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Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable models

Building circuits

learning them from data and compiling other models

Applications

what are circuits useful for
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Why tractable inference?

or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

qo: Which day is most likely to have a traffic jam on my
route to work?

pinterest.com/pin/190417890473268205/
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

qo: Which day is most likely to have a traffic jam on my
route to work?

—> fitting a predictive model!

pinterest.com/pin/190417890473268205/
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

qo: Which day is most likely to have a traffic jam on my
route to work?

—> answering probabilistic queries on a probabilistic
model of the world m

ai (m) =2 q2 (m) =7 pinterest.com/pin/190417890473268205/
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

X = {Day, Time, Jamgsy,1, Jamsy2, . . ., Jamsyn }

ql(m) = pm(Day = Mon,JamHem = 1)

pinterest.com/pin/190417890473268205/

81147


pinterest.com/pin/190417890473268205/

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

X = {Day, Time, Jamgsy,1, Jamsy2, . . ., Jamsyn }
q1(m) = py,(Day = Mon, Jamper, = 1)

=—> marginals

pinterest.com/pin/190417890473268205/
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day, Time, Jams,1, Jamsyro, . . ., Jamsen }

Qo (m) = argmaxy pm(Day = d A V,croute JaMstr )

pinterest.com/pin/190417890473268205/
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day, Time, Jams,1, Jamsyro, . . ., Jamsen }

Qo (m) = argmaxy pm(Day = d A V,croute JaMstr )

=> marginals + MAP + logical events

pinterest.com/pin/190417890473268205/
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Tractable Probabilistic Inference

A class of queries O is tractable on a family of probabilistic models M
iff for any query q € O and model m € M
exactly computing ¢((m) runs in time O(poly(|q| - [m])).

9147



Tractable Probabilistic Inference

A class of queries O is tractable on a family of probabilistic models M
iff for any query q € O and model m € M
exactly computing ¢((m) runs in time O(poly(|q| - [m])).

=> often poly will in fact be linear!
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Tractable Probabilistic Inference

A class of queries O is tractable on a family of probabilistic models M
iff for any query q € O and model m € M
exactly computing ¢((m) runs in time O(poly(|q| - [m])).

—> often poly will in fact be linear!

Note: if M and O are compact in the number of random variables X,
thatis, |m|, || € O(poly(|X])). then query time is O(poly(|X]|)).

9147



What about approximate inference?

Why approximate when we can do exact?

—> and do we lose something in terms of expressiveness?

Approximations can be intractable as well (pagum et al. 1993; roth 1996]

—> But sometimes approximate inference comes with guarantees (Rina)
Approximate inference by exact inference in approximate model
[Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]
Approximate inference (even with guarantees) can mislead learners

[Kulesza et al. 2007] =—>  Chaining approximations is flying with a blindfold on

10147



Next:

Stay Tuned For ...

1. What are classes of queries?
2. Are my favorite models tractable?

3. Are tractable models expressive?

We introduce probabilistic circuits as a unified framework for
tractable probabilistic modeling

11147



Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

pinterest.com/pin/190417890473268205/
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Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

X = {Day, Time, Jamyerz, Jamsyo, . . ., Jamsyn }

qz(m) = pyu(X = {Mon, 12.00, 1,0, ...,0})

pinterest.com/pin/190417890473268205/
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Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

X = {Day, Time, Jamyerz, Jamsyo, . . ., Jamsyn }

qz(m) = pyu(X = {Mon, 12.00, 1,0, ...,0})

..fundamental in maximum likelihood learning
GMLE
m

pinterest.com/pin/190417890473268205/

= argmaxy [ [ ep Pm(X;0)
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Generative Adversarial Networks

ming maxy Exp,,,,x) [108 Dp(X)] + Egup) [log(1 — Dy(Gy(2)))]

G D

Goodfellow et al., “Generative adversarial nets”, 2014 13147
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ming maxy Exp,,,,x) [108 Dp(X)] + Egup) [log(1 — Dy(Gy(2)))]

no explicit likelihood!
=> adversarial training instead of MLE

—> no tractable EVI € D¢

good sample quality
—> butlots of samples needed for MC

B unstable training —> mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 14147



Variational Autoencoders

log pa(x) = [ pe(x | z)p(z)dz PR

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 15047
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10g pp(X) > Eyrg, (zlx) [ 1080 (x | 2)] — KL(gy (2

an explicit likelihood model!
B ... but computing log py(x) is intractable
=—> an infinite and uncountable mixture
=—> no tractable EVI

we need to optimize the ELBO...
=> which is “broken”
[Alemi et al. 2017, Dai et al. 2019]

| x)|[p(2))

16147



Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables

Edges: dependencies 6“@
+ () @‘@

Inference: conditioning [Darwiche 2001; Sang et al. 2005]
elimination [Zhang et al. 1994, Dechter 1998]

B message passing [vedidia et al. 2001, Dechter
et al. 2002; Choi et al. 2010; Sontag et al. 2011]

17147



PGMs: MNs and BNs

Markov Networks (MNs)

()
p(X) = L TL 6u(X.) “@‘
(%) ) (9

181147



PGMs: MNs and BNs

Markov Networks (MNs) @ @
p(X) = 7 1. 6c(Xe) &‘
7 = L 6u(X.)dX iy

—> EVlqueries are intractable!

181147



PGMs: MNs and BNs

Markov Networks (MNs) @

p(X) = L TL 6u(X.) ‘Q‘
(%) (X9

Z = ch ¢C(XC)dX

—> EVlqueries are intractable!

Bayesian Networks (BNs)
p(X) =TI p(Xi | pa(Xi)) i ‘@
—> EVI queries are tractable! ®\‘

181147



Marginal queries (MAR)

q1: What is the probability that today is a Monday e
#2068 and there is a traffic jam ek on Herzl Str.?

pinterest.com/pin/190417890473268205/
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Marginal queries (MAR)

q1: What is the probability that today is a Monday e
#2068 and there is a traffic jam ek on Herzl Str.?

q1 (m) = pm(Day = MoanamHerzl = 1)

pinterest.com/pin/190417890473268205/
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Marginal queries (MAR)

q1: What is the probability that today is a Monday e
#2068 and there is a traffic jam ek on Herzl Str.?

q1 (m) = pm(Day = MoanamHerzl = 1)

General: py,(e) = [ pm(e, H) dH

where E C X
H=X\E

pinterest.com/pin/190417890473268205/
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Conditional queries (CON)

q.: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

pinterest.com/pin/190417890473268205/
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Conditional queries (CON)

q.: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

s (m) = pp(Jamyer, = 1 | Day = Mon)

pinterest.com/pin/190417890473268205/
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Conditional queries (CON)

q.: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

q4(m) = pm(Jamyery = 1 | Day = Mon)

If you can answer MAR queries,
then you can also do conditional queries (CON):

_ (Q.E)

pinterest.com/pin/190417890473268205/
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Complexity of MAR on PGMs

Exact complexity: Computing MAR and COND is #P-complete [Cooper 1990; Roth 1996].

Approximation complexity: Computing MAR and COND approximately within a relative
error of 2" for any fixed € is NP-hard [Dagum et al. 1993; Roth 1996].

21147



Complexity of MAR on PGMs

Exact complexity: Computing MAR and COND is #P-complete [Cooper 1990; Roth 1996].

Approximation complexity: Computing MAR and COND approximately within a relative
error of 2" for any fixed € is NP-hard [Dagum et al. 1993; Roth 1996].

Treewidth: Informally, how tree-like is the graphical model m?
Formally, the minimum width of any tree-decomposition of m.

Fixed-parameter tractable: MAR and CON on a graphical model m with treewidth w
take time O(|X] - 2), which is linear for fixed width w [Dechter 1998; Koller et al. 2009].

—> what about bounding the treewidth by design?

21147



Low-treewidth PGMs

Trees Polytrees Thin Junction trees
[Meild et al. 2000] [Dasgupta 1999] [Bach et al. 2001]

If treewidth is bounded (e.g. = 20), exact MAR and CON inference is possible in practice

22147



Low-treewidth PGMs: trees

A tree-structured BN [\eili et al. 2000] where each X; € X has at most one parent Pay,.

p(X) =] _ plailPas,)

@@

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X])

Exact learning from d examples takes O(|X|? - d) with the classical Chow-Liu algorithm'

'Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 23n47



What do we lose?

Expressiveness: Ability to compactly represent rich and complex classes of distributions

I3

@@

Bounded-treewidth PGMs lose the ability to represent all possible distributions ...

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 24147



Mixtures as a convex combination of £ (simpler) probabilistic models

0.15 j)(X> = W11 (X)+w2])2(X)

00

0.05

0.00

EVI, MAR, CON queries scale linearly in k

25147



Mixtures as a convex combination of £ (simpler) probabilistic models

0.20 —p Z - X|Z -
3 -B) (X2 - B

0.00

—10 -5 0 5 10
Xi
Mixtures are marginalizing a categorical latent variable 7 with k values

—> increased expressiveness
25/147



Expressiveness and efficiency

Expressiveness: Ability to compactly represent rich and effective classes of functions
=> mixture of Gaussians can approximate any distribution!
Expressive efficiency (succinctness) compares model sizes in terms of their ability to

compactly represent functions
=—> but how many components do they need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 2647



Mixture models

Expressive efficiency

=—> deeper mixtures would be efficient compared to shallow ones 27147



Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs: Which combination of roads is most likely to be
jammed on Monday at 9am?

pinterest.com/pin/190417890473268205/
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Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs: Which combination of roads is most likely to be
jammed on Monday at 9am?

is(m) = argmax; pun i1, ja. - .. | Day=M, Time=9)

pinterest.com/pin/190417890473268205/
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Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs: Which combination of roads is most likely to be
jammed on Monday at 9am?

is(m) = argmax; pun i1, ja. - .. | Day=M, Time=9)

General: argmax, pm(q | )

pinterest.com/pin/190417890473268205/
where QUE =X

281147
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Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs: Which combination of roads is most likely to be
jammed on Monday at 9am?

...intractable for latent variable models!

mcelxxpm(q |e) = m(iaX;pm(q,Z | e)

# E max Pm (q7 VA ’ e) pinterest.com/pin/190417890473268205/
q
z

281147
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Marginal MAP (MMAP)

aka BN MAP

qg: Which combination of roads is most likely to be

jammed ew-hbordew at 9am?

pinterest.com/pin/190417890473268205/
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Marginal MAP (MMAP)

aka BN MAP

qg: Which combination of roads is most likely to be

jammed ew-hbordew at 9am?

qs(m) = argmax; pm(j1,Jj2;--- | Time=9)

pinterest.com/pin/190417890473268205/
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Marginal MAP (MMAP)

aka BN MAP

qg: Which combination of roads is most likely to be

jammed ew-hbordew at 9am?
qs(m) = argmax; pm(j1,Jj2;--- | Time=9)

General: argmax, pm(q | e)

= argmax, > nwPm(g,h]e)

where QUHUE =X

pinterest.com/pin/190417890473268205/
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Marginal MAP (MMAP)

aka BN MAP

qg: Which combination of roads is most likely to be

jammed ew-hbordew at 9am?
qs(m) = argmax; pm(j1,Jj2;--- | Time=9)

=> NP-complete [Park et al. 2006]
=> NP-hard for trees [Campos 2011]
=> NP-hard even for Naive Bayes [ibid.]

pinterest.com/pin/190417890473268205/

29147
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to work?

o

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30147
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to work?

Qo (m) = argmaxy pm(Day = dAV, ¢ oute JAMstr i)

=—> marginals + MAP + logical events

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30147
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

o

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30147
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

=—> counts + group comparison

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30147
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

and more:

expected classification agreement .
[OZtOk etal 2076, Choi et al. 2077[ 2078] pinterest.com/pin/190417890473268205/

expected predictions [Khosravi et al. 2019a]

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30147
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

© ®
@@

Complete evidence, marginals and MAP, MMAP inference is linear!

p(X) =T _ plailPas,)

=—> but definitely not expressive...

31147



less expressive

efficient

A

more tractable queries

less tractable queries

B 3

more expressive

efficient
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more tractable queries
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less tractable queries

Expressive models are not very tractable...
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more tractable queries
Fully factorized
e % [

¢ NADEs i BNs
il

less tractable queries

less expressive
efficient
e
more expressive
efficient

and tractable ones are not very expressive...
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more tractable queries

Fully factorized X
o= % [

¢ NADEs i BNs
il

less tractable queries

less expressive
efficient
e
more expressive
efficient

probabilistic circuits are at the “sweet spot”

35n147



Probabilistic Circuits



Next:

Stay Tuned For ...

1. What are the building blocks of tractable models?
=>  build into a computational graph: a probabilistic circuit

2. For which queries are probabilistic circuits tractable?
=> tractability classes induced by structural properties

V14| How are probabilistic circuits related to the alphabet soup of models?

37147



Base Case: Univariate Distributions

x —)@—) px ()
X

Generally, univariate distributions are tractable for:
B EVI: output p(X;) (density or mass)
B MAR: output 1 (normalized) or Z (unnormalized)
B MAP: output the mode

381147



Base Case: Univariate Distributions

x —)@—) px ()
X

Generally, univariate distributions are tractable for:
B EVI: output p(X;) (density or mass)
B MAR: output 1 (normalized) or Z (unnormalized)
B MAP: output the mode

—> often 100% probability for one value of a categorical random variable
=—> forexample, X or =X for Boolean random variable

381147



Base Case: Univariate Distributions

74 —>®—> 33

X

Generally, univariate distributions are tractable for:
B EVI: output p(X;) (density or mass)
B MAR: output 1 (normalized) or Z (unnormalized)
B MAP: output the mode

=> often 100% probability for one value of a categorical random variable

=> forexample, X or =X for Boolean random variable
38147



Factorizations are products

Divide and conquer complexity

(X1, Xo, X3) = p(X1) - p(Xz) - p(X3)

X : 3
2.5
2.0
X2 1.5
. @ W W
XS 0.5 Xl X2 X3
0.0

X1 Xy X3
—> eg modeling a multivariate Gaussian with diagonal covariance matrix

39147



Factorizations are products

Divide and conquer complexity

(1, 0, 23) = p(a1) - p(22) - P(23)

3.0
2.5
2.0
1.5
g @ @ @
2; X, Xy X3

X1 Xy X3
—> e.g modeling a multivariate Gaussian with diagonal covariance matrix

39147



Factorizations are products

Divide and conquer complexity

(1, 0, 23) = p(a1) - p(22) - P(23)

: @

’ /T\
o (o B0 T
20 X1 Xs X3

X1 Xy X3
—> e.g modeling a multivariate Gaussian with diagonal covariance matrix

39147



Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

P(X) = wy-p (X)Fwepa(X)

40147



Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

w1 w2

p(x) =0.2:p1(2)+0.8-ps(2)

X3 X3

40147



Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

O% NB p(z) =0.2:p(2)40.8-po(x)

With mixtures, we increase expressiveness
—> by stacking them we increase expressive efficiency

40147



A grammar for tractable models

Recursive semantics of probabilistic circuits

41147



A grammar for tractable models

Recursive semantics of probabilistic circuits

w1 w2

41147



A grammar for tractable models

Recursive semantics of probabilistic circuits

w1 w2

41147



A grammar for tractable models

Recursive semantics of probabilistic circuits

41147



Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however ...

PGMs Circuits
Nodes: random variables unit of computations
Edges: dependencies order of execution
Inference: g onditioning B feedforward pass
B elimination B backward pass

[ message passing
—> they are computational graphs, more like neural networks

42,147



The perks of being a computational graph

Computations that are repeated can be cached!
= amortizing inference; parameter/structure sharing

Clear operational semantics! —>  Trqgctability in terms of circuit size
Differentiable! —> gradient-based optimization

Structural properties on the computational graph cleanly map to tractable query
classes...

43147



Just sum, products and distributions?

Q
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just arbitrarily compose them like a neural network!

44,147



Just sum, products and distributions?
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=—> structural constraints needed for tractability w“
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How do we ensure tractability?

45/147



Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
=—> just like in factorization!

(X) (X)
W @ W W W W
X X5 X3 X1 Xy X3

decomposable circuit non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 461147



aka completeness

A sum node is smooth if its children depend of the same variable sets
—> otherwise not accounting for some variables

X4 D¢ X1 Xy

smooth circuit non-smooth circuit

=> smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., "A knowledge compilation map”, 2002 47na



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

48147



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

Ifp(x,y) = p(x)p(y), (decomposability):

// (x,y)dxdy = // y)dxdy =
:/pxdx/pydy

=> larger integrals decompose into easier ones

48147



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If p(x) = >, w;p;(x), (smoothness):

—> integrals are “pushed down” to children
48147



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

Forward pass evaluation => linear in circuit size!

E.g. to compute p( X, X3), letinput distributions over
X1 and X4 output /

=—> for normalized leaf distribution,

o
o

?
—~0-0._
e
000
o e

48147



aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
=—> e.g. iftheir distributions have disjoint support

D ()

w1 w2

X) X (X (X)
© ® © W OO ONO

X <0 Xs X1 >0 X X1 X5 X, X

deterministic circuit non-deterministic circuit 495



Tractable MAP

The addition of determinism enables tractable MAP queries!
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Tractable MAP

The addition of determinism enables tractable MAP queries!

|fp(q, e) == p(qX7 €x, an ey)
= p(Qx, €x)p(dy, ey ) (decomposable product node):

argmax p(q | e) = argmaxp(q, e) =
q q

argmax p(dx, ex, Qy, €y) =
Qx,Qy

argmax p(qx, €x), argmax p(dy, ey )
dx Qqy

—> solving optimization independently

501147



Tractable MAP

The addition of determinism enables tractable MAP queries!
Iifp(a,e) = >, wipi(a,e) = wepe(q, e),
(deterministic sum node):

argmax p(q, e) = argmax Y _ wipi(q, e) =
a a p

argmax max w;p;(q, e) =
q (2

argmax wep(q, e)
q

=—> only one non-zero children ¢

501147



Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:

bottom-up and top-down  —> 4yl [inear in circuit size!
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In practice:

1. turn sum into max nodes
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Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice: @

bottom-up and top-down  —> 4yl [inear in circuit size! @ @ @
CHS

In practice:
1. turn sum into max nodes

2. evaluate p(e) bottom-up
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Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:

bottom-up and top-down  —> gl [inear in circuit size!

In practice:
1. turn sum into max nodes
2. evaluate p(e) bottom-up

3. retrieve max activations top-down
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Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:

bottom-up and top-down  —> gl [inear in circuit size!

In practice:
1. turn sum into max nodes
2. evaluate p(e) bottom-up
3. retrieve max activations top-down

4. compute MAP queries at leaves

501147



Approximate MAP

If the probabilistic circuit is non-deterministic, MAP is intractable:
—> e.g with latent variables Z.

argmax » w;p;(q,e) = argmapr(q, z,e) # argmax max p(q, z, e)
q p q 2 q z

However, same two steps algorithm, still used as an approximation to MAP [Liu et al. 2013;
Peharz et al. 2016]

51147



Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
=> stronger requirement than decomposability

vtree structured decomposable circuit
52147



Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
=> stronger requirement than decomposability

vtree non structured decomposable circuit
52147



Structured decomposability enables tractable ...

B Entropy of probabilistic circuit [Liang et al. 2017b]

B Ssymmetric and group queries (exactly-k, odd-number, more, etc.) [Bekker et al. 2015]
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Structured decomposability enables tractable ...

B Entropy of probabilistic circuit [Liang et al. 2017b]

B Ssymmetric and group queries (exactly-k, odd-number, more, etc.) [Bekker et al. 2015]
For the “right” vtree

B Probability of logical circuit event in probabilistic circuit /ibid.]

B Multiply two probabilistic circuits [Shen et al. 2016]

B KL Divergence between probabilistic circuits /Liang et al. 2017b]

B same-decision probability [Oztok et al. 2016]

B Expected same-decision probability [Choi et al. 2017]

B Expected classifier agreement [Choi et al. 2018]

B Expected predictions [Khosravi et al. 2019b]
53147



Stay Tuned For ...

Next:

1. How probabilistic circuits are related to logical ones?
=> a historical perspective

2. How probabilistic circuits in the literature relate and differ?
—>  SPNs, ACs, CNets, PSDDs

3. How classical tractable models can be turned in a circuit?
—>  Compiling low-treewidth PGMs

V14| How do | build my own probabilistic circuit?
54,147



Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R7 +7 X Y 07 1)
analogously efficient computations can be done in other semi-rings:
(Sa @7 ®7 0697 1®)

=> Algebraic model counting [Kimmig et al. 2017], Semi-ring

programming [Belle et al. 2016]
Historically, very well studied for boolean functions:

(B ={0,1},V,A,0,1) => logical circuits!

55/147



Logical circuits

s/d-D/DNFs 0O/BDDs SDDs
[Darwiche et al. 2002] [Bryant 1986] [Darwiche 2011]

Logical circuits are compact representations for boolean functions...
56/147



Logical circuits

structural properties

...and as probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

De{-mnposahllit ¥

£
E

Rﬂ

i

Determinism
ar

T and
or or
wid and and And  and and and and

P XK

-4 B =B A C =D D =C

it

Smouthness

~nd

and

4
&

Siind and and

-b B -C

Darwiche et al., “A knowledge compilation map”, 2002
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Logical circuits

a knowledge compilation map

..inducing a hierarchy of tractable query classes

NNF
COSLEME
d-NNF S-NN—F,’ENF I f-NNF
VA M CT
BDD d-DNNF | B
va

FBDD | = [a-oswe] [ owr | CNF
2]

ORDD
EE EQ 8 WA ML BQUSE 00 CEEQL | SE ME
ORDD, MODS Pl

Darwiche et al., “A knowledge compilation map”, 2002 58147



Logical circuits

connection to probabilistic circuits through WMC

B Atask called weighted model counting (WMC)

WMC(A, w) ZHw

xE=A lex

Two decades worth of connections:

1. Encode probabilistic model as WMC (add variable placeholders for parameters)
2.

3. Tractable MAR/CON by tractable WMC on circuit

4.

Compile A into a d-DNNF (or OBDD, SDD, etc.)

Depending on the WMC encoding even tractable MAP

End result equivalent to probabilistic circuit: efficiently replace parameter variables
in logical circuit by edge parameters in probabilistic circuit

59147



From trees to circuits

via compilation

60/147



From trees to circuits

via compilation

Bottom-up compilation: starting from leaves...
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From trees to circuits

via compilation

...compile a leaf CPT

? p(AIC =0)
&

3 7
@ ©
e e A=0 A=1
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From trees to circuits

via compilation

...compile a leaf CPT

ONO 2o 4
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From trees to circuits

via compilation

...compile a leaf CPT...for all leaves...

? §AIC) §(BIC)
(D
(©)

A=0 A=1 B=0 B=1



From trees to circuits

via compilation

7

(c)
@ ®

...and recurse over parents...
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From trees to circuits

via compilation

7

(c)
@ ®

...while reusing previously compiled nodes!...
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From trees to circuits

via compilation
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Low-treewidh PGMs

Tree, polytrees and
Thin Junction trees
can be turned into

decomposable
B smooth
deterministic

circuits

Therefore they support
tractable

B EvI
B MAR/CON
B VAP

61147



Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are They support tractable
decomposable B EVI
smooth B MAR/CON
B deterministic B MAP

—> parameters are attached to the leaves
=—> ...but can be moved to the sum node edges [Rooshenas et al. 2014]
=> Also see related AND/OR search spaces [Dechter et al. 2007]

Lowd et al., “Learning Markov Networks With Arithmetic Circuits”, 2013 62147



Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are They support tractable
decomposable B EVI
B smooth B MAR/CON
e T B MAR

—> deterministic SPNs are also called selective [Peharz et al. 2014a]
63147



Cutset Networks (CNets)

A CNet [Rahman et al. 2014] is a weighted model-trees [Dechter et al. 2007] whose leaves are

tree Bayesian networks
C

Py
@( R

58 69 &g

=> they can be represented as probabilistic circuits

64147



CNets as probabilistic circuits

Every decision node in the CNet can be represented as a deterministic, smooth sum node

wg wi
C: w O
Mx,, Mx,, Mx,,, M,
Ax,=0 Ax,=1

and we can recurse on each child node until a BN tree is reached
=> compilable into a deterministic, smooth and decomposable circuit!

65/147



CNets as probabilistic circuits

CNets are They support tractable
B decomposable B EVI

B smooth B MAR/CON

B deterministic B MAP

—> EVI can be computed in O(|X])

66/147



Probabilistic Sentential Decision Diagrams

/
PSDDs [Kisa et al. 2014a] are They support tractable fl 3 4
B structured H EVI Q D
decomposable |
t: M MAR/CON )\—/\ A
1 4 | [
: >moo ! MAP 33|67 5/ '.!5 ?lf 25
deterministic ) Ernigi - - e
B Complex queries! M) ( Q
e
A B -A-B A-B-4 B

Kisa et al., “Probabilistic sentential decision diagrams”, 2014

Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015

Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 67n47



less expressive

efficient

more tractable queries

Fully factorized
o= % [

?

¢ NADEs i BNs
il

less tractable queries

where are probabilistic circuits?

more expressive

efficient
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less expressive

efficient

more tractable queries

Fully factorized PSDDs
m Trees % CNets | AoGs | ACs

SPNs

¢ NADEs i BNs
il

less tractable queries

tractability vs expressive efficiency

more expressive

efficient
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How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:
Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs
B MADEs [Germain et al. 2015]
VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Probabilistic deep learning using random sum-product networks”, 2018 70/47



How expressive are probabilistic circuits?

density estimation benchmarks

dataset
nltcs
msnbc
kdd
plants
audio
jester
netflix
accidents
retail
pumbs*

best circuit
-5.99
-6.04
-2.12
-11.84
-39.39
-51.29
-55.71
-26.89
-10.72
-22.15

BN
-6.02
-6.04
-2.19

-12.65
-40.50
-51.07
-57.02
-26.32
-10.87
-21.72

MADE
-6.04
-6.06
-2.07

-12.32

-38.95

-52.23

-55.16

-26.42

-10.81
-22.3

VAE
-5.99
-6.09
-2.12

-12.34
-38.67
-51.54
-54.73
-29.11
-10.83
-25.16

dataset
dna
kosarek
msweb
book
movie
webkb
cr52
c20ng
bbc

ad

best circuit

-79.88
-10.52
-9.62
-33.82
-50.34
-149.20
-81.87
-151.02
-229.21
-14.00

BN
-80.65
-10.83

-9.70
-36.41
-54.37

-157.43
-87.56
-158.95
-257.86
-18.35

MADE
-82.77
-9.59
-33.95
-48.7
-149.59
-82.80
-153.18
-242.40
-13.65

VAE
-94.56
-10.64

-9.73
-33.19
-47.43
-146.9
-81.33
-146.9

-240.94
-18.81
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Building circuits



Tractable Learning

A learner L is a tractable learner for a class of queries O iff
(1) for any dataset D, learner L(D) runs in time O(poly(|D|)), and

(2) outputs a probabilistic model that is tractable for queries O.

73147



Tractable Learning

A learner L is a tractable learner for a class of queries O iff

(1) for any dataset D, learner L(D) runs in time O(poly(|D|)), and
—>  Guarantees learned model has size O(poly(| D))
—>  Guarantees learned model has size O(poly(|X]))

(2) outputs a probabilistic model that is tractable for queries O.
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Tractable Learning

A learner L is a tractable learner for a class of queries O iff
(1) for any dataset D, learner L(D) runs in time O(poly(|D|)), and
—>  Guarantees learned model has size O(poly(| D))
—>  Guarantees learned model has size O(poly(|X]))
(2) outputs a probabilistic model that is tractable for queries O.
—> Guarantees efficient querying for O in time O (poly(|X]))

73147



Stay Tuned For ...

Next:
1. How to learn circuit parameters?
=> convex optimization, EM, SGD, Bayesian learning, ...

2. How to learn the structure of circuits?

—> local search, random structures, ensembles, ...

3. How to compile other models to circuits?
=—> PGM compilation, probabilistic databases, probabilistic programming

Ii144 What is this used for? I



Learning circuit parameters

Sum node distibution p(X) can be interpreted as a marginal distribution of p(X, Z)
over X and a latent variable Z

W p(X|Z = k) child distribution
W (Z=k =w weight
Even leaf distributions could be parametrized by 6

Learning parameters involves learning both sum and leaf w1 2
parameters (w, 0)

X1 X1

75147



Learning circuit parameters

deterministic = closed-form, convex optimization
[Kisa et al. 2014b; Liang et al. 2019]

circuits

B SGD [Peharz et al. 2018]
non- deterministic = ! soft/hard EM [Poon et al. 2011; Peharz 2015]
circuits [l bayesian moment matching [jaini et al. 2016]

B collapsed variational Bayes [Zhao et al. 2016a]
[ CCCP [zhao et al. 2016b]
B Extended Baum-Welch [Rashwan et al. 2018]

76,147



Deterministic circuits

Given a deterministic circuit and a complete dataset D,
maximize the likelihood of parameters given examples in the dataset

pMLE — argmax L(6;D) = argmaXHpg

With determinism, L decomposes over the parameters, and OMLE has a
closed-form solution

—> compute sufficient statistics (just count)

—> asingle pass of the dataset required!
Kisa et al., “Probabilistic sentential decision diagrams”, 2014

Liang et al., “Learning Logistic Circuits”, 2019 7714



Hard/Soft Parameter Updating

Gradient Descent
Computing the likelihood gradient and optimize by GD

Awp,

Soft Gradient
Generative (prcS(X)) Sc(X)Vsp(x)S(x)
Discriminative (V ,,, log S(y|x)) Vaupe SYIX)  Vipe S(#[x)

Sylx)  — S(x)
Hard Gradient
Generative (V. log M (x)) %
Discriminative (V. log M (y|x)) H{wpe Wy x) i;eﬁ{wpcew(ﬂx)}

Gens et al., “Discriminative Learning of Sum-Product Networks”, 2012 78147



Hard/Soft Parameter Updating

Expectation Maximization

...or using EM by considering each sum node as the marginalization of a hidden variable

Soft Posterior (p(H, = c|x)) —S(lx) 7885)((’;)) Se(x)wpe
1if wye € Wy
Hard Posterior (p(H, = c|x)) = I Wpe €
0 otherwise

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 79047



Bayesian Parameter Learning

Bayesian Learning starts by expressing a prior p(w) over the weights
—> learning corresponds to computing the posterior based on the data

p(w|D) o p(w)p(D|w)

B the posterior is intractable
B assuminga prior p(W) = [ [ coumnodes D (Wilo)
! considering circuits with normalized weights
w;j > 0and ), wi; = 1,Vi € sumNodes
B the posterior becomes a mixture of products of Dirichlets
B the number of mixture components is exponential in the number of sum nodes

801147



Bayesian Parameter Learning

Moment matching (o0BMM) : approximate the posterior after each update with a
tractable distribution that matches some moments of the exact, but intractable posterior

B the joint p(w) is approximated by a product of Dirichlets

B the first and second moment of each marginal p(w;) are used to set the
hyperparameters «; of each Dirichlet in the product of Dirichlets

oBMM extended to continuous models with Gaussian leaves
CVB-SPN: a collapsed variational inference algorithm

B better results than oBMM

Rashwan et al., “Online and Distributed Bayesian Moment Matching for Parameter Learning in
Sum-Product Networks”, 2016

Jaini et al., “Online Algorithms for Sum-Product Networks with Continuous Variables”, 2016
Zhao et al., “Collapsed Variational Inference for Sum-Product Networks”, 2016 81147



Parameter Learning

Sequential monomial approximation & Concave-convex procedure

Any complete and decomposable circuit is equivalent to a mixture of trees where each
tree corresponds to a product of univariate distributions

o)

ol o e=wrel Ffwy e +ws (o]
<%

o 000 e e o’ o ©
[ learning the parameters based on the MLE principle can be formulated as a

signomial program Sequential Monomial Approximation (SMA)

B the signomial program formulation can be equivalently transformed into a
difference of convex functions Concave-convex Procedure (CCCP)

Zhao et al., “A Unified Approach for Learning the Parameters of Sum-Product Networks”, 2016 82n47



Structure learning

Greedy layerwise

LearnSPN& and variants

Structure learning as search

defining operators

Local search
LearnPSDD

Random structures
XCNets, RAT-SPNs

83147



X1 Xo X3 X4 Xs

O R

® e o

Learning both structure and parameters of a circuit by starting from a data matrix

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84147



X1 X2 X3 Xa X5

Looking for sub-population in the data—clustering—to introduce sum nodes...

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84n47



X1 X2 X3 Xa Xs X1 Xo X3 Xy Xs

...seeking independencies among sets of RVs to factorize into product nodes

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84147



X1 X2 X3 Xa Xs Xy Xz X3 Xy Xs X; X X3 X4 Xs
| ] ] ]| [ [ |
HEEEN DDDii
[ [ |

| [ ] ] ]|

][]

HEEEEN

..learning smaller estimators as a a recursive data crawler

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84147



LearnSPN variants

B ID-SPN /rooshenas et al. 2014]

B LearnSPN-b/T/B [vergariet al. 2015]

B for heterogeneous data /Bueff et al. 2018; Molina et al. 2018]
B using k-means /Buiz et ol. 2018a] or SVD splits jAdel et al. 2015]
B learning DAGS [Dennis et al. 2015, Jaini et al. 2018]

B approximating independence tests /pi Mauro et al. 2018]

85,147



ID-SPN works like LearnSPN: clustering instance and variables for sum and product nodes

B start with a single AC representing a tractable [E
Markov network / P
B stop the process before reaching univariate /_’i‘_\ @ "'X
distributions (] Iﬂ@ ! [x]
1 learn a tractable MN represented by an AC i
factorizing a multivariate distribution |£]@|

/

—> SPNs with tractable multivariate distributions as leaves—MN ACs

Rooshenas et al., “Learning Sum-Product Networks with Direct and Indirect Variable Interactions”, 26
2014 /147



Other variants

Bottom up learning [Peharz et al. 2013]
B starting from simple models over small variable scopes

B growing models over larger variable scopes, building successively more expressive
models guided by dependence tests and a maximum mutual information principle

Greedy for deterministic circuits [Peharz et al. 2014a]
B hill climbing tranforming a network with split and merge operations
Graph SPNs from tree SPNs by merging similar sub-structures [Rahman et al. 2016b]

B bottom-up merging sub-SPNs with similar distributions defined over the same
variables

87147



Cut(e)set Network

For deterministic circuits, structure scores decompose
CNet likelihood decomposition

B Lo(G;0)=>),a;,+ Lp,(G;60;)

BIC score decomposition /®\
W L(G:6) - L(G;0) > (log M)/2 odd
Structure Learning , AN U A
Q® & Qe G
M start with a single tractable multivariate model (CLT)  © ) @ eloolo)

B substitute a leaf node with the best CNet improving
both the LL and the BIC score

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 88n47



PSDD Structure Learning

Learning vtree

A variable tree (vtree)
B afull binary tree
B leaves are labeled with variables

[l internal vtree nodes split variables into those appearing in the left subtree X and
those in the right subtree Y

B it can be learned from data in a top-down or bottom-up fashion
=—> maximising pairwise M instead of joint Ml

Liang et al., “Learning the structure of probabilistic sentential decision diagrams”, 2017 89n47



PSDD Structure Learning

Local operations

AN

7

[

-
8) (1) \
~~ \ -:I J

B incrementally change the PSDD structure preserving syntactic soundness

Liang et al., “Learning the structure of probabilistic sentential decision diagrams”, 2017 90147



LearnPSDD

LearnPSDD incrementally improves the structure of a PSDD to better fit the data
[ in every step, the structure is changed by executing an operation

B learning continues until the log-likelihood on validation data stagnates, or a desired
time or size limit is reached

B the operation to execute is greedily chosen based on the best likelihood
improvement per size increment

log L(r'|D) — log L(r|D)

Seore = size(r’) — size(r")

Liang et al., “Learning the structure of probabilistic sentential decision diagrams”, 2017 9Mnaz



Learning Logistic Circuits

B propagates values and parameters
bottom-up

B 'ogistic function at root node with
weight function g, (x)

1 {a) Logistic cirowit
Pr(Y =1|x) =
1 + eXp<_gr (X)) A B ¢ D glABCD) PrY =1|4ABCD)
I o 1 1 -3.1 4.37 5
0 1 1 o 1.9 6995
I 1 10 58 99.70%

(b Weights and class cation probabilities for select ¢ xamples

Liang et al., “Learning Logistic Circuits”, 2019
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Learning Logistic Circuits

Parameter Learning
B Due to decomposability and determinism, any logistic circuit model can be reduced
to a logistic regression model over a particular feature set
1

PriY =1x) = —
" ) 1 4 exp(—X¥6)

[ | X is some vector of features extracted from the raw example X
Structure Learning

[ use the split operation like in LearnSPDD

Liang et al., “Learning Logistic Circuits”, 2019 93147



Bayesian Structure Learning

A prior distribution for SPN trees

The priors are defined recursively, node by node

B prior of each sum-node s is a Dirichlet process, with concentration parameter
and base distribution G p(s)

B G p(s): probability distribution over the set of possible product nodes with scope s

the prior distribution over SPNs is specified as a tree of Dirichlet Processes over
p p
product nodes

The model is straightforward altered for DAG using hierarchical Dirichlet Process

Lee et al., “Non-Parametric Bayesian Sum-Product Networks”, 2014

94,147



Automatic Bayesian Density Analysis

Overcoming the problem in DE of assuming homogeneous RVs and shallow dependency
structures
[ ABDA relies on SPNs to capture statistical dependencies in heterogeneous data at
different granularity through a hierarchical co-clustering
[ inference for both the statistical data types and (parametric) likelihood models
B robust estimation of missing values

[ detection of corrupt or anomalous data
B automatic discovery of the statistical dependencies and local correlations in the data

Vergari et al., “Automatic Bayesian Density Analysis”, 2018 95147



Generative model

(E {1

(c) LV interpreta-
(a) Graphical model (b} SPN tion (d) Tyvpe-augmented SPN

Z3 ~ Cat(Q°),Q° ~ Dir(7)
w;l ~ Dir(a), s;l,n ~ Cat(w?)

prior on "7?,1 parametrized with )\f

Vergari et al., "Automatic Bayesian Density Analysis”, 2018

96,147



Bayesian SPNs

Learning both the structure and parameters

A well-principled Bayesian approach to SPN learning, simultaneously over both structure
and parameters

B the structure learning problem is decomposes into two steps
1. proposing a computational graph
—> laying out the arrangement of sums, products and leaf distributions
2. learning the scope-function, which assigns to each node its scope

Trapp et al., “Bayesian Learning of Sum-Product Networks”, 2019 97n47



Bayesian SPNs

Generative model
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Trapp et al., “Bayesian Learning of Sum-Product Networks”, 2019
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Randomized structure learning: RAT-SPNs

Random Tensorized SPNs (RAT-SPNs)
[ SPNs are obtained by first constructing a random region graph
B subsequently populating the region graph with tensors of SPN nodes

[ implemented in Tensorflow and easily optimized using automatic differentiation,
SGD, and automatic GPU-parallelization
 implementing an SPN dropout heuristic
[ an elegant probabilistic interpretation as marginalization of missing features (dropout

at inputs) and as injection of discrete noise (dropout at sum nodes)

[ comparable DNNs; complete joint distribution over variables; robust in the
presence of missing features; well-calibrated uncertainty estimates over their inputs

Peharz et al., “Probabilistic deep learning using random sum-product networks”, 2018 9947



Losses

Generative training (EM): LL = + SV log S(x,)

Discriminative training (SGD): CE = —% Zf\il log %
y/ y/ n

Hybrid training (SGD): O = ACE — (1 — )\)ll‘—"

More details and results during the UAI oral session, tomorrow at 2:30pm

100/147



Ensembles of Probabilistic Circuits

To mitigate issues like the scarce accuracy of a single model and their tendency to overfit,
circuits can be employed as the components of a mixture

K K
PX) =D ANCX) N =0:) A=1
=1 =1

Employing EM to alternatively learn both the weights and the mixture components

B issues about convergence and instability of EM — impractical

101147



Ensembles of Probabilistic Circuits

Bagging Probabilistic Circuits

[ more efficient than EM

I mixture coefficients are set equally probable

[ mixture components can be learned independently on different bootstraps
Adding random subspace projection to bagged networks (like for CNets)

[l more efficient that bagging

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015
Di Mauro et al., “Learning Bayesian Random Cutset Forests”, 2015 102147



Ensembles of Probabilistic Circuits

Boosting Probabilistic Circuits
B BDE: boosting density estimation

B sequentially grows the ensemble, adding a weak base learner at each stage
B at each boosting step m, find a weak learner ¢,,, and a coefficient 7, maximizing the
weighted LL of the new model

fm = (1 - nm)fm—l + MmCm

B GBDE: a kernel based generalization of BDE—AdaBoost style algorithm
B sequential EM
B at each step m, jointly optimize 7,,, and ¢;,, keeping fy,—1 fixed

Rahman et al., “Learning Ensembles of Cutset Networks”, 2016 103147



Extremely Randomized CNets: XCNets

Learning both the structure and parameters of a CNet equals to perform searching in the
space of all probabilistic weighted model trees
B a problem tackled in a two-stage greedy fashion

1. performing a top-down search in the space of weighted OR trees
2. learning TPMs as leaf distributions

b o @d U
&9 g6 o ©o
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LearnCNet(D, X, o, 8, 0)
1: Input: a dataset D over RVs X; a: & min number samples; o min number features

2: Output: a CNet C encoding p¢ (X) learned from D
3:if |D| > ¢ and |X| > o then

4 X; + select(D, X, ) > select the RV to condition on
50 Do« {£€D:¢{[X;] =0}, Dy« {{€D:¢[X;] =1}

6: w0e|DO|/|D,w1e|D1\/|D\

7: C < wp - LearnCNet(Dy, X\;, @, §,0) + w; - LearnCNet(Dy, X\;, @, 6, 0)

8: else

9:  C « learnLeafDistribution(D, X, «)

10: returnC

XCNets (Extremely Randomized CNets): select chooses one RV at random

Di Mauro et al., “Fast and Accurate Density Estimation with Extremely Randomized Cutset
Networks”, 2017 105/147



Online Learning

Discrete data [Lee et al. 2013]
B avariant of LearnSPN using online clustering
[ sum nodes can be extended with more children
B product nodes are never modified
Continuos data [Hsu et al. 2017]
B starting with a network assuming all variables independent

B correlation are incrementally introduced in the form of a multivariate Gaussian or a
mixture distribution
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Knowledge Compilation

x = £1ip(6,); Line 2 Lines 2-6 Line 1 Lines 1-6
if(x) {
y = flip(fa) ; i
} else {
y=1x
e
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Knowledge Compilation

Compilation to arithmetic circuits

@ @ @ & .I ) fal 1.0} A8 £48,C)

L GARE &

B the joint distribution P(A, B, C') can be represented as an AC
B the AC has inputs variable assignements (A and —A) or constants
B internal nodes are sums or product

B complete assignment: set variable assignments to 1 (opposing to 0)
[ the root of the AC evaluates the weight (unnormalized probability) of that world

Darwiche, Modeling and Reasoning with Bayesian Networks, 2009 108147



Hybridizing TPMs with intractable models

Collapsed compilation

Inference algorithms based on a knowledge compilation approach perform exact
inference by compiling a worst-case exponentially-sized arithmetic circuit representation
B online collapsed importance sampling

B choosing which variable to sample next based on the values sampled for previous
variables

B collapsed compilation

P maintaining a partially compiled arithmetic circuit during online collapsed sampling

Friedman et al., "Approximate Knowledge Compilation by Online Collapsed Importance Sampling”, 109
2018 1147



Hybridizing TPMs with intractable models

Sum-Product Graphical Model (SPGM)

A probabilistic architecture combining SPNs and Graphical Models (GMs)
—> tractable inference (SPN) + high-level abstraction (PGM)

P

[a])

e

)
2=, Z=1
_ A @
'-." ) P L
(B) (g) 5 (&

(O—E
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Desana et al., “Sum-product graphical models”, 2019



Hybridizing TPMs with intractable models

sum-product VAE

Table 1. Performance on test set, HH)0-sample IWAE ELBO

Continuoies Discrete
rmnist svhn cifar mnist svhn cifar
SPYAE 1819 1936 1283 =1532 3891 -53543
VAE 2508 1442 Hily -2351 b5 7200
Comv-SPYAE 2702 210 1397 427 -366h 4562
Comv=VAE 2907 1390 19 =208 4115 -A752

Tan et al., “Hierarchical Decompositional Mixtures of Variational Autoencoders”, 2019
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Applications



Next:

Stay Tuned For ...

1. what have been probabilistic circuits used for?
=>  computer vision, sop, speech, planning, ...

2. what are the current trends in tractable learning?
=>  hybrid models, probabilistic programming, ...

3. what are the current challenges?
—> benchmarks, scaling, reasoning

Ji14#| Conclusions
113147



20 Datasets

current state-of-the-art

dataset
nltcs
msnhc
kdd
plants
audio
jester
netflix
accidents
retail
pumbs*

single models
-5.99 1ip-spw;
-6.04 rprometheus]
-2.12 (prometheus]
-12.54 jip-seny
-39.77 isne-seny
-52.42 ne-seny
-56.36 /o-spy)
-26.89 sspamy
-10.85 ip-seny
-22.15 spamy

ensembles

-5.99 [1earnpspps]

-6.04 [1earnpsps]

-2.12 f1earnpspps]
-11.84 peners)
-39.39 penerss
-51.29 [tearnpsops
-55.71 [tearnpsops
-29.10 pecnets)
-10.72 frearnpsops)
-22.67 [spn-bib]

dataset
dna
kosarek
msweb
book
movie
webkb
cr52
c20ng
bbc

ad

single models
-79.88 seemy
-10.59 rprometheus)

-9.73 1p-seny

-34.14 (p-seny
-51.49 (prometheus]

-151.84 p-seny
-83.35 /ip-sey

-151.47 pp-seny
-248.5 (prometheus)
-15.40 fcnevoy

ensembles
-80.07 rspn-bity
-10.52 fiearnpsops)
-9.62 pcnets)
-33.82 spn-bity
-50.34 penerss
-149.20 pcners)
-81.87 pcners)
-151.02 pecnerss
-229.21 penerss
-14.00 penerss
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better benchmarks

Move beyond toy benchmarks
to datasets reflecting
the complex and heterogeneous nature of real data!
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Computer vision

Image reconstruction and inpainting —> MAP inference

Original

Reconstructing some symmetries (eyes, but
not beards, glasses).

Covered
BACK-ORIG Good results for 2001...
SUM

~ J BACK-MPE

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011

Sguerra et al., “Image classification using sum-product networks for autonomous flight of micro
aerial vehicles”, 2016 116147



Image segmentation

Input Image Multiscale Unary Potential Multiscale sum-product Superpivel-based refine
network

Semantic segmentation is again MAP inference!

Even approximate MAP for non-deterministic circuits (SPNs) has good performances.

Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017

Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016

Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 1M7n47



Scene Understanding: Su-PAIR

SuPAIR
result

SuPAIR
racon-
struction
AR
result
AlR
racon-

struction .- - .- . .-

Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
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hybridizing tractable and intractable models

Hybridize probabilistic inference:
tractable models inside intractable loops
and intractable small boxes glued by tractable inference!

119147



Activity recognition

Exploiting part-based decomposability along pixels and time (frames). Probabilistic
circuits for MAP and MMAP inference and explanations.

Paint distribution Video
“illl 2
2 e

oW

._/'

Amer et al., “Sum Product Networks for Activity Recognition”, 2015

Wang et al., “Hierarchical spatial sum-product networks for action recognition in still images”,
2016

Chiradeep Roy et al., “Explainable Activity Recognition in Videos using Dynamic Cutset Networks”,
2019
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Speech reconstruction and extension

Probabilistic circuits to model the joint pdf of observables in HMMs (HMM-SPNs),
again leveraging tractable inference: marginals and MAP

[Rp——
o

[Njcasmsczzy
/
oy BT TR

(a) Original full bandwidth (b) Reconstruction HMM-LP (¢) Reconstruction HMM-GMM  (d) Reconstruction HMM-SPN

State-of-the-art high frequency reconstruction (MAP inference)

Peharz et al., “Modeling speech with sum-product networks: Application to bandwidth extension”,
2014

Zohrer et al., “Representation learning for single-channel source separation and bandwidth
extension”, 2015
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Sequence labeling i)
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Ratajczak et al., “Sum-Product Networks for Structured Prediction: Context-Specific Deep
Conditional Random Fields”, 2014

Ratajczak et al., “Sum-Product Networks for Sequence Labeling”, 2018
Cheng et al., “Language modeling with Sum-Product Networks”, 2014 122147




(D) Leaming

() Aot

o = ()5t - e
u

sr

Hierarchical planning robot executions

Scenes and maps decompose along circuit
structures

Pronobis et al., “Learning Deep Generative Spatial Models for Mobile Robots”, 2016

Pronobis et al., “Deep spatial affordance hierarchy: Spatial knowledge representation for planning

in large-scale environments”, 2017

Zheng et al., “Learning graph-structured sum-product networks for probabilistic semantic maps”, 123
2018 /147



SOP: Preference learning

sushi

s T Preferences and rankings as logical
S constraints

Structured decomposable circuits for

| 2 T mereTmalons advanced queries
' =t |

a

o . i 15 . ey .
# of mixture components SOTA on modeling densities over rankings

average log-likelihood

Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015

Shen et al., “A Tractable Probabilistic Model for Subset Selection.”, 2017
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SOP: Routing

Decomposing complex (conditional) probability spaces

via circuits

Westside

.....

Westwood
Village

Ve ¥y

Venice ! A, Culver City 7

Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018
Shen et al., “Structured Bayesian Networks: From Inference to Learning with Routes”, 2019
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scaling tractable learning

Learn tractable models

on millions of datapoints
and thousands of features
in tractable time!
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Probabilistic programming

Line 5 Line 3 Line 2 Lines 2-6 Line 1 Lines 1-6

x = flip(f,);
if¢x) {
y = flip(fa)
} else {
y=x
}

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019

De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007, 2007, 2015; 2015

Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017

Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 127747



and more...

fault prediction [Nath et al. 2016]

computational psychology [joshi et al. 2018]

biology [Butz et al. 2018b]

low-energy prediction [Galindez Olascoaga et al. 2019; Shah et al. 2019]

calibration of analog/RF circuits [Andraud et al. 2018]

stochastic constraint optimization [Latour et al. 2017]

neuro-symbolic learning [Xu et al. 2018]

probabilistic and symbolic reasoning integration [Li 2015]

relational learning [Broeck et al. 2011; Domingos et al. 2012; Broeck 2013; Nath et al. 2014, 2015;
Niepert et al. 2015, Van Haaren et al. 2015]

128147



better benchmarks

Move beyond toy queries
towards fully automated reasoning!

1291147



less expressive

more tractable queries

Fully factorized PSDDs
m Trees % CNets | AoGs | ACs

Q

2

o 2
g 8
T ¢ NADES g BN s
= [ ]
o NFs o
=]

g :

less tractable queries

takeaway #1 tractability is a spectrum

efficient

130147



less expressive

efficient

more tractable queries

Fully factorized PSDDs
m Trees % CNets | AoGs | ACs

SPNs

¢ NADEs i BNs
il

less tractable queries

takeaway #2: you can be both tractable and expressive

more expressive

efficient

131147



(X)
ONORO

X1 Xg X3 X1 Xl

wi w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning

1325147



1. new benchmarks are needed!

2. scaling tractable learning!

3. take the best from approximate reasoning!
4. move to complex reasoning!

takeaway #4:

1335147
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