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Tokenization in NLP

Most language models represent distributions over tokens (subwords), not strings.

= (X1, T2, .., Tp)

= (V1,. .-, Unm)
For example:

— Caterpillar

= [C,ater,p,ill,ar] = [315,1008,29886,453,279]

= Why tokens instead of bytes?

pum([C,a,t,e,r,p,i,1,1,a,r]) requires || calls to the LLM
Harder to capture long term dependency

= Why tokens instead of words?

Robustness to typos and new words
Tokens capture morphology



Tokenization in NLP
How do you do learning and inference?
Define a unique canonical tokenization of a string!

Example:
= Caterpillar
canonical v = [C,ater,p,ill,ar]

Common assumption:

A string can be tokenized in an exponential number of ways (784 here!)



Tokenization in NLP

Less likely for non-English (code,
unicode characters, etc)

Why does this tokenization problem matter?

How canonical are unconditional samples?

= Hypnopaturist ool

canonical v = [Hyp,nop,atu,rist]
¢ likely v = [Hyp,no,patu,rist]

—— Gemma
—— Llama2
—— Mamba

Percentage of canonicity
0
S
T

(=)
=)
T

canonical prob p(v|x) ~ 0.0004
most likely prob p(| )% 0.9948 0 32 64 96 128
Number of tokens

We’re ignoring an exponential number of tokenizations!



Tokenization is a Neurosymbolic Problem!

But why do we care? What is the neurosymbolic problem here?

= Tokens are symbols.
= Atokenization of a text is a constraint over these symbols.

p(v, ):{pLLM() if v =

0 otherwise.
= (01,025, 0) E X S V10U 00D, =
E | \ concatenation
xample:
p(v=I[— 5,2]|x=—57)=0.586 p(v=[—,571|x=—357)=0.402
p(v=I[—-,7,21lx=—572)=0.012  p(v= [Tok,ens]|x=—77)=0



Tokenization in NLP
How do you do learning and inference?
Define a unique canonical tokenization of a string!

Example:
= Caterpillar
canonical v = [C,ater,p,ill,ar]

Common assumption:
p(x)=p(v) X o )Z;p( )

A string can be tokenized in an exponential number of ways (784 here!)



Reasoning in Tokenization Space

Instead of the canonical tokenization, we might want to compute:

1. The most likely tokenization X  Theorem. The most likely
argmax, . p(v, *) tokenization problem is NP-hard.

2. The true marginal probability of a text x Theorem. The marginal string
p(x) =Y - p(v, %) probability problem is #P-hard.

Proof Intuition: Choice of tokens can encode Boolean variables,
LLM probability encodes which clauses in a CNF are satisfied

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. \Where is the signal in tokenization space?, 2024


https://arxiv.org/abs/2408.08541

(Approximate) Reasoning in Tokenization Space

1. The most likely tokenization

60 |
argmax. .. p(v, ) ~
3
Branch-and-bound & 40— Gemma
= Lower bound: canonical likelihood : — Llama2
= Anytime: candidate at least as good as canonical ‘é 90 | | —— Mamba |
= Runtime exponential on string length! =
< Canonical best candidate for almost all cases... ol |
| | |
...but not alwayS! whitespace character i 0 49 4l ol 20
String length
p(v = [_tongue,less]|« = _tongueless) = 0.518 —— most likely tokenization
p(v = [_t,ong,uel,ess]|« = _tongueless) = 0.004
p(v = [_tong,uel,ess]|« = _tongueless) = 0.474 _ _
“~—canonical tokenization Is there signal in
p(v = [_,HEADER, _,DELIM,ITER] |« = _HEADER_DELIMITER) = 0.412 non-canonical tokenizations?
p(v = [_HEAD,ER,_,DELIM,ITER] |+« = _HEADER_DELIMITER) = 0.330
p(v = [_HEADER,_,DELIM,ITER]|« = _HEADER_DELIMITER) = 0.010

. canonical tokenization

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. \Where is the signal in tokenization space?, 2024


https://arxiv.org/abs/2408.08541

(Approximate) Reasoning in Tokenization Space

2. The true probability of a text

p(+) = 2. p(v, %)

Sequential importance sampling

p()=E~q(|){

1N
~ N2

q(v[*) #samples grows
q

(0.50

proposal distribution / 0.30

One step look-ahead
proposal distribution:

0.15

qra (v — [Tok,enil, » = Tokenization) = { 0.05
0.00

zero-out next tokens / :
inconsistent with constraint [
L 0.00

if
if
if
if
if

if

p( : ) LLM forward Unbiased estimator converging to
pass the true probability of text as

— zation;

I

zat;

za;

Z,
= a;

= 2ZZ;

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. \Where is the signal in tokenization space?, 2024


https://arxiv.org/abs/2408.08541

Where is the signal in tokenization space?

HELLASWAG SOCIALIQA OPENBOOKQA

— 60 === 50
§ = A R arg max P( |unestion) - Z p( |unestion)
= 50| 1 45 e
5
g 40 40
£ 30| == California experiences heavy

‘ 35 k4 ‘ 1 15 earthquake activity due to

0 64 128 192 256 0 64 128 192 256 0 64 128 192 256 (a)  erosion
——— | lama?2 —— GemmaNumber of samp (b)  techtonics
Mamba ---- canonical what’s going on here? (c) volcanic activity
(d) fire
Most of the time, canonical is overwhelmingly more likely in English.
107 P(~Canonicall “Tokens”) = 0.004 So text probability estimate will eventually converge

P(Canonical|“Tokens”) = 0.996

to canonical in almost all cases.

[_,T,0,k,e,n,s]

Probability
9

[-Tolens] § But before it does, non-canonical tokenizations are
/ \ , given more weight!
10 Y [.,To,ken,s]
- / There is signal in non-canonical tokenizations!
Tokenizations

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. \Where is the signal in tokenization space?, 2024


https://arxiv.org/abs/2408.08541

Neurosymbolic reasoning can boost LLM accuracy!

Can we quantify how much signal is in non-canonical tokenizations?

Accuracy (%) Accuracy (%) Accuracy (%)

arg max o - p(Vanswer|unestion) + (1 — Oé) : p( N CANONI ':~‘|unesti0n)
canonical _ non-canonicals /
HELLASWAG SOCIALIQA OPENBOOKQA
- Tune for a
60.0 ' 34.0 »
59.8 45.0 = MIXTURE  CANONICAL
59.6 4400 132.0 o Accuracy (%)
59.4 : - h L1lama2 59.7 59.6 z
g Gemma 55.8 54.7 :
56.0 33"21 310 © Mamba 31.6 324 :
h8.5 49.0 30.5 = L1ama2 44.8 44.1 z
95.0 48.8 30.0 o Gemma 48.8 48.7 :
54.5 48.6 ' ®  Mamba 39.8 39.1 2
17.5 Llama?2 34.0 30.8 g
325 41.0 i = Gemma 30.6 30.2 5
39.0 40.0 | : 16:5 Qg: Mamba 17.6 16.6 ©
31.5 ‘ 39.0 16.0 ] ] |
0 0.25 05 0.75 1 0 025 05 0.75 1 0 025 05 0.75 1 Consistent improvement!
/ « \ « o
only non-canonicals only canonical

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. \Where is the signal in tokenization space?, 2024


https://arxiv.org/abs/2408.08541
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f

Kristin and her son Justin went to visit
her mother Carol on a nice Sunday
afternoon. They went out for a movie
together and had a good time.

I

Q: How is Carol related to Justin ?
A: Carol is the grandmother of Justin

!

~

Can Language Models Perform Logical Reasoning?

Language Models achieve high performance on “reasoning” benchmarks.

Reasoning Example
from the CLUTRR

J

dataset

N

Unclear whether they follow the rules of logical deduction.

Language Models:
input — ? — Carol is the grandmother of Justin.

Logical Reasoning:
input — Justin in Kristin’s son; Carol is Kristin’'s mother; — Carol is Justin’s mother’s mother; if

X is Y’s mother’s mother then X is Y’s grandmother — Carol is the grandmother of Justin.




SimplelLogic

Generate textual train and test examples of the form:

Rules: If witty, then diplomatic. If careless and condemned and attractive, then blushing. If dishonest and inquisitive and average,
then shy. If average, then stormy. If popular, then blushing. If talented, then hurt. If popular and attractive, then thoughtless. If
blushing and shy and stormy, then inquisitive. If adorable, then popular. If cooperative and wrong and stormy, then thoughtless.
If popular, then sensible. If cooperative, then wrong. If shy and cooperative, then witty. If polite and shy and thoughtless, then
talented. If polite, then condemned. If polite and wrong, then inquisitive. If dishonest and inquisitive, then talented. If blushing
and dishonest, then careless. If inquisitive and dishonest, then troubled. If blushing and stormy, then shy. If diplomatic and
talented, then careless. If wrong and beautiful, then popular. If ugly and shy and beautiful, then stormy. If shy and inquisitive
and attractive, then diplomatic. If witty and beautiful and frightened, then adorable. If diplomatic and cooperative, then sensible.
If thoughtless and inquisitive, then diplomatic. If careless and dishonest and troubled, then cooperative. If hurt and witty and
troubled, then dishonest. If scared and diplomatic and troubled, then average. If ugly and wrong and careless, then average. If
dishonest and scared, then polite. If talented, then dishonest. If condemned, then wrong. If wrong and troubled and blushing,
then scared. If attractive and condemned, then frightened. If hurt and condemned and shy, then witty. If cooperative, then
attractive. If careless, then polite. If adorable and wrong and careless, then diplomatic. Facts: Alice sensible Alice condemned
Alice thoughtless Alice polite Alice scared Alice average

Query: Alice is shy ?

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Training a transformer on SimplelLogic

(1) Randomly sample facts & rules.
Facts: B, C

Rules:A,B>D.B>E.B,C>F. Test accuracy for different reasoning depths
(2) Compute the correct

° e G labels for all predicates given
Test| 0 f 2 B8 4 & B

the facts and rules.
o ‘ . RP | 999 998 99.7 99.3 98.3 975 955

Rule-Priority

Label-Priority ° ‘ ‘

Test | O 1 2 3 4 5 6

= LP [100.0 1000 99.9 99.9 99.7 99.7 99.0
O (2) Set B, C (randomly chosen
@ Q among B, C, E, F) as facts and
(1) Randomly assign labels to sample rules (randomly)
predicates. consistent with the label
True: B, C, E,F. assignments.

False: A, D.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Has the transformer learned to reason from data®?

Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)
RP/LP data covers the whole problem space

The learned model has almost 100% test accuracy

e

There exist transformer parameters that compute the ground-truth reasoning function:

Theorem 1: For a BERT model with n layers and 12 attention heads, by construction,
there exists a set of parameters such that the model can correctly solve any
reasoning problem in SimpleLogic that requires at most n — 2 steps of reasoning.

Surely, under these conditions, the transformer has
learned the ground-truth reasoning function!

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

The Paradox of Learning to Reason from Data

Train Test | O 1 2 3 4 5 6

RP RP | 999 99.8 99.7 993 983 97.5 955
LP | 99.8 99.8 993 96.0 904 750 57.3

RP | 973 669 53.0 542 595 656 69.2
LP | 100.0 100.0 999 99.9 99.7 99.7 99.0

LP

The BERT model trained on one distribution fails to generalize
to the other distribution within the same problem space.

1. If the transformer has learned to reason,
it should not exhibit such generalization failure.

2. If the transformer has not learned to reason,
it is baffling how it achieves near-perfect in-distribution test accuracy.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Why? Statistical Features

Monotonicity of entailment:
Any rules can be freely added to the axioms of any proven fact.

{

[ The more rules given, the more likely a predicate will be proven. ]

.

[ Pr(label = True | Rule # = x) should increase (roughly) monotonically with x }

N WWWWWWWWWWWWMM Mwm i MMWWWMWMMW vmwmum wwmx mhi\rw\MUn\hN Jh \»“ Ml

(a) Statistics for examples generated by Rule-. ty (RP). (b) St: ty (LP). () S y uniform sampling;




Model leverages statistical features to make predictions

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Train Test | 0 1 2 3 4 5 6

RP (999 99.8 99.7 99.3 983 97.5 95.5
RP RP_b[99.0 993 985 97.5 96.7 93.5 883

1. Accuracy drop from RP to RP_b indicates that
the model is using rule# as a statistical feature to make predictions.

2. Potentially countless statistical features

3. Such features are inherent to the reasoning problem, cannot make data “clean”

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

First Conclusion

Experiments unveil the fundamental difference between

1. learning to reason, and

2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying Al in applications where this difference matters.

FAQ: Do bigger transformers solve this problem? No, already 99% accurate...

FAQ: Will reasoning emerge? Perhaps on 99% of human behavior...

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
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O Generate a sentence using "frisbee", "caught" and "dog",
M following the given order.



O Generate a sentence using "frisbee", "caught" and "dog",
) following the given order.

After a perfect throw, the frisbee glided through the air,

and the dog, with incredible agility, caught it mid-flight. ChatGPT



O Generate a sentence using "frisbee", "caught" and "dog",
) following the given order.

After a perfect throw, the frisbee glided through the air,
ChatGPT

and the dog, with incredible agility, caught it mid-flight.

O That's not correct. Generate a sentence using "frisbee",
(— ) "caught” and "dog". The keywords should appear in the
order as specified.

Here's the correct sentence: The dog caught the frisbee
in mid-air, showing off its amazing catching skills. ChatGPT




O Generate a sentence using "frisbee", "caught" and "dog",
) following the given order.

After a perfect throw, the frisbee glided through the air,

and the dog, with incredible agility, caught it mid-flight. ChatGPT

O That's not correct. Generate a sentence using "frisbee",
(— ) "caught” and "dog". The keywords should appear in the
order as specified.

Here's the correct sentence: The dog caught the frisbee
in mid-air, showing off its amazing catching skills. ChatGPT

() Afrisbee is caught by a dog. o
‘E A pair of frisbee players are caught in a dog fight. eralo




What do we have?

Prefix; “The weather is”

Constraint a: text contains “winter”

cold 0.05

Model only does p(next-token|prefix) =

warm 0.10

Train some q(. |a) for a specific task distribution o ~ p,.

(amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train q(next-token|prefix, o) and avoid symbolic reasoning



What do we need?

Prefix; “The weather is”

Constraint a: text contains “winter”

Generate from p(next-token|prefix, a) =

X Z p(next-token, text, prefix, a)

text

Marginalization!

cold

0.50

warm

0.01




Tractable Probabilistic Models Probabilistic Circuits

HMM

HCLT

Tractable Probabilistic Models (TPMs)
model joint probability distributions
and allow efficient probabilistic inference.

Mixture of Trees

DPP

SPN

For now... keep it simple... just a Hidden Markov Model (HMM) with
4096 hidden states and 50k emission tokens

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generatio

n, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Computing p(a| x,...,) on an HMM

For constraint a in CNF:

W, V..oVw JA AW V... Vw )

e.g., a=("swims" V "like swimming") A ("lake" V "pool")

Efficient algorithm:
For m clauses and sequence length n, time-complexity for HMM generation is O(2mn)

Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords,
in any order and any form of inflections. e.qg.,

Input: snow drive car
Reference 1: A car drives down a snow covered road.

Reference 2: Two cars drove through the snow.

Constraintain CNF: (w, V... Vw, JA ... AW ,V..Vw

1,d1) m,dm)

Each clause represents the inflections for one keyword.



Lexical Constraint a: sentence contains keyword “winter”

GelaTo

Overview Constraine-.d Generation: Pr(x,, | | @, x;., = "the weather is")
X intractable \k efficient
v
Pre-trained Tractable
Language Model Probabilistic Model
L Pryp (i 1 x1.) X1 | Propyla| Xp, xy.,)
cold 0.05 cold 0.50
warm 0.10 warm 0.01

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Lexical Constraint a: sentence contains keyword “winter”

GelaTo

Overview Constraine-.d Generation: Pr(x,, | | @, x;., = "the weather is")
X intractable \k efficient
v
Pre-trained Tractable
Language Model Probabilistic Model
Xr+1 Pry (X1 1% X1 | Proppfer| Xy, %1.0)
cold 0.05 cold 0.50
warm 0.10 warm 0.01
X1 Py | s Xy
cold 0.025
warm 0.001

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Step 2: Control p,, via pj,,,

Unsupervised Language model is not fine-tuned/prompted to satisfy constraints

Py (next-token | prefix, @)  py, (a| next-token, prefix) - p,, (next-token | prefix)

gelato hmm
GPT2-large HMM
=+H= (212M params)
Mathiod Generation Quality Constraint Satisfaction

ROUGE-L BLEU-4 CIDEr SPICE Coverage Success Rate
Unsupervised dev test  dev  test dev test dev test dev test dev test

InsNet (Lu et al., 2022a) - - 18.7 - - - - - 100.0 - 100.0 -

NeuroLogic (Lu et al., 2021) - 41.9 - 24.7 - 14.4 - 275 - 96.7 - -

A*esque (Lu et al., 2022b) - 44.3 - 28.6 - 15.6 - 29.6 - 97.1 - -

NADO (Meng et al., 2022) - - 26.2 - - - - - 96.1 - - -
GeLaTo 4.6 441 1299 294 | 160 158 | 31.3 31.0 | 100.0 100.0 | 100.0 100.0

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Advantages of GelaTo:

1. Constraint a is guaranteed to be satisfied:
for any next-token x_, , that would make a unsatisfiable, p(x

a) = 0.

t+1 | X1 't

2. Training p,  does not depend on q,
which is only imposed at inference (generation) time.

Conclusion: you can control an intractable generative model
using a tractable probabilistic circuit.

What about more powerful constraints?
more powerful LLMs?



More powertful constraints? Tractable Control with Ctrl-G

3 T-\.s
. . 5 lines of code!
User: given the following from CtrlG import *

context, generate infilling text

"First they've defeated a

for [BLANK] using key phrases prefix = “First they defeated a ..” | b el s
"alien mothership", "far from suffix = “are few humans left ..” tSI'TjaF sfc{qua ? b WS| NG @
over”; generated text must @Oe BBL 9F el $Aips,
contain 25 - 30 words. dfa_list = [ Eventually theyivs svon
DFA_all_of(“alien mothership”, managed to take down the
“far from over”), alien mothership. But their
DFA_word_count(25, 30), problems are far from over.
“First they've defeated a small ] There are few humans left,

dfa = DFA_logical_and(dfa_list) and despite their magical

power, their numbers are
getting fewer.”

squad [BLANK] are few humans

left, and dgsplte their magical Ip = CkriGlogiksProcessort
pow'er, their numbers are dfa, hmm, prefix, suffix)
getting fewer. 11m.generate(logits_processor=1p)

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.


https://arxiv.org/pdf/2406.13892

More powerful constraints?
Tractable Control with Ctrl-G

i condi‘rioning on logical constraints...

2. classical algor'u'rhmsl

( m e [HMM) [DFA]

! 3 inference-time 9uudance

outputs satisfying the constraints

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.


https://arxiv.org/pdf/2406.13892

Tractable Control with Ctrl-G

Ctrl-G (applied to TULU2-7B) significantly
outperforms GPT4 in generating text

continuations/insertions under constraints.

Notably for insertion, while GPTs produce
lower quality outputs as the constraints
become more complex, Ctrl-G consistently
produce high-quality output.

Table 3: Human evaluation of interactive text editing. K&L indicates that the model should adhere to
both keyphrase (K) and word length (L) constraints simultaneously. We present the human evaluation
score (Quality), constraint success rate (Success), and overall satisfaction rate (Overall), which

Quality
TULU2
GPT3.5
GPT4
Ctrl-G
Success
TULU2
GPT3.5
GPT4
Ctrl-G
Overall
TULU2
GPT3.5
GPT4
Ctrl-G

Insertion
None K L K&L
2.68 2.64 2.78 2.74
2.27 2.22 2.27 2.31
3.79 3.33 3.53 3.10
3.77 3.56 3.73 3.59
- 12% 20% 3%
- 22% 54% 10%
- 60% 20% 27%
- 100% 100% 100%
- 7% 10% 1%
- 0% 5% 2%
- 41% 17% 14%
- 76 % 78 % 82%

represents the proportion of examples meeting logical constraints with a Quality score above 3.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.


https://arxiv.org/pdf/2406.13892
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Neurosymbolic learning of transformers

Given:

1. constraint a (a list of 403 toxic words not to say)
2. training data D

Learn: a transformer Pr(.) that

1. satisfies the constrainta:  Pr(a)?
2. maximizes the likelihood:  Pr(D)t

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Neurosymbolic learning of transformers

Given:

1. constraint a (a list of 403 toxic words not to say)
2. training data D

Learn: a transformer Pr(.) that

1. satisfies the constrainta:  Pr(a)?
2. maximizes the likelihood:  Pr(D)t

Pr(a) is computationally hard, even when a is trivial:
What is prob. that LLM ends the sentence with “UCLA”?

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Autoregressive distributions are hard...

Pr(a) is computationally hard, even when a is trivial:
What is prob. that LLM ends the sentence with “UCLA”?

Why did it work before?

We were using a separate tractable proxy model...

Now we need to train the actual intractable transformer...

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Neuro-Symbolic Al: A Probabilistic Perspective

A neural network
induces a distribution

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]


http://starai.cs.ucla.edu/papers/XuICML18.pdf

Neuro-Symbolic Al: A Probabilistic Perspective

Impose structure
using symbolic
knowledge

A neural network
induces a distribution

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]
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Neuro-Symbolic Al: A Probabilistic Perspective

Impose structure a

using symbolic
knowledge

A neural network Move mass around to be
induces a distribution consistent with structure

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]
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The Problem

We want to shift the model’s output distribution away from violating the constraint

p(ylz) p(ylz)

y Yy
— m(a) — — m(a) —

Easy when p is fully-independent; very hard when p is autoregressive

n

p(y) =] r: | y<i),

1=1

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]
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Neurosymbolic learning of transformers

Basic Idea: p(y|x)
Use how likely a constraint is to be
satisfied around a model sample (x)

as a proxy for how likely it is to be

satisfied under the entire distribution.

Average over many such samples. Y
'm(a) |
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Formally, minimize the pseudo-semantic loss

L?L_eudo = lOg E’QNP Z Hp(yz | @—z)

yFai=1
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Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — log E'QNP Z Hp(yz | g—z)

X ykEai=l
Basic ldea:
Pick a location to build the plylz) ﬂ

approximation around

J

'm(a) |




Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — lOg E’QNP Z Hp(yz | g—z)

X yFai=l

Basic Idea:

- p(y|z)
Extract a local tractable probabilistic A
model around the point

(independent in each dimension)




How to compute pseudo-semantic loss?

y = | saw a dog today

p(She) p(caught|I) p(the|l,saw) p(cat|l,saw,a)  p(yesterday|l, saw,a,dog)
p(I saw a dog today) = p(I) x p(saw|I) x p(a|l,saw) x p(dog|l,saw,a) x p(today|I,saw,a,dog)
p(He) p(bought|l) p(an|I,saw) p(mouse|l,saw,a) p(tomorrow|l,saw,a,dog)

p(I saw a mouse today) = p(I) X p(saw|I) xp(a|l, saw) X p(mouse|l, saw, a) x p(today|I, saw, a, dog)
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Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — log E'QNP Z Hp(yz | g—z)
X  yEai=1

Basic Idea: ’//

o p(y|z)
Compute Pr(a) locally and maximize it A

'm(a) |



Formally, minimize the pseudo-semantic loss

L?L_eudo — lOg E’QNP Z Hp(yz | g—z)

X yFai=l

p(ylz)
How good is this approximation? |
o Local:
~30 bits entropy vs ~80 for GPT-2.

« Fidelity:
4 bits KL-divergence from GPT-2. l

m(a) |
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Table 1: Our experimental results on Sudoku.  Table 2: Our experimental results on Warcraft.

Test accuracy % Exact  Consistent Test accuracy % Exact  Consistent
ConvNet 16.80 16.80 ResNet-18 55.00  56.90
ConvNet + SL 2210 22010 ResNet-18 + SL 59.40 61.20
RNN 22.40  22.40 CNN-LSTM 62.00  76.60

RNN + PSEUDOSL  28.20 28.20 CNN-LSTM + PSEUDOSL  66.00 79.00
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Detoxify LLMs by disallowing bad words

Constraint a is a list of 403 toxic words not to say
Evaluation is a toxicity classifier

Exp. Max. Toxicity (/) Toxicity Prob. (])
Models Full Toxic Nontoxic | Full Toxic Nontoxic FEE (D)

GPT-2 | 0.44 0.62 0.39 | 34.11% 67.27% 24.85% | 25.85

Domain- SGEAT [42] 0.32 0.46 0.28 14.05% 35.72% 7.99% 28.72
Adaptive PseudoSL (ours) | 0.29 0.38 0.27 9.80% 20.07% 6.93% 28.14
Word GPT-2 0.40 0.55 0.36 27.92%  57.86% 19.56% 22.24
Banning SGEAT [42] 0.30 0.41 0.27 10.73% 27.05% 6.17% 24.91
PseudoSL (ours) | 0.29 0.37 0.27 9.20% 18.71% 6.55% 24.19
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Outline

1. A neurosymbolic problem hidden in LLMs
2. The paradox of learning to reason from data

eng-to-endHearnng
3. Symbolic reasoning at generation time

4. Symbolic reasoning at training time

logical + probabilistic reasoning + deep learning
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This was the work of many wonderful
students/postdocs/collaborators!
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