.30 1.25E-07 4.38E-06 

6348 CCL3 C-C motif chemokine ligand 3 -0.26 3.53E-06 5.90E-05 

6351 CCL4 C-C motif chemokine ligand 4 -0.31 3.79E-08 1.75E-06 

8530 CST7 cystatin F -0.23 3.78E-05 3.76E-04 

CD4 regulatory T 

cell 

1493 CTLA4 cytotoxic T-lymphocyte associated protein 4 -0.26 4.69E-06 7.33E-05 

50943 FOXP3 forkhead box P3 -0.24 2.65E-05 2.80E-04 

Macrophages 968 CD68 CD68 molecule -0.29 3.66E-07 1.03E-05 

1536 CYBB cytochrome b-245 beta chain -0.24 2.61E-05 2.77E-04 

10457 GPNMB glycoprotein nmb -0.23 6.45E-05 5.71E-04 

23601 CLEC5A C-type lectin domain containing 5A -0.22 1.22E-04 9.47E-04 

Neutrophils 2124 EVI2B ecotropic viral integration site 2B -0.23 6.91E-05 6.03E-04 

4332 MNDA myeloid cell nuclear differentiation antigen -0.25 6.50E-06 9.44E-05 

55350 VNN3 vanin 3 -0.24 2.35E-05 2.55E-04 

pDC 2833 CXCR3 C-X-C motif chemokine receptor 3 -0.27 1.02E-06 2.24E-05 

3002 GZMB granzyme B -0.27 1.31E-06 2.74E-05 

122618 PLD4 phospholipase D family member 4 -0.20 3.03E-04 1.98E-03 

171558 PTCRA pre T cell antigen receptor alpha -0.25 1.14E-05 1.45E-04 

TILs 914 CD2 CD2 molecule -0.23 4.20E-05 4.09E-04 

915 CD3D CD3d molecule -0.25 1.41E-05 1.71E-04 

916 CD3E CD3e molecule -0.24 2.49E-05 2.68E-04 

919 CD247 CD247 molecule -0.25 1.11E-05 1.42E-04 

925 CD8A CD8a molecule -0.26 5.87E-06 8.74E-05 

 CD86 CD86 molecule -0.29 1.73E-07 5.66E-06 

952 CD38 CD38 molecule -0.25 1.20E-05 1.50E-04 

962 CD48 CD48 molecule -0.31 2.05E-08 1.11E-06 

963 CD53 CD53 molecule -0.30 7.56E-08 2.97E-06 

1043 CD52 CD52 molecule -0.32 9.68E-09 6.45E-07 

1536 CYBB cytochrome b-245 beta chain -0.24 2.61E-05 2.77E-04 

1794 DOCK2 dedicator of cytokinesis 2 -0.21 2.88E-04 1.91E-03 

2124 EVI2B ecotropic viral integration site 2B -0.23 6.91E-05 6.03E-04 

2533 FYB1 FYN binding protein 1 -0.22 7.16E-05 6.19E-04 

2841 GPR18 G protein-coupled receptor 18 -0.25 8.27E-06 1.13E-04 

3071 NCKAP1L NCK associated protein 1 like -0.26 4.66E-06 7.29E-05 

Continued on next page
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Immune 

signatures 

ID Immune 

markers 

Name R P value FDR value

 3560 IL2RB interleukin 2 receptor subunit beta -0.27 1.99E-06 3.82E-05 

3561 IL2RG interleukin 2 receptor subunit gamma -0.27 2.48E-06 4.48E-05 

3587 IL10RA interleukin 10 receptor subunit alpha -0.24 1.75E-05 2.04E-04 

3676 ITGA4 integrin subunit alpha 4 -0.22 7.79E-05 6.61E-04 

3932 LCK LCK proto-oncogene, Src family tyrosine 

kinase 

-0.24 1.95E-05 2.21E-04 

3937 LCP2 lymphocyte cytosolic protein 2 -0.31 2.37E-08 1.21E-06 

4689 NCF4 neutrophil cytosolic factor 4 -0.27 2.38E-06 4.35E-05 

5341 PLEK pleckstrin -0.28 6.03E-07 1.50E-05 

5788 PTPRC protein tyrosine phosphatase receptor type C -0.24 2.37E-05 2.57E-04 

5790 PTPRCAP protein tyrosine phosphatase receptor type C 

associated protein 

-0.23 4.11E-05 4.02E-04 

6352 CCL5 C-C motif chemokine ligand 5 -0.29 2.63E-07 7.84E-06 

6793 STK10 serine/threonine kinase 10 -0.20 3.71E-04 2.33E-03 

6846 XCL2 X-C motif chemokine ligand 2 -0.32 1.36E-08 8.17E-07 

7293 TNFRSF4 TNF receptor superfamily member 4 -0.22 7.34E-05 6.31E-04 

8530 CST7 cystatin F -0.23 3.78E-05 3.76E-04 

9046 DOK2 docking protein 2 -0.28 3.81E-07 1.06E-05 

9404 LPXN leupaxin -0.21 2.27E-04 1.57E-03 

10791 VAMP5 vesicle associated membrane protein 5 -0.24 2.26E-05 2.48E-04 

10859 LILRB1 leukocyte immunoglobulin like receptor B1 -0.24 2.04E-05 2.29E-04 

10870 HCST hematopoietic cell signal transducer -0.25 7.56E-06 1.05E-04 

11151 CORO1A coronin 1A -0.39 2.12E-12 1.36E-09 

22914 KLRK1 killer cell lectin like receptor K1 -0.22 1.19E-04 9.31E-04 

23157 SEPTIN6 septin 6 -0.20 3.52E-04 2.24E-03 

29851 ICOS inducible T cell costimulator -0.23 3.46E-05 3.50E-04 

51316 PLAC8 placenta associated 8 -0.22 1.21E-04 9.45E-04 

54440 SASH3 SAM and SH3 domain containing 3 -0.30 8.70E-08 3.32E-06 

 GIMAP4 GTPase, IMAP family member 4 -0.27 1.06E-06 2.31E-05 

55340 GIMAP5 GTPase, IMAP family member 5 -0.24 1.99E-05 2.24E-04 

55423 SIRPG signal regulatory protein gamma -0.27 2.30E-06 4.24E-05 

55843 ARHGAP15 Rho GTPase activating protein 15 -0.26 3.03E-06 5.27E-05 

63940 GPSM3 G protein signaling modulator 3 -0.24 3.09E-05 3.19E-04 

64098 PARVG parvin gamma -0.25 1.24E-05 1.53E-04 

64231 MS4A6A membrane spanning 4-domains A6A -0.25 6.90E-06 9.87E-05 

64333 ARHGAP9 Rho GTPase activating protein 9 -0.27 1.91E-06 3.72E-05 

80342 TRAF3IP3 TRAF3 interacting protein 3 -0.25 1.30E-05 1.60E-04 

139818 DOCK11 dedicator of cytokinesis 11 -0.28 5.53E-07 1.41E-05 

Since survival time of patients is correlated with immunological responses in human cancers [64], 
it is essential to identify the correlation of prognostic hub genes with the immune infiltrations. We 
investigated the correlations between the expression levels of three hub genes (SCNN1A, CDCA3, 
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and SOX6) and the levels of immune signatures and tumor purity in the TME of OV. Interestingly, 
we found that the expression level of SOX6 is negatively correlated with immune scores (R=-0.34, 
P < 0.001) (Figure 5A), and positively correlated with tumor purity (R=0.27, P<0.001) (Figure 5B), 
but the expression level of SCNN1A and CDCA3 are not correlated with immune scores and tumor 
purity. Then, we investigated the correlation of three prognostic hub genes (SCNN1A, CDCA3, and 
SOX6) with the several immune stimulatory and inhibitory signatures including B cells, TILs, CD8+ 
T cells, CD4+ Regulatory T cells, cytolytic activity, T cell activation, pDC, neutrophils, CAFs, and 
macrophages. We found that the expression of SOX6 is negatively correlated with the infiltration of 
TILs, CD8+ T cells, CD4+ Regulatory T cells, cytolytic activity, T cell activation, pDC, neutrophils, 
and macrophages (Figure 5C). The expression level of SCNN1A and CDCA3 is not correlated with 
immune infiltrations. Therefore, we identified the correlations of SOX6 with the immune markers (all 
markers selected from the significant immune signatures). Interestingly, we found that the expression 
of SOX6 negatively correlated with 68 immune markers including CD8A, PRF1, GZMA, GZMB, 
NKG7, PRF1, CCL3, CCL4, CST7, CXCR3, and IL10RA in ovarian cancer (Table 5). Tumor immune 
infiltration is a key indicator in the progression of ovarian cancer [65]. In epithelial ovarian cancer, 
tumor-infiltrating T cells are predictors of prognosis and biological basis of treatment outcomes [66]. 
In intratumoral TME, the accumulation of CD8+ T cells is associated with the survival of high-grade 
serous ovarian carcinoma patients [67]. Our immunological analysis indicated that the 
epithelial-derived-transcriptomes are associated with the modulation of the immune 
microenvironment in ovarian cancer. 

3.7 Three prognostic hub genes are mutated in ovarian cancer 

 

Figure 6. Genetical alterations of SCNN1A, CDCA3, and SOX6 in the ovarian epithelial tumor. A. 

SCNN1A (10%), CDCA3 (10%), and SOX6 (1.6 %) genes are mutated in the ovarian epithelial tumor. 

B. The genetic alterations of SCNN1A and CDCA3 are amplification and the genetic alterations of 

SOX6 are mutation, amplification, and multiple alterations in the ovarian epithelial tumor. 
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We used the OV epithelial tumor data (n = 311) in cBioPortal (http://www.cbioportal.org/) 
to identify the genetic alterations of three prognostic hubs genes (SCNN1A, CDCA3, and SOX6). 
Queried SCNN1A, CDCA3, and SOX6 genes are altered in 36 (12%) of queried 
patients/samples. 

We found that the SCNN1A and CDCA3 are altered in 10 % of patients (Figure 6A). In addition, 
SOX6 is altered in 1.6 % of patients (Figure 6A).  The genetic alterations of SCNN1A and CDCA3 
included amplification and the genetic alterations of SOX6 included mutation, amplification, and 
multiple alterations (Figure 6B). 

3.8 Diagnostic efficacy evaluation of prognostic in combined 5 datasets of ovarian epithelium 

We speculate that these six genes (SCNN1A, CDCA3, and SOX6) have diagnostic value in 
combined 5 datasets of ovarian epithelium. We used the combined 5 datasets (GSE14407 [3], 
GSE27651 [18], GSE38666 [19,20], GSE40595 [4], and GSE54388 [21]) of the ovarian epithelium 
to validate our hypothesis, and the results showed that the ROC curve of the expression levels of 
SCNN1A (AUC = 0.60) and SOX6 (AUC = 0.744) showed excellent diagnostic value for ovarian 
epithelial tumor and normal ovarian epithelial cells (Figure 7). 

 

Figure 7. Evaluation of diagnostic efficacy of key prognostic genes in combined 5 
datasets of ovarian epithelium.  

The receiver operating characteristic (ROC) curve of prognostic genes in combined 5 datasets 
(GSE14407 [3], GSE27651 [18], GSE38666 [19,20], GSE40595 [4], and GSE54388 [21]) of ovarian 
tumor epithelium and normal ovarian epithelium. The expression levels of SCNN1A (AUC = 0.60) 
and SOX6 (AUC = 0.744) showed diagnostic value in the ovarian epithelial tumor. 
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4. Discussion 

Since bioinformatic studies are crucial for identifying the key signaling genes and pathways in 
human diseases [68–71], we aimed to explore the ovarian cancer epithelium-derived transcriptomes 
for identifying the substantial biomarkers. We identified DEGs in ovarian tumor epithelium by a 
meta-analysis of five gene expression datasets (Tables S2 and S3). Based on the significant DEGs, 
we identified pathways that are associated with the significant DEGs. The upregulated pathways 
were mainly involved in cellular development, cancer, and metabolism, and the downregulated 
pathways involved in immune-regulation and metabolism (Figure 2). The cell cycle, the top enriched 
upregulated pathway, is involved in ovarian cancer pathogenesis [68]. The downregulation of 
immune cells is directly associated with enhancing the pathogenesis of ovarian cancer through the 
release of various cytokines and chemokines [72]. Therefore, our investigated results are consistent 
with the role of DEGs in the enrichment of pathways that cause ovarian cancer pathogenesis. These 
results revealed the abnormal alterations of cellular development, immune regulation, and 
metabolism-related pathways in the compartment of the ovarian cancer epithelium. In addition, we 
identified hub genes that are interacted with other DEGs. We identified 21 and 11 transcription 
factors that are associated with regulating the upregulated and downregulated DEGs, respectively 
(Table S4). In ovarian epithelial cancer, TFs are substantial contributors to cancer risk and somatic 
development [73]. These TFs could be a unique target for the development of novel precision 
medicine strategies for ovarian cancer. 

Moreover, we found that several clusters are associated with the hub gene signatures. These 
clusters are associated with the enrichment level of KEGG pathways (Table 3). Pathway analysis 
revealed that the significant clusters are mainly involved with cancer, immune regulation, and 
cellular signaling (Table 3). Then, we found that the expression of three hub genes (SCNN1A, 
CDCA3, and SOX6) are significantly correlated with the shorter overall survival time of ovarian 
cancer patients (Figure 4). Since the level of immune infiltration is an independent predictor of a 
patient’s survival in cancer [74], we analyzed the correlation of SCNN1A, CDCA3, and SOX6 with 
the immune infiltration levels in the ovarian tumor. First, we revealed the association of these 
three hub genes with the ovarian tumor microenvironment. The expression level of SOX6 is 
negatively correlated with immune scores, indicating that SOX6 is associated with lower the 
immunity (Figure 5A,B). Second, the expression level of SOX6 is negatively correlated with 
infiltrations of TILs, CD8+ T cells, CD4+ Regulatory T cells, cytolytic activity, T cell activation, 
pDC, neutrophils, and macrophages in epithelial ovarian cancer, suggesting that the SOX6 expression 
is linked with lowering the immune infiltrations in ovarian cancer (Figure 5C). Third, the 68 immune 
markers (we selected all markers of the significant immune signatures (Figure 4C)) including CD8A, 
GZMA, PRF1, GZMB, NKG7, CCL3, CCL4, and CCL5 are negatively correlated with the expression 
levels of SOX6, demonstrating that the SOX6 expression is related to the reduced expression levels of 
immune markers (Table 4). Altogether. It indicates that the expression of SOX6 is associated with the 
suppression of tumor immunity in ovarian epithelial cancer. The expression of SCNN1A and CDCA3 
is not associated with the regulation of immune infiltrations in epithelial cancer. In addition, 
SCNN1A, CDCA3, and SOX6 are genetically altered in ovarian cancer. The genetic alteration of 
SCNN1A and CDCA3 is amplification and the genetic alterations of SOX6 are mutation, 
amplification, and multiple alterations in ovarian cancer (Figure 6). 

We downloaded and integrated publicly available five datasets for this study. Some of the 
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previous studies scatteredly used these datasets to implement various purposes [75–77]. For example, 
Dan Yang et al. identified hub genes and therapeutic drugs by using the four datasets including 
GSE54388 and GSE40595 [75]. However, none of the authors specifically using these five datasets 
together for identifying the key biomarkers in the epithelial compartment of ovarian cancer. As per 
our knowledge, this is the first time, we have integrated the five transcriptomic datasets from the 
same platform. One of the major advantages of this study is that we selected only laser capture 
microdissected human ovarian cancer epithelial samples with control. Another advantage of this 
study is that we integrated the microarray datasets from the same platform (Affymetrix Human 
Genome U133 Plus 2.0) to reduce the data platform heterogeneity. Moreover, we did a meta-analysis 
to identify the key genes in ovarian tumor epithelial samples. This meta-analysis method usually 
gives more conservative results (less DEGs but more confident) [22]. The major drawback of this 
study is that the ovarian epithelial-associated key genes and networks identified by bioinformatics 
analysis have not been validated by experimental analysis. Thus, although our findings could provide 
potential biomarkers for ovarian cancer diagnosis and prognosis, as well as therapeutic targets, 
further experimental and clinical validation is necessary to transform these results into practical 
application in ovarian cancer treatments. 

5. Conclusions 

The identification of ovarian cancer epithelial-derived key biomarkers may provide insight into 
the association of these genes with survival prognosis and tumor immunity. Epithelial-derived key 
transcriptomes may be crucial indicators of the effectiveness of ovarian cancer diagnosis and treatment. 
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