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Abstract: Permutation Entropy (PE) is a very popular complexity analysis tool for time series. De-
spite its simplicity, it is very robust and yields goods results in applications related to assessing the
randomness of a sequence, or as a quantitative feature for signal classification. It is based on com-
puting the Shannon entropy of the relative frequency of all the ordinal patterns found in a time series.
However, there is a basic consensus on the fact that only analysing sample order and not amplitude
might have a detrimental effect on the performance of PE. As a consequence, a number of methods
based on PE have been proposed in the last years to include the possible influence of sample ampli-
tude. These methods claim to outperform PE but there is no general comparative analysis that confirms
such claims independently. Furthermore, other statistics such as Sample Entropy (SampEn) are based
solely on amplitude, and it could be argued that other tools like this one are better suited to exploit
the amplitude differences than PE. The present study quantifies the performance of the standard PE
method and other amplitude–included PE methods using a disparity of time series to find out if there
are really significant performance differences. In addition, the study compares statistics based uniquely
on ordinal or amplitude patterns. The objective was to ascertain whether the whole was more than the
sum of its parts. The results confirmed that highest classification accuracy was achieved using both
types of patterns simultaneously, instead of using standard PE (ordinal patterns), or SampEn (ampli-
tude patterns) isolatedly.

Keywords: Permutation entropy; amplitude aware permutation entropy; fine–grained permutation
entropy; weighted permutation entropy; sample entropy; time series classification

1. Introduction

Permutation Entropy (PE) [6] is probably becoming one of the most successful complexity estima-
tors in the recent years. The number of works based on this measure is sky-rocketing [38], arguably
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due its simplicity, robustness, and ability to capture the underlying dynamics of the time series under
analysis.

PE has already been applied in a diversity of fields, and other new ones will surely emerge due its
versatility. In medicine, PE has been used in practically all its specialities. For example, in cardiology,
it has been applied to heart rate variability data series for sleep breathing pause detection [29], to
classify emotional changes [33], to assess a possible cardiac autonomic neuropathy [9], or to find out if
atrial fibrillation is stochastic or deterministic [3]. Neurology is also a medical field where PE has been
extensively exploited. For example, the paper [28] describes a method based on PE to track anaesthetic
induced changes using electroencephalograms (EEG). In the same context, other works have used PE
to segment sleep stages [27]. PE and the EEG can even be used to detect epileptic seizures [35]. Other
medical specialities have not been so widely exploited yet, but there are significant studies already. In
internal medicine, PE has been used to classify temperature records as healthy or febrile–prone patients
[13], or to analyse blood glucose time series to anticipate the possible development of a diabetes. In
physical medicine and rehabilitation, there are many studies based on PE analysis of gait data, as in
[37], where authors successfully classified normal and pathological gait using PE. There are other
scientific and technical fields that have benefited from the capabilities of PE. In mechanics, PE is being
used as a fault diagnosis tool [32, 18]. PE is also becoming a popular tool in econometrics applications
[42, 39, 21]. Finally, PE has had its place in time series analysis related to climate data [19].

Since its conception, there are two limitations that are frequently considered when working with
PE: the ordinal ambiguity of equal values in subsequences [15, 41], and the lack of information related
to the sample differences in amplitude [17]. In the first case, consider, for example, two subsequences
drawn from a time series, xi = {1, 3, 2} and x j = {1, 3, 3}. If each sample in a subsequence is assigned
a value corresponding to its position, starting at 0, xi and x j could be re-written as xi = {10, 31, 22}

and x j = {10, 31, 32}, where the sample sub–indices account for the position within the subsequence. If
those subsequences are ordered in ascending order, as it is one of the first steps in PE calculation, xi

results in yi = {10, 22, 31} (order {0, 2, 1}), but x j can result both in y j = {10, 31, 32} (order {0, 1, 2} ) or
y j = {10, 32, 31} (order {0, 2, 1}). As a consequence, the ordinal patterns can be incorrectly assigned and
PE computation be skewed. Some methods have been proposed in the literature to account for these
ambiguities [7, 4], and their influence has been heuristically characterised in [15].

As for the second case of differences in amplitude, let’s consider again two subsequences and their
orders: xi = {10, 31, 22} and x j = {10, 301, 29.92}. If sorted, the resulting order in both cases is {0, 2, 1},
namely, they provide the same information to PE, despite having very different amplitude values that
could be also related to the dynamics of the time series. Other methods have also been proposed
recently to address this possible weakness of PE, such as Weighted–Permutation Entropy (WPE) [17],
Fine–Grained Permutation Entropy (FGPE) [34], and Amplitude–Aware Permutation Entropy (AAPE)
[4], among others. In this case, there is no comparative study to assess the real effectiveness of these
approaches, and the practical influence of amplitude differences has not been characterized yet, the
goal of the present paper.

This characterization study will specifically test the performance of the following methods: standard
PE, WPE, FGPE, and AAPE. The experimental dataset was chosen carefully to ensure a representa-
tive variation of time series properties and features. This data set was drawn from publicly available
databases for replication and comparison purposes. The experiments will consist on assessing the
classification performance of all the methods under analysis, and then compare the classification per-
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formance achieved. The results confirmed that a combination of ordinal and amplitude information,
the whole, could achieve a higher classification accuracy than each type of information considered in-
dependently, its parts, PE (ordinal information) and Sample Entropy (SampEn, amplitude information)
[23].

2. Materials and method

2.1. Permutation entropy

PE was proposed in the well known seminal paper by Bandt and Pompe [6]. This method was
devised to estimate the complexity of a time series based on the relative frequency of the ordinal
patterns found. PE inputs are a time series x of length N, x = {x0, x1, . . . , xN−1}, and an embedded
dimension m > 2. All the possible N − (m − 1) subsequences, starting at index j, with 0 ≤ j <
N − m + 1, of length m are then extracted from vector x, termed xm

j =
{
x j, x j+1, . . . , x j+m−1

}
. Initially,

each xm
j has a default sample order given by the indices of the samples taken from initial index j,

that is, πm = {0, 1, . . . ,m − 1}. When xm
j is sorted in ascending order, a new order vector emerges

πm
j = {π0, π1, . . . , πm−1}, such that x j+π0 ≤ x j+π1 ≤ x j+π2 . . . ≤ x j+πm−1 . There are potentially m! different

ordinal patterns of length m, termed Πm
i , with 0 ≤ i < m!. All these patterns can be computed in

advance, or added dynamically to a list when they are first found. Each time a πm
j matches a Πm

i , a
motif counter ci is incremented, being all these counters members of a vector c of length m!. Finally,
the relative frequencies of each possible pattern can be computed and stored in another vector p, whose
non–zero members provide the final PE result as:

PE = −

m!−1∑
k=0

pklog2 pk,∀pk > 0 (2.1)

The steps to compute PE are described in detail in Algorithm 1.
For example, let x be the sequence {−0.45, 1.9, 0.87, -0.91, 2.3, 1.1, 0.75, 1.3, -1.6, 0.47, -0.15,

0.65, 0.55, -1.1, 0.3} (a random sequence with mean 0 and standard deviation 1.0). In order to compute
PE(x,m,N) with N = 15, and taking m = 3, the following m! = 6 ordinal patterns of length 3 have
to be considered first: Π3

0 = {0, 1, 2} , Π3
1 = {0, 2, 1} , Π3

2 = {1, 0, 2} , Π3
3 = {2, 0, 1} , Π3

4 = {1, 2, 0} ,
Π3

5 = {2, 1, 0}.
Then, the N − m + 1 = 13 subsequences that can be drawn from x are x3

0 = {−0.45, 1.9, 0.87}
, x3

1 = {1.9, 0.87,−0.91} , x3
2 = {0.87,−0.91, 2.3} , x3

3 = {−0.91, 2.3, 1.1} , x3
4 = {2.3, 1.1, 0.75} ,

x3
5 = {1.1, 0.75, 1.3} , x3

6 = {0.75, 1.3,−1.6} , x3
7 = {1.3,−1.6, 0.47} , x3

8 = {−1.6, 0.47,−0.15} , x3
9 =

{0.47,−0.15, 0.65} , x3
10 = {−0.15, 0.65, 0.55} , x3

11 = {0.65, 0.55,−1.1} , x3
12 = {0.55,−1.1, 0.3}. All

these subsequences have an associated ordinal pattern π3 = {0, 1, 2} initially.
When the previous subsequences are ordered, the results are: y3

0 = {−0.45, 0.87, 1.9}, with π3
0 =

{0, 2, 1} ; y3
1 = {−0.91, 0.87, 1.9}, with π3

1 = {2, 1, 0} ; y3
2 = {−0.91, 0.87, 2.3}, with π3

2 = {1, 0, 2} ;
y3

3 = {−0.91, 1.1, 2.3}, with π3
3 = {0, 2, 1} ; y3

4 = {0.75, 1.1, 2.3}, with π3
4 = {2, 1, 0} ; y3

5 = {0.75, 1.1, 1.3},
with π3

5 = {1, 0, 2} ; y3
6 = {−1.6, 0.75, 1.3}, with π3

6 = {2, 0, 1} ; y3
7 = {−1.6, 0.47, 1.3}, with π3

7 =

{1, 2, 0} ; y3
8 = {−1.6,−0.15, 0.47}, with π3

8 = {0, 2, 1} ; y3
9 = {−0.15, 0.47, 0.65}, with π3

9 = {1, 0, 2}
; y3

10 = {−0.15, 0.55, 0.65}, with π3
10 = {0, 2, 1} ; y3

11 = {−1.1, 0.55, 0.65}, with π3
11 = {2, 1, 0} and

y3
12 = {−1.1, 0.3, 0.55}, with π3

12 = {1, 2, 0}.
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Algorithm 1: Permutation Entropy (PE) Algorithm
Input: x, m and N
Initialization: PE=0, c = {0}m!, p = {0}m!,
πm = {0, 1, . . . ,m − 1} ,Πm = {πm, (πm)1, . . . , (πm)m!−1}, with (πm)k = k−th permutation of πm

elements.
for j = 0, . . . ,N − m do

xm
j =

{
x j, x j+1, . . . , x j+m−1

}
sort

(
xm

j ,π
m
)
−→

(
ym

j ,π
m
j

)
for i = 0, . . . ,m! − 1 do

if πm
j == Πm

i then
ci = ci + 1
break

for k = 0, . . . ,m! − 1 do
pk = ck

(N−m−1)

if pk > 0 then
PE=PE+

(
−pklog2 pk

)
Output: PE(x,m,N)

All the π3
j ordinal patterns have to be compared with the pattern templates inΠ3. Thus,Π3

0 = {0, 1, 2}
is not found in π3

j . Π
3
1 = {0, 2, 1} is found 4 times. Π3

2 = {1, 0, 2} is found 3 times. Π3
3 = {2, 0, 1} is

found once. Π3
4 = {1, 2, 0} is found twice, and Π3

5 = {2, 1, 0} appears three times. Therefore, c =

{0, 4, 3, 1, 2, 3}, and p = {0, 0.31, 0.23, 0.08, 0.15, 0.23}, from which PE(x, 3, 15) = −0.31 log2 0.31 −
0.23 log2 0.23 − 0.08 log2 0.08 − 0.15 log2 0.15 − 0.23 log2 0.23 = 2.20.

2.2. Weighted–permutation entropy

WPE was introduced in [17]. It was devised as an improvement over PE to account for the variability
of amplitudes that result in the same motif. For example, given three subsequences x3

i = {1, 2, 3}, x3
j =

{1, 2, 3000}, and x3
k = {1, 2000, 2001}, they result in the same ordinal pattern π3

i jk = {0, 1, 2}, despite
their clear amplitude and even shape differences. The basic idea is to apply a correcting factor or weight
to the relative frequencies that takes into account sample variability, not only order. These weights w j

are added prior to computing such relative frequencies, and are given by w j = 1
m

m−1∑
k=0

(
x j+k − X

m
j

)2
,

where X
m
j is the arithmetic mean of xm

j , and W will be the new denominator instead of N −m− 1, with

W =

N−m∑
j=0

w j. The steps to compute WPE are described in detail in Algorithm 2.

Using the same example as for PE, the weight for each subsequence (the variance of each xm
j )

would be as follows: w0 = 0.925 , w1 = 0.227 , w2 = 1.724 , w3 = 1.754 , w4 = 0.441 , w5 = 0.052
, w6 = 1.582 , w7 = 1.487 , w8 = 0.752 , w9 = 0.117 , w10 = 0.127 , w11 = 0.644 , w12 = 0.527,
with W = 10.359. The ordinal patterns found are the same as for PE, and therefore each weight has to
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Algorithm 2: Weighted Permutation Entropy (WPE) Algorithm
Input: x, m and N
Initialization: WPE=0, W = 0, c = {0}m!, p = {0}m!,
πm = {0, 1, . . . ,m − 1} ,Πm = {πm, (πm)1, . . . , (πm)m!−1}, with (πm)k = k−th permutation of πm

elements.
for j = 0, . . . ,N − m do

xm
j =

{
x j, x j+1, . . . , x j+m−1

}
X

m
j = mean(xm

j )

w j = 1
m

m−1∑
k=0

(
x j+k − X

m
j

)2

sort
(
xm

j ,π
m
)
−→

(
ym

j ,π
m
j

)
for i = 0, . . . ,m! − 1 do

if πm
j == Πm

i then
ci = ci + w j

break
W = W + w j

for k = 0, . . . ,m! − 1 do
pk = ck

W
if pk > 0 then

WPE=WPE+
(
−pklog2 pk

)
Output: WPE(x,m,N)

be added to the corresponding relative frequency, p =
{
0, 3.558

10.359 ,
1.893

10.359 ,
1.582

10.359 ,
2.014
10.359 ,

1.312
10.359

}
, from which

WPE(x,m,N) = −0.3435 log2 0.3435−0.1827 log2 0.1827−0.1527 log2 0.1527−0.1944 log2 0.1944−
0.1267 log2 0.1267 = 2.23.

2.3. Fine–grained permutation entropy

FGPE was first described in [34]. It is another approach to the problem of not considering amplitude
information in the standard PE algorithm. This method proposes to include an additional parameter q
to quantify the differences d j between consecutive values in each pattern xm

j as:

q =

⌊
max(d j)
std(d j)α

⌋

where α is another user–defined parameter, d j =
{∣∣∣x j+1 − x j

∣∣∣ , . . . , ∣∣∣x j+m−1 − x j+m−2

∣∣∣}, and bc is the floor
function, it keeps the integer part of the operand. For simplicity, we used α = 1, as in [34]. The
resulting value of q is added as an additional symbol at the end of each πm

j . As a consequence, Πm is
not known in advance, it has to be updated dynamically when a new pattern is found. The algorithm
for FGPE is shown in Algorithm 3 (# is the sizeof operator).
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Algorithm 3: Fine–Grained Permutation Entropy (FGPE) Algorithm
Input: x, m, α and N
Initialization: FGPE=0, c = {∅}, p = {∅}, πm = {0, 1, . . . ,m − 1} ,Πm = {∅}

for j = 0, . . . ,N − m do
xm

j =
{
x j, x j+1, . . . , x j+m−1

}
d j =

{∣∣∣x j+1 − x j

∣∣∣ , . . . , ∣∣∣x j+m−1 − x j+m−2

∣∣∣}
q =

⌊
max(d j)
std(d j)α

⌋
sort

(
xm

j ,π
m
)
−→

(
ym

j ,π
m
j

)
πm

j = {π0, π1, . . . , πm−1} −→ {π0, π1, . . . , πm−1, q}
found=false
for i = 0, . . . , # (Πm) do

if πm
j == Πm

i then
ci = ci + 1
found=true
break

if not found then
Πm ← πm

j
c← 1

# (p) = # (c)
for k = 0, . . . , # (Πm) do

pk = ck∑
c

if pk > 0 then
FGPE=FGPE+

(
−pklog2 pk

)
Output: FGPE(x,m,N, α)

2.4. Amplitude–aware permutation entropy

Probably, the most ambitious method to address PE weaknesses is the Amplitude Aware Permu-
tation Entropy (AAPE) method [4]. This method feeds the amplitude into the PE basic method by
quantifying the contribution of the subsequence mean and differences, but it also quantifies the pos-
sible effect of ties [15]. In this study, this later contribution will be removed from the AAPE method
since it is not related to the amplitude influence, using a simplified version as in [12].

Only an additional parameter is required in this method. This parameter is termed A and lies in the
interval [0, 1]. The histogram of relative frequencies, instead of being updated by adding 1 each time a
match is found, it is updated using a more elaborated expression:

ci = ci +
A
m

∣∣∣x j

∣∣∣ +

m−1∑
k=1

(
A
m

∣∣∣x j+k

∣∣∣ +
1 − A
m − 1

∣∣∣x j+k − x j+k−1

∣∣∣) (2.2)

where the term
m−1∑
k=0

( A
m

∣∣∣x j+k

∣∣∣) accounts for the mean influence, and the term
m−1∑
k=1

(
1 − A
m − 1

∣∣∣x j+k − x j+k−1

∣∣∣)
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for the amplitude differences. The resulting modification of the PE method is shown in Algorithm 4.

Algorithm 4: Amplitude Aware Permutation Entropy (AAPE) Algorithm (ties not included)
Input: x, m, A and N
Initialization: PE=0, c = {0}m!, p = {0}m!,
πm = {0, 1, . . . ,m − 1} ,Πm = {πm, (πm)1, . . . , (πm)m!−1}, with (πm)k = k−th permutation of πm

elements.
for j = 0, . . . ,N − m do

xm
j =

{
x j, x j+1, . . . , x j+m−1

}
sort

(
xm

j ,π
m
)
−→

(
ym

j ,π
m
j

)
for i = 0, . . . ,m! − 1 do

if πm
j == Πm

i then
ci = ci + A

m

∣∣∣x j

∣∣∣ +
∑m−1

k=1

(
A
m

∣∣∣x j+k

∣∣∣ + 1−A
m−1

∣∣∣x j+k − x j+k−1

∣∣∣)
break

for k = 0, . . . ,m! − 1 do
pk = ck∑

c
if pk > 0 then

AAPE=AAPE+
(
−pklog2 pk

)
Output: AAPE(x,m,N, A)

2.5. Sample Entropy

SampEn is a sample amplitude–based entropy statistic that has been included in the present study
for comparative purposes, but it is not the main focus of the assessment. It was first defined in [23], and
since then it has become one of the most successful non–linear tool used for time series classification,
with an endless list of applications [14, 1, 10, 30, 11, 31, 24].

In this case, xm
j is compared with all the other possible subsequences in the time series xm

i , with i , j,
in terms of amplitude differences. This difference is given by d ji = max(|x j+k− xi+k|), 0 ≤ k ≤ m−1. An
additional pre–defined input parameter, r, is the difference threshold beyond which the subsequences
are taken as dissimilar.

If the subsequences under comparison are considered similar, a specific counter Bm
j (r) is increased.

This process is repeated for all xm
i , and the final average number of similar subsequences is computed

as:

Bm(r) =
1

N − m

N−m−1∑
j=0

Bm
j (r)

Another counter Am(r) is obtained in the same way making m = m + 1 and repeating the previous
process. From these two counters, SampEn can finally be calculated:

SampEn(m, r,N) = − log
[
Am(r)
Bm(r)

]
(2.3)
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2.6. Experimental dataset

The experimental dataset is composed of 6 representative datasets of real and synthetic time series
specially devised for classification purposes. The specific datasets are described next:

• LORENZ. A Lorenz attractor was used to generate synthetic signals for classification. A total of
100 time series were created with random initialisation. One of the sets had the parameter values
σ = 10, ρ = 28, and β = 8/3, with a time step of 0.0001. The other dataset had σ = 9, being the
other parameters equal. These values were chosen just to ensure any classification method would
be capable of finding differences between the two resulting classes. This type of time series have
been used in a number of non–linear signal processing studies [40, 16]. Examples of records in
this dataset are shown in Figure 1a.
• MOTION. This database is included in the UEA and UCR public time series classification repos-

itory (www.timeseriesclassification.com) [5]. The time series were obtained from the
movement of worms [36]. The objective was to compare phenotypes by assessing differences in
movement patterns. The system employed to record the movement of the worms is described in
detail in [8]. The specific time series included in this study correspond to the 77 records of length
900 in the test subset, first dimension only, with 2 classes, wild–type or one of four mutant types.
Examples of these records are shown in Figure 1b.
• HOUSE. This database is also included in the same repository as the MOTION dataset. It contains

two classes of 20 records each one. Class 1 is household aggregate use of electricity, and Class 2
is aggregate electricity load of tumble dryer and washing machine [26]. The length of the records
is 1022 samples. Figure 1c depicts two examples drawn from this database.
• FANT. This dataset was drawn from the Fantasia database, available at [20]. It contains 40 RR–

interval records from 20 young and 20 elderly healthy subjects monitored during 120 minutes.
The length of the records is not uniform, but greater than 5000 samples in all cases. This database
is described in [22]. Examples of records in this database can be found in Figure 1d.
• PAF. This is one of the many databases publicly available at Physionet [20]. The Paroxysmal

Atrial Fibrillation (PAF) records of this database are described in detail in [25]. Specifically,
only the short duration records of 5 minutes were included in the experiments, with a total of 50
records, 25 with PAF episodes, and 25 without. Examples of records in this database can be found
in Figure 1e.
• EEG. This database contains 4097 samples–long electroencephalograph records recorded by the

Department of Epileptology, University of Bonn [2]. This database has been used in many
classification studies and has been included for comparison purposes. It is publicly available
at http://epileptologie-bonn.de. Two classes out of the five originally available are in-
cluded in the experiments, specifically records that correspond to the 100 seizure–free EEGs of
this database from epilepsy patients, and 100 EEGs that do include seizures. Examples of records
from the two classes are shown in Figure 1f.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6842–6857.
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(a) Example of records from the LORENZ database.
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(b) Example of records from the MOTION database.
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(c) Example of records from the HOUSE database.
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(d) Example of records from the FANT database.
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(e) Example of records from the PAF database.
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(f) Example of records from the EEG database.

Figure 1. Examples of all the databases used in the experiments.

3. Results

The first experiment was devised to assess the classification performance in terms of accuracy of
all the individual methods tested. This accuracy corresponds to the proportion of correctly classified
time series (all the experimental datasets contain two classes) over the total number of records in the
dataset. These results are shown in Tables 1, 2, 3, 4, 5, for PE–based measures, and m = 3, 4, 6, 8, 9
respectively, using the datasets described above. Parameters α for FPGE, and A for AAPE were also
varied.

Table 1. Classification accuracy results using all the entropy measures individually (m = 3).
PE WPE FGPE(α = 0.5) FGPE(α = 1.0) AAPE(A = 0.5) AAPE(A = 1.0)

LORENZ 0.571 ± 0.022 0.640 ± 0.029 0.555 ± 0.019 0.577 ± 0.019 0.947 ± 0.012 0.966 ± 0.006
MOTION 0.651 0.646 0.546 0.569 0.602 0.602
HOUSE 0.650 0.600 0.875 0.600 0.600 0.600
FANT 0.650 0.600 0.700 0.775 0.700 0.625
PAF 0.820 0.740 0.780 0.700 0.800 0.820
EEG 0.915 0.800 0.635 0.610 0.835 0.770
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Table 2. Classification accuracy results using all the entropy measures individually (m = 4).
PE WPE FGPE(α = 0.5) FGPE(α = 1.0) AAPE(A = 0.5) AAPE(A = 1.0)

LORENZ 0.587 ± 0.038 0.877 ± 0.022 0.640 ± 0.046 0.539 ± 0.019 0.915 ± 0, 017 0.924 ± 0.016
MOTION 0.668 0.635 0.618 0.657 0.613 0.629
HOUSE 0.650 0.575 0.700 0.600 0.600 0.600
FANT 0.675 0.575 0.600 0.600 0.675 0.650
PAF 0.820 0.800 0.800 0.780 0.880 0.840
EEG 0.910 0.650 0.595 0.545 0.835 0.820

Table 3. Classification accuracy results using all the entropy measures individually (m = 6).
PE WPE FGPE(α = 0.5) FGPE(α = 1.0) AAPE(A = 0.5) AAPE(A = 1.0)

LORENZ 0.575 ± 0.035 0.983 ± 0.005 0.664 ± 0.027 0.568 ± 0.029 0.874 ± 0.038 0.888 ± 0.019
MOTION 0.679 0.651 0.629 0.718 0.629 0.635
HOUSE 0.650 0.675 0.750 0.625 0.625 0.600
FANT 0.625 0.700 0.700 0.725 0.650 0.650
PAF 0.820 0.740 0.700 0.700 0.840 0.820
EEG 0.900 0.575 0.790 0.645 0.840 0.855

Table 4. Classification accuracy results using all the entropy measures individually (m = 8).
PE WPE FGPE(α = 0.5) FGPE(α = 1.0) AAPE(A = 0.5) AAPE(A = 1.0)

LORENZ 0.558 ± 0.030 0.982 ± 0.011 0.691 ± 0.037 0.622 ± 0.022 0.806 ± 0.019 0.817 ± 0.030
MOTION 0.685 0.640 0.624 0.553 0.635 0.635
HOUSE 0.615 0.725 0.700 0.650 0.625 0.675
FANT 0.600 0.825 0.575 0.575 0.625 0.575
PAF 0.800 0.760 0.620 0.620 0.780 0.780
EEG 0.875 0.545 0.900 0.910 0.800 0.810

Table 5. Classification accuracy results using all the entropy measures individually (m = 9).
PE WPE FGPE(α = 0.5) FGPE(α = 1.0) AAPE(A = 0.5) AAPE(A = 1.0)

LORENZ 0.560 ± 0.028 0.979 ± 0.010 0.698 ± 0.026 0.625 ± 0.047 0.777 ± 0.035 0.780 ± 0.008
MOTION 0.685 0.635 0.659 0.636 0.640 0.640
HOUSE 0.675 0.775 0.700 0.650 0.625 0.600
FANT 0.625 0.875 0.575 0.600 0.750 0.700
PAF 0.760 0.700 0.640 0.600 0.750 0.740
EEG 0.865 0.560 0.900 0.915 0.770 0.770

For a better visualisation of the capabilities of each method, Table 6 includes the highest classifica-
tion accuracy achieved with each method, regardless of the parameter values. In general, the metrics
that include amplitude information in their computation outperform the standard PE method.
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Table 6. Best classification accuracy achieved in each case using PE or related methods.

PE WPE FGPE AAPE
LORENZ 0.587 ± 0.038 0.983 ± 0.005 0.698 ± 0.026 0.966 ± 0.006
MOTION 0.685 0.651 0.718 0.640
HOUSE 0.675 0.775 0.875 0.625
FANT 0.675 0.875 0.775 0.750
PAF 0.820 0.800 0.800 0.880
EEG 0.915 0.800 0.915 0.855

Table 7 shows the results obtained using SampEn, with r = 0.15, 0.20, 0.25, and m = 1, 2, 3. For
comparison purposes, Table 8 summarizes the best results achieved using all the methods assessed.

Table 7. Classification accuracy results using SampEn.
r = 0.25 r = 0.20 r = 0.15

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3
LORENZ 0.765 ± 0.028 0.757 ± 0.031 0.642 ± 0.038 0.740 ± 0.031 0.695 ± 0.025 0.640 ± 0.026 0.718 ± 0.031 0.562 ± 0.035 0.752 ± 0.017
MOTION 0.566 0.595 0.604 0.549 0.581 0.602 0.541 0.573 0.578
HOUSE 0.850 0.850 0.825 0.925 0.925 0.950 0.925 0.950 0.925
FANT 0.750 0.725 0.750 0.750 0.700 0.700 0.800 0.750 0.750
PAF 0.660 0.680 0.600 0.640 0.640 0.540 0.660 0.540 0.640
EEG 0.565 0.650 0.675 0.550 0.690 0.685 0.515 0.720 0.720

Table 8. Classification performance summary.

PE–Based SampEn
LORENZ WPE(m = 6)=0.983 SampEn(m = 1, r = 0.25)=0.765
MOTION FGPE(m = 6, α = 1)=0.718 SampEn(m = 3, r = 0.25)=0.604
HOUSE FPGE(m = 3, α = 0.5)=0.875 SampEn(m = 3, r = 0.20)=0.950
FANT WPE(m = 9)=0.875 SampEn(m = 1, r = 0.15)=0.800
PAF AAPE(m = 4, A = 0.5)=0.880 SampEn(m = 2, r = 0.25)=0.680
EEG PE(m = 3)/FPGE(m = 9, α = 1)=0.915 SampEn(m = 2, r = 0.15)=0.720

4. Discussion

There is not a clear winner in terms of classification performance, but there is arguably a clear loser,
the standard PE method. This method yields in general the lowest performance of all the methods
tested. It was only able to provide equal classification results for the EEG database (Table 6). Although
PE classification was significant in most cases (except for the LORENZ database), there was always
another amplitude–included metric that yielded a higher or at least comparable performance. In any
case, there is a great dependence on the input parameters, mainly m.

WPE seems to perform best for high m values. For m = 8, 9 (Tables 4 and 5), WPE was capable of
finding differences in at least 4 datasets (the same in both cases, LORENZ, HOUSE, FANT, and PAF),
whereas for lower m values, only 2 or 3 datasets were correctly segmented. However, it is important to
note that for m = 3, WPE was also able to segment the EEG database.

FGPE probably achieved the overall highest performance, with a classification accuracy above 0.7
in almost all cases (Table 6), the only one. It can be reasonably assumed that this performance could
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even be improved with a more exhaustive parameter search, mainly for α. However, this performance
is more scattered with regard to parameter space, and that entails a more cumbersome algorithm cus-
tomisation for the problem at hand. In addition, the FPGE algorithm is more complex and slower since
the number of motifs is not known in advance.

The AAPE algorithm is similar to that of WPE, and in contrast to FGPE, it is based on weights,
not on additional symbols for the ordinal sequences. Of the three amplitude–included methods, this
one yields the lowest performance, but it is still slightly better than that of the standard PE method.
As for FGPE, other A parameter values would probably improve such performance. In other words,
there is room for improvement, whereas PE is already optimized by means of m. SampEn is an entropy
metric based solely on amplitude. It was included in the experiments as a reference for the possible
influence of amplitude, with no interference from ordinal patterns. The performance described in Table
7 confirmed the suitability of this analysis, since SampEn was also able to classify significantly all the
datasets except MOTION. The value of the parameters were in the usually recommended region of
r = 0.20 and m = 2, although as in any multiparameter metric, other values could even yield a higher
accuracy.

The best SampEn results were achieved for the HOUSE database classification (0.95 accuracy).
This can be due to the fact that these signals resemble a discrete Markov process where differences
lie mainly on signal level. In this case, results were very significant regardless of the m or r value
employed. This was also the only case in which SampEn outperformed the PE–based metrics. Of all
the parameters tested, only for m = 3 and r = 0.15 was SampEn able to distinguish between classes
in a maximum of 4 datasets. In such case, LORENZ, HOUSE, FANT, and EEG classes were detected
significantly, with a classification accuracy higher than 0.700 (Table 7).

Other possibility we explored was to use a model that combined more than a single measure. This
approach has yielded very good results in other similar works [13]. However, in this case the results
achieved using a logistic model with PE and SampEn together, did not improve the results of WPE,
FGPE, or AAPE. The models reached the same performance as that achieved by either PE or SampEn,
but no synergy was observed. That is why this kind of solution has not been included in the present
study.

Obviously, there will surely be datasets where the behaviour and performance of all these metrics
will be different from that observed and reported in this paper. However, from the results, it can be
stated that the general trend is that amplitude does have an influence on classification performance. If
a generic metric is needed, with no time for customisation, WPE is probably the best choice, since it
does not need to configure any parameter other than m, as the standard PE, and the algorithm is quite
simple. If maximum performance is required, both FPGE and AAPE have the possibility of further
customisation by means of an additional parameter, being FPGE in principle more accurate but also
more complex. SampEn confirmed the significance of the information carried by the amplitude, but
since the performance was not as high as with WPE, FGPE, or AAPE, it becomes apparent that the
optimal solution is to combine ordinal and amplitude information, together as in this study, or maybe
separately, as in [13].
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5. Conclusion

PE is a very efficient non-linear metric, in the sense of measuring tool, to assess the dynamics of
a time series. The algorithm is very simple to implement, robust against noise, and only requires a
weak stationarity [6]. However, since the computations are based on ordinal patterns only, the lack of
amplitude consideration is often seen as a possible weakness.

In order to address such weakness, some approaches have been proposed in the last years [17, 34, 4].
These approaches have been reported to improve the results of the standard PE algorithm, but no
comparative and general analysis had been developed so far. The study in this a paper used three of
these methods: WPE, FGPE, and AAPE, with a varied and diverse experimental dataset and under the
same conditions for all the methods, in order to assess the real influence of amplitude variations on PE
performance.

When amplitude information was included in the calculations, the classification performance
achieved was usually higher than with the standard PE method. Moreover, the three methods that
combined ordinal and amplitude information, WPE, FGPE, and AAPE, also outperformed a method
based only on amplitude, such as SampEn. Arguably, it can be concluded that a combination of both
approaches is the best solution, and amplitude does have a significant influence on PE.

A generic recommendation would be to use WPE instead of PE and expect a better performance,
without additional parameters, and with a little additional algorithm complexity. If classification accu-
racy is key, a proper customisation of FGPE will probably yield the best results, at the cost of a higher
computational burden. AAPE is less complex, unless the complete version is used (including ties ef-
fect). If only amplitude is considered, AAPE can also yield good results with less algorithm changes
than FGPE. The performance when ties are also included, has been studied in another paper [15], and
the complexity of the algorithm raises substantially.
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