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Demonstration: Pixel Labeling

[Agarwala et al., 2004]

640 × 480 image ≈ 300k pixels

4 possible labels per pixel

4300,000 label configurations

inference in under 30 seconds (unoptimized code)
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Conditional Markov Random Fields

Also known as:

Markov Networks, Undirected Graphical Models, MRFs,
Structured Prediction models
I make no distinction between these (in this tutorial)

X ∈ X are the observed random variables (always)

Y = (Y1, . . . ,Yn) ∈ Y are the output random variables

Yc are a subset of variables for clique c ⊆ {1, . . . , n}

Define a factored probability distribution

P(Y | X) =
1

Z (X)

∏

c

Ψc(Yc ;X)

where Z (X) =
∑

Y∈Y

∏

c Ψc(Yc ;X) is the partition function

Main difficulty is the exponential number of configurations
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Machine Learning Tasks

There are two main tasks that we are interested in when talking
about conditional Markov random fields (machine learning, more
generally):

Learning: Given data (and a problem specification), how do
we choose the structure and set the parameters of our model?

Inference: Given our model, how do we answer queries about
instances of our problem?
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MAP Inference

We will mainly be interested in maximum a posteriori (MAP)
inference

y⋆ = argmax
y∈Y

P(y | x)

= argmax
y∈Y

1

Z (X)

∏

c

Ψc(Yc ;X)

= argmax
y∈Y

log

(

1

Z (X)

∏

c

Ψc(Yc ;X)

)

= argmax
y∈Y

∑

c

log Ψc(Yc ;X)− logZ (X)

= argmax
y∈Y

∑

c

log Ψc(Yc ;X)
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Energy Functions

Define an energy function

E (Y;X) =
∑

c

ψc(Yc ;X)

where ψc (·) = − log Ψc(·)

Then

P(Y | X) =
1

Z (X)
exp {−E (Y;X)}

And
argmax

y∈Y
P(y | x) = argmin

y∈Y
E (y; x)
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1
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And
argmax
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y∈Y
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energy minimization ‘equals’ MAP inference
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Clique Potentials

A clique potential ψc(yc ; x) defines a mapping from an
assignment of the random variables to a real number

ψc : Yc × X → R

The clique potential encodes a preference for assignments to
the random variables (lower value is more preferred)

Often parameterized as

ψc(yc ; x) = wT
c φc(yc ; x)

In this tutorial is suffices to think of the clique potentials as
big lookup tables

We will also ignore the explicit conditioning on X
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Clique Potential Arity

E (y; x) =
∑

c

ψc(yc ; x)

=
∑

i∈V

ψU
i (yi ; x)

︸ ︷︷ ︸

unary

+
∑

ij∈E

ψP
ij (yi , yj ; x)

︸ ︷︷ ︸

pairwise

+
∑

c∈C

ψH
c (yc ; x).

︸ ︷︷ ︸

higher-order

x1 x2 x3

y1 y2 y3

x4 x5 x6

y4 y5 y6

x7 x8 x9

y7 y8 y9

Stephen Gould | MLSS 2015 11/92



Example Energy Functions

Semantic Segm.

Labels: L = {sky, tree, grass, . . .}
Unary: classifier, ψU

i
(yi = ℓ; x) = logP (φi (x) | ℓ)

Pairwise: contrast-dependent smoothness prior,

ψP
ij (yi , yj ; x) =







λ0 + λ1 exp

(

−
‖xi−xj‖

2

2β

)

, if yi 6= yj

0, otherwise
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Object Detection

Labels: L = [0,W ]× [0,H] × R+

Unary: part detector/filter response, ψU
i

= φi (x) ∗ wi (ℓ)
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{
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2
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Photo Montage

Labels: L = {1, 2, . . . ,K}
Unary: none!
Pairwise: seam penalty

ψP
ij (yi , yj ; x) = ‖xyi (i)− xyj (i)‖+ ‖xyi (j)− xyj (j)‖

(or edge-normalized variant)
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Graphical Representation

E (y) = ψ(y1, y2) + ψ(y2, y3) + ψ(y3, y4) + ψ(y4, y1)

Y1 Y2

Y4 Y3

� � � �

Y1 Y2 Y3 Y4

graphical model factor graph
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Graphical Representation
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Y4 Y3

� � � � � �

Y1 Y2 Y3 Y4
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Graphical Representation

E (y) = ψ(y1, y2, y3, y4)

Y1 Y2
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Graphical Representation

E (y) = ψ(y1, y2, y3, y4)

Y1 Y2

Y4 Y3

�

Y1 Y2 Y3 Y4

don’t worry too much about the graphical representation,
look at the form of the energy function
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MAP Inference / Energy Minimization

Computing the energy minimizing assignment is NP-hard

argmin
y∈Y

E (y; x) = argmax
y∈Y

P(y | x)

Some structures admit tractable exact inference algorithms

low treewidth graphs → message passing
submodular potentials → graph-cuts

Moreover, efficent approximate inference algorithms exist

message passing on general graphs
move making inference (submodular moves)
linear programming relaxations
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exact inference
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An Example: Chain Graph

E (y) = ψA(y1, y2) + ψB(y2, y3) + ψC (y3, y4)

Y1 � Y2 � Y3 � Y4

min
y

E (y) = min
y1,y2,y3,y4

ψA(y1, y2) + ψB(y2, y3) + ψC (y3, y4)

= min
y1,y2,y3

ψA(y1, y2) + ψB(y2, y3) + min
y4
ψC (y3, y4)

︸ ︷︷ ︸

mC→B(y3)

= min
y1,y2

ψA(y1, y2) + min
y3
ψB(y2, y3) +mC→B(y3)

︸ ︷︷ ︸

mB→A(y2)

= min
y1,y2

ψA(y1, y2) +mB→A(y2)
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Viterbi Decoding

E (y) = ψA(y1, y2) + ψB(y2, y3) + ψC (y3, y4)

Y1,Y2 Y2,Y3 Y3,Y4

The energy minimizing assignment can be decoded as

y⋆1 = argmin
y1

min
y2
ψA(y1, y2) +mB→A(y2)

y⋆2 = argmin
y2

ψA(y
⋆
1 , y2) +mB→A(y2)

y⋆3 = argmin
y3

ψB(y
⋆
2 , y3) +mC→B(y3)

y⋆4 = argmin
y4

ψC (y
⋆
3 , y4)
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What did this cost us?

Y1 � Y2 � · · · � Yn

For a chain of length n with L labels per variable:

Brute force enumeration would cost |Y| = Ln

Viterbi decoding (message passing) costs O(nL2)

The operation minψ(·, ·) +m(·) can be sped up for potentials
with certain structure (e.g., so called convex priors)
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Factor Operations

The preceeding inference algorithm was based on two important
operations defined on factors (clique potentials).

Factor addition creates an outut whose scope is the union of
the scope of its inputs. Each element of the output is the sum
of the corresponding (projected) elements of the inputs.

Yc = Ya ∪ Yb : ψc (yc) = ψa([yc ]a) + ψb([yc ]b)

Factor minimization creates an output where one or more
input variables are removed. Each element of the output is
the result of minimizing over values of the removed variables.

Yc ⊂ Ya : ψc(yc) = min
ya\c∈Ya\Yc

ψa({ya\c , yc})
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Factor Operations Worked Example

y1 y2 ψa

0 0 1
0 1 4
1 0 7
1 1 2

plus

y2 y3 ψb

0 0 5
0 1 -3
1 0 1
1 1 8

=

y1 y2 y3 ψc = ψa + ψb

0 0 0 1 + 5 = 6
0 0 1 1 - 3 = -2
0 1 0 4 + 1 = 5
0 1 1 4 + 8 = 12
1 0 0 7 + 5 = 12
1 0 1 7 - 3 = 4
1 1 0 2 + 1 = 3
1 1 1 2 + 8 = 10
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Clique Trees

A clique tree (or tree decomposition) for an energy function E (y)
is a pair (C,T ), where C = {C1, . . . ,CM} is a family of subsets of
{1, . . . , n} and T is a tree with nodes Cm satisfying:

Family Preserving: if Yc is a clique in E (y) then there must
exist a subset Cm ∈ C with Yc ∈ Cm;

Running Intersection Property: if Cm and Cm′ both contain
Yi then there is a unique path through T between Cm and
Cm′ such that Yi is in every node along the path.

These properties are sufficient to ensure the message passing
correctness of message passing.
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Min-Sum Message Passing on Clique Trees

messages sent in reverse then forward topological ordering
message from clique i to clique j calculated as

mi→j(Yj ∩Yi) = min
Yi\Yj

(

ψi (Yi) +
∑

k∈N (i)\{j}

mk→i (Yi ∩Yk)
)

energy minimizing assignment decoded as

y⋆i = argmin
Yi

( min marginal
︷ ︸︸ ︷

ψi (Yi) +
∑

k∈N (i)

mk→i (Yi ∩ Yk)

)

ties must be decoded consistently
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Min-Sum Message Passing on Factor Graphs (Trees)

messages from variables to factors

mi→F (yi ) =
∑

G∈N (i)\{F}

mG→i (yi )

messages from factors to variables

mF→i (yi ) = min
y′
F
,y ′

i
=yi

(

ψF (y
′
F ) +

∑

j∈N (F )\{i}

mj→F (y
′
j )
)

energy minimizing assignment decoded as

y⋆i = argmin
yi

∑

F∈N (i)

mF→i(yi )
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Message Passing on General Graphs

Message passing can be generalized to graphs with loops

If the treewidth is small we can still perform exact inference

junction tree algorithm: triangulate the graph and run
message passing on the resulting tree

Otherwise run message passing anyway

loopy belief propagtaion
different message schedules (synchronous/asynchronous,
static/dynamic)
no convergence or approximation guarantees, in general
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graph-cut based methods
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Binary MRF Example

Consider the following energy function for
two binary random variables, y1 and y2.

0
1

5

2

0
1

1

3

0
1

0 1

0 3

4 0

E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)
= 5ȳ1 + 2y1
︸ ︷︷ ︸

ψ1

+ ȳ2 + 3y2
︸ ︷︷ ︸

ψ2

+ 3ȳ1y2 + 4y1ȳ2
︸ ︷︷ ︸

ψ12

where ȳ1 = 1− y1 and ȳ2 = 1− y2.
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E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)
= 5ȳ1 + 2y1
︸ ︷︷ ︸

ψ1

+ ȳ2 + 3y2
︸ ︷︷ ︸

ψ2

+ 3ȳ1y2 + 4y1ȳ2
︸ ︷︷ ︸

ψ12

where ȳ1 = 1− y1 and ȳ2 = 1− y2.

Graphical Model

y1 y2

Probability Table

y1 y2 E P

0 0 6 0.244

0 1 11 0.002

1 0 7 0.090

1 1 5 0.664
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Pseudo-boolean Functions [Boros and Hammer, 2001]

Pseudo-boolean Function

A mapping f : {0, 1}n → R is called a pseudo-Boolean function.

Pseudo-boolean functions can be uniquely represented as
multi-linear polynomials, e.g., f (y1, y2) = 6+ y1+5y2− 7y1y2.

Pseudo-boolean functions can also be represented in posiform,
e.g., f (y1, y2) = 2y1 + 5ȳ1 + 3y2 + ȳ2 + 3ȳ1y2 + 4y1ȳ2. This
representation is not unique.

A binary pairwise Markov random field (MRF) is just a
quadratic pseudo-Boolean function.
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Submodular Functions

Submodularity

Let V be a set. A set function f : 2V → R is called submodular if
f (X ) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y ) for all subsets X ,Y ⊆ V.
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Submodular Binary Pairwise MRFs

Submodularity

A pseudo-Boolean function f : {0, 1}n → R is called submodular if
f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) for all vectors x, y ∈ {0, 1}n .

Submodularity checks for pairwise binary MRFs:

polynomial form (of pseudo-boolean function) has negative
coefficients on all bi-linear terms;

posiform has pairwise terms of the form uv̄ ;

all pairwise potentials satisfy

ψP
ij (0, 1) + ψP

ij (1, 0) ≥ ψ
P
ij (1, 1) + ψP

ij (0, 0)
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Submodularity of Binary Pairwise Terms

To see the equivalence of the last two conditions consider the
following pairwise potential

0
1

0 1

α β

γ δ

α +
0 0

γ − α γ − α
+

0 δ − γ

0 δ − γ
+

0 β + γ − α− δ

0 0

E (y1, y2) = α+ (γ − α)y1 + (δ − γ)y2 + (β + γ − α− δ)ȳ1y2

[Kolmogorov and Zabih, 2004]

Stephen Gould | MLSS 2015 32/92



Submodularity of Binary Pairwise Terms

To see the equivalence of the last two conditions consider the
following pairwise potential

0
1

0 1

α β

γ δ

α +
0 0

γ − α γ − α
+

0 δ − γ

0 δ − γ
+

0 β + γ − α− δ

0 0

E (y1, y2) = α+ (γ − α)y1 + (δ − γ)y2 + (β + γ − α− δ)ȳ1y2
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Minimum-cut Problem

Graph Cut

Let G = 〈V, E〉 be a capacitated digraph with two distinguished
vertices s and t. An st-cut is a partitioning of V into two disjoint
sets S and T such that s ∈ S and t ∈ T . The cost of the cut is
the sum of edge capacities for all edges going from S to T .

s

u v

t
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Quadratic Pseudo-boolean Optimization

Main idea:

construct a graph such that every st-cut corresponds to a
joint assignment to the variables y

the cost of the cut should be equal to the energy of the
assignment, E (y; x).∗

the minimum-cut then corresponds to the the minimum
energy assignment, y⋆ = argminy E (y; x).

∗Requires non-negative edge weights.
Stephen Gould | MLSS 2015 34/92
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Example st-Graph Construction for Binary MRF

E (y1, y2) = ψ1(y1) + ψ2(y2) + ψij(y1, y2)

= 2y1 + 5ȳ1 + 3y2 + ȳ2 + 3ȳ1y2 + 4y1ȳ2

s

y1 y2

t

1

0
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An Example st-Cut

E (0, 1) = ψ1(0) + ψ2(1) + ψij(0, 1)

= 2y1 + 5ȳ1 + 3y2 + ȳ2 + 3ȳ1y2 + 4y1ȳ2

s

y1 y2

t

5

2

1

3
3

4

1

0
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Another st-Cut

E (1, 1) = ψ1(1) + ψ2(1) + ψij(1, 1)

= 2y1 + 5ȳ1 + 3y2 + ȳ2 + 3ȳ1y2 + 4y1ȳ2

s

y1 y2

t

5

2

1

3
3

4

1

0
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Invalid st-Cut

This is not a valid cut, since it does not correspond to a
partitioning of the nodes into two sets—one containing s and one
containing t.

s

y1 y2

t

5

2

1

3
3

4

1

0
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Alternative st-Graph Construction

Sometimes you will see the roles of s and t switched.

s

y1 y2

t

5

2

1

3
3

4

1

0

s

y1 y2

t

2

5

3

1

4

3

0

1

These graphs represent the same energy function.
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Big Picture: Where are we?

We can now formulate inference in a submodular binary
pairwise MRF as a minimum-cut problem.

{0, 1}n → R

How do we solve the minimum-cut problem?
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Max-flow/Min-cut Theorem

Max-flow/Min-cut Theorem [Fulkerson, 1956]

The maximum flow f from vertex s to vertex t is equal to the
minimum cost st-cut.

s

u v

t
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Maximum Flow Example

s

a b

c d

t

5 3

3

5 2

1

3 5
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Maximum Flow Example (Augmenting Path)

s

a b

c d

t

0/5 0/3
0/3

0/5 0/2

0/1

0/3 0/5

flow

0

notation

u v
f /c

edge with capacity c ,
and current flow f .
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Maximum Flow Example (Augmenting Path)
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Maximum Flow Example (Augmenting Path)
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Maximum Flow Example (Augmenting Path)
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Augmenting Path Algorithm Summary

while an augmenting path exists (directed path with positive
capacity between the source and sink)

send flow along the augmenting path updating edge
capacities to produce a residual graph

put all nodes reachable from the source in S

put all nodes that can reach the sink in T
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Maximum Flow Example (Push-Relabel)
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Push-Relabel Algorithm Summary

Initialize: set height of s to number of nodes in the graph;
set excess for all nodes to zero.

Push: for a node with excess capacity, push as much flow as
possible onto neighbours with lower height

Relabel: for a node with excess capacity and no neighbours
with lower height, increase its height to one more than its
lowest neighbour (with residual capacity).
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Comparison of Maximum Flow Algorithms

Current state-of-the-art algorithm for exact minimization of general
submodular pseudo-Boolean functions is O(n5T + n6), where T is
the time taken to evaluate the function [Orlin, 2009].

†assumes integer capacities
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Comparison of Maximum Flow Algorithms

Current state-of-the-art algorithm for exact minimization of general
submodular pseudo-Boolean functions is O(n5T + n6), where T is
the time taken to evaluate the function [Orlin, 2009].

Algorithm Complexity

Ford-Fulkerson O(E max f )†

Edmonds-Karp (BFS) O(VE 2)

Push-relabel O(V 3)

Boykov-Kolmogorov O(V 2E max f )
(∼ O(V ) in practice)

†assumes integer capacities
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Maximum Flow (Boykov-Kolmogorov, PAMI 2004)
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Maximum Flow (Boykov-Kolmogorov, PAMI 2004)

growth stage

search trees from s

and t grow until
they touch
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Maximum Flow (Boykov-Kolmogorov, PAMI 2004)

growth stage

search trees from s

and t grow until
they touch

augmentation stage

the path found is
augmented; trees
break into forests

adoption stage

trees are restored
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Reparameterization of Energy Functions

E (y1, y2) = 2y1+5ȳ1+3y2+ȳ2

+ 3ȳ1y2 + 4y1ȳ2

s

y1 y2

t

5

2

1

3
3

4

1

0

E (y1, y2) = 6ȳ1+5y2+7y1ȳ2

s

y1 y2

t

6

5

7

1

0
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Big Picture: Where are we now?

We can perform inference in submodular binary pairwise
Markov random fields exactly.

{0, 1}n → R

What about...

non-submodular binary pairwise Markov random fields?

multi-label Markov random fields?

higher-order Markov random fields?
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Non-submodular Binary Pairwise MRFs

Non-submodular binary pairwise MRFs have potentials that do not
satisfy ψP

ij (0, 1) + ψP
ij (1, 0) ≥ ψ

P
ij (1, 1) + ψP

ij (0, 0).

They are often handled in one of the following ways:

approximate the energy function by one that is submodular
(i.e., project onto the space of submodular functions);

solve a relaxation of the problem using QPBO (Rother et al.,
2007) or dual-decomposition (Komodakis et al., 2007).
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Approximating Non-submodular Binary Pairwise MRFs

Consider the non-submodular potential
A B

C D
with

A+ D > B + C .

We can project onto a submodular potential by modifying the
coefficients as follows:

∆ = A+ D − C − B

A← A−
∆

3

C ← C +
∆

3

B ← B +
∆

3
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QPBO (Roof Duality) [Rother et al., 2007]

Consider the energy function

E (y) =
∑

i∈V

ψU
i (yi ) +

∑

ij∈E

ψP
ij (yi , yj )

︸ ︷︷ ︸

submodular

+
∑

ij∈E

ψ̃P
ij (yi , yj)

︸ ︷︷ ︸

non-submodular

We can introduce duplicate variables ȳi into the energy function,
and write

E ′(y, ȳ) =
∑

i∈V

ψU
i (yi) + ψU

i (1− ȳi )

2

+
∑

ij∈E

ψP
ij (yi , yj) + ψP

ij (1− ȳi , 1− ȳj)

2

+
∑

ij∈E

ψ̃P
ij (yi , 1− ȳj) + ψ̃P

ij (1− ȳi , yj)

2
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ij∈E

ψP
ij (yi , yj) + ψP

ij (1− ȳi , 1− ȳj)

2

+
∑

ij∈E

ψ̃P
ij (yi , 1− ȳj) + ψ̃P

ij (1− ȳi , yj)

2
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QPBO (Roof Duality)

E ′(y, ȳ) =
∑

i∈V

1
2
ψU
i (yi ) +

1
2
ψU
i (1− ȳi)

+
∑

ij∈E

1
2
ψP
ij (yi , yj) +

1
2
ψP
ij (1− ȳi , 1− ȳj)

+
∑

ij∈E

1
2
ψ̃P
ij (yi , 1− ȳj) + 1

2
ψ̃P
ij (1− ȳi , yj)

Observations

if yi = 1− ȳi for all i , then E (y) = E ′(y, ȳ).
E ′(y, ȳ) is submodular.

Ignore the constraint on ȳi and solve anyway. Result satisfies
partial optimality: if ȳi = 1− yi then yi is the optimal label.
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Multi-label Markov Random Fields

The quadratic pseudo-Boolean optimization techniques described
above cannot be applied directly to multi-label MRFs.

However...

...for certain MRFs we can transform the multi-label problem
into a binary one exactly.

...we can project the multi-label problem onto a series of
binary problems in a so-called move-making algorithm.
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The “Battleship” Transform [Ishikawa, 2003]

If the multi-label MRFs has pairwise potentials that are convex
functions over the label differences, i.e., ψP

ij (yi , yj ) = g(|yi − yj |)
where g(·) is convex, then we can transform the energy function
into an equivalent binary one.

y = 1⇔ z = (0, 0, 0)

y = 2⇔ z = (1, 0, 0)

y = 3⇔ z = (1, 1, 0)

y = 4⇔ z = (1, 1, 1)

s

1 1

2 2

3 3

t

∞

∞

∞

∞
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Move-making Inference

Idea:

initialize yprev to any valid assignment

restrict the label-space of each variable yi from L to Yi ⊆ L
(with y

prev

i ∈ Yi)

transform E : Ln → R to Ê : Y1 × · · · × Yn → R

find the optimal assignment ŷ for Ê and repeat

each move results in an assignment with lower energy
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Iterated Conditional Modes [Besag, 1986]

Reduce multi-variate inference to solving a series of
univariate inference problems.

ICM move

For one of the variables yi , set Yi = L. Set Yj = {y
prev

j } for all
j 6= i (i.e., hold all other variables fixed).

can be used for arbitrary energy functions
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Alpha Expansion and Alpha-Beta Swap [Boykov et al., 2001]

Reduce multi-label inference to solving a series of binary
(submodular) inference problems.

α-expansion move

Choose some α ∈ L. Then for all variables, set Yi = {α, y
prev

i }.

ψP
ij (·, ·) must be metric for the resulting move to be submodular

αβ-swap move

Choose two labels α, β ∈ L. Then for each variable yi such that
y
prev

i ∈ {α, β}, set Yi = {α, β}. Otherwise set Yi = {y
prev

i }.

ψP
ij (·, ·) must be semi-metric
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Alpha Expansion Potential Construction

ynexti =

{

y
prev
i if ti = 1

α if ti = 0

E (t) =
∑

i

ψi (α)t̄i + ψi (y
prev
i )ti +

∑

ij

ψij(α,α)t̄i t̄j

+ ψij(α, y
prev
j )t̄i tj + ψij(y

prev
i , α)ti t̄j + ψij (y

prev
i , yprevj )ti tj
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A Note on Higher-Order Models

Order reduction. [Ishikawa, 2009]

Replace −
∏n

i=1 yi with z̄ +
n∑

i=1

ȳiz

︸ ︷︷ ︸

*

− 1.

Special forms. E.g., lower-linear envelopes [Gould, 2011]

ψH
c (yc) , min

k

{

ak
∑

i∈c

yi + bk

}

= min
k
{fk(yc)}

Assume sorted on ak . Then replace above with

f1(yc) +
∑

k

zk (fk+1(yc)− fk(yc))

︸ ︷︷ ︸

* submodular binary pairwise
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ȳiz

︸ ︷︷ ︸

*

− 1.

Special forms. E.g., lower-linear envelopes [Gould, 2011]

ψH
c (yc) , min

k

{

ak
∑

i∈c

yi + bk

}

= min
k
{fk(yc)}

Assume sorted on ak . Then replace above with

f1(yc) +
∑

k

zk (fk+1(yc)− fk(yc))

︸ ︷︷ ︸

* submodular binary pairwise

Stephen Gould | MLSS 2015 67/92



relaxations and dual decomposition
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Mathematical Programming Formulation

Let θc,yc , ψc (yc) and let µc,yc ,

{

1, if Yc = yc

0, otherwise

argmin
y∈Y

∑

c

ψc(yc)

m

minimize (over µ) θTµ

subject to µc,yc ∈ {0, 1}, ∀c , yc ∈ Yc∑

yc
µc,yc = 1, ∀c

∑

yc\yi
µc,yc = µi ,yi , ∀i ∈ c , yi ∈ Yi
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Binary Integer Program: Example

Consider energy function E (y1, y2) = ψ1(y1) +ψ12(y1, y2) + ψ2(y2)
for binary variables y1 and y2.

Y1 Y1,Y2 Y2

θ =















ψ1(0)
ψ1(1)
ψ2(0)
ψ2(1)

ψ12(0, 0)
ψ12(1, 0)
ψ12(0, 1)
ψ12(1, 1)















µ =















µ1,0
µ1,1
µ2,0
µ2,1
µ12,00
µ12,10
µ12,01
µ12,11















s.t.







µ1,0 + µ1,1 = 1
µ2,0 + µ2,1 = 1

µ12,00 + µ12,10
+ µ12,01 + µ12,11 = 1
µ12,00 + µ12,01 = µ1,0
µ12,10 + µ12,11 = µ1,1
µ12,00 + µ12,10 = µ2,0
µ12,01 + µ12,11 = µ2,1
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Binary Integer Program: Example

Let y1 = 1 and y2 = 0. Then

µ =















µ1,0
µ1,1
µ2,0
µ2,1
µ12,00
µ12,10
µ12,01
µ12,11















=















0
1
1
0
0
1
0
0















· θ =















ψ1(0)
ψ1(1)
ψ2(0)
ψ2(1)

ψ12(0, 0)
ψ12(1, 0)
ψ12(0, 1)
ψ12(1, 1)















So θTµ = ψ1(1) + ψ2(0) + ψ12(1, 0).
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Local Marginal Polytope

M =

{

µ ≥ 0

∣
∣
∣
∣
∣

∑

yi
µi ,yi = 1, ∀i

∑

yc\yi
µc,yc = µi ,yi , ∀i ∈ c , yi ∈ Yi

}

M is tight if factor graph is a tree

for cyclic graphsM may contain fractional vertices

for submodular energies, factional solutions are never optimal
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Linear Programming (LP) Relaxation

Binary integer program

minimize (over µ) θTµ

subject to µc,yc ∈ {0, 1}
µ ∈ M

Linear program

minimize (over µ) θTµ

subject to µc,yc ∈ [0, 1]
µ ∈ M

Solution by standard LP solvers typically infeasible due to
large number of variables and constraints

More easily solved via coordinate ascent of the dual

Solutions need to be rounded or decoded
Stephen Gould | MLSS 2015 73/92



Linear Programming (LP) Relaxation

Binary integer program

minimize (over µ) θTµ

subject to µc,yc ∈ {0, 1}
µ ∈ M

Linear program

minimize (over µ) θTµ

subject to µc,yc ∈ [0, 1]
µ ∈ M

Solution by standard LP solvers typically infeasible due to
large number of variables and constraints

More easily solved via coordinate ascent of the dual

Solutions need to be rounded or decoded
Stephen Gould | MLSS 2015 73/92



Linear Programming (LP) Relaxation

Binary integer program

minimize (over µ) θTµ

subject to µc,yc ∈ {0, 1}
µ ∈ M

Linear program

minimize (over µ) θTµ

subject to µc,yc ∈ [0, 1]
µ ∈ M

Solution by standard LP solvers typically infeasible due to
large number of variables and constraints

More easily solved via coordinate ascent of the dual

Solutions need to be rounded or decoded
Stephen Gould | MLSS 2015 73/92



Linear Programming (LP) Relaxation

Binary integer program

minimize (over µ) θTµ

subject to µc,yc ∈ {0, 1}
µ ∈ M

Linear program

minimize (over µ) θTµ

subject to µc,yc ∈ [0, 1]
µ ∈ M

Solution by standard LP solvers typically infeasible due to
large number of variables and constraints

More easily solved via coordinate ascent of the dual

Solutions need to be rounded or decoded
Stephen Gould | MLSS 2015 73/92



Linear Programming (LP) Relaxation

Binary integer program

minimize (over µ) θTµ

subject to µc,yc ∈ {0, 1}
µ ∈ M

Linear program

minimize (over µ) θTµ

subject to µc,yc ∈ [0, 1]
µ ∈ M

Solution by standard LP solvers typically infeasible due to
large number of variables and constraints

More easily solved via coordinate ascent of the dual

Solutions need to be rounded or decoded
Stephen Gould | MLSS 2015 73/92



Dual Decomposition: Rewriting the Primal

minimize (over µ)
∑

c θ
T
c µc

subject to µ ∈ M

m (pad θc)

minimize (over µ)
∑

c θ̃
T

c µ

subject to µ ∈M

m (introduce copies of µ)

minimize (over µ, {µc})
∑

c θ̃
T

c µ
c

subject to µc = µ

µ ∈ M
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Dual Decomposition: Forming the Dual

Primal problem

minimize (over µ, {µc})
∑

c θ̃
T

c µ
c

subject to µc = µ

µ ∈ M

Introducing dual variables λc we have Lagrangian

L(µ, {µc}, {λc}) =
∑

c

θ̃
T

c µ
c +

∑

c

λT
c (µc − µ)

=
∑

c

(θ̃c + λc)
Tµc −

∑

c

λT
c µ
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Dual Decomposition

maximize
{λc}

min
{µc}

∑

c

(θ̃c + λc)
Tµc

subject to
∑

c λc = 0

m

maximize
{λc}

∑

c

min
µc

(θ̃c + λc)
Tµc

subject to
∑

c λc = 0

m

maximize
{λc}

∑

c

min
yc

ψc(yc) + λc(yc)

subject to
∑

c λc = 0
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Dual Lower Bound

E (y) =
∑

c

ψc (yc)

=
∑

c

ψc (yc) + λc(yc)

(

iff
∑

c

λc(yc) = 0

)

min
y

E (y) ≥
∑

c

min
yc

ψc(yc) + λc(yc)

min
y

E (y) ≥ max
{λc}:

∑

c λc=0

∑

c

min
yc

ψc(yc) + λc(yc)
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Subgradients

Subgradient

A subgradient of a function f at x is any vector g satisfying

f (y) ≥ f (x) + gT (y − x) for all y
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Subgradient Method

The basic subgradient method is a algorithm for minimizing a
nondifferentiable convex function f : Rn → R.

x(k+1) = x(k) − αkg
(k)

x(k) is the k-th iterate

g (k) is any subgradient of f at x(k)

αk > 0 is the k-th step size

It is possible that −g (k) is not a descent direction for f at x(k), so
we keep track of the best point found so far

f
(k)
best = min

{

f
(k−1)
best , f (x(k))

}
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Step Size Rules

Step sizes are chosen ahead of time (unlike line search is ordinary
gradient methods). A few common step size schedules are:

constant step size: αk = α

constant step length: αk = γ

‖g (k)‖2

square summable but not summable:
∑∞

k=1 α
2
k <∞,

∑∞
k=1 αk =∞

nonsummable diminishing:

lim
k→∞

αk = 0,
∑∞

k=1 αk =∞

nonsummable diminishing step lengths: αk = γk
‖g (k)‖2

lim
k→∞

γk = 0,
∑∞

k=1 γk =∞
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Convergence Results

For constant step size and constant step length, the subgradient
algorithm will converge to within some range of the optimal value,

lim
k→∞

f
(k)
best < f ⋆ + ǫ

For the diminishing step size and step length rules the algorithm
converges to the optimal value,

lim
k→∞

f
(k)
best = f ⋆

but may take a very long time to converge.
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Optimal Step Size for Known f
⋆

Assume we know f ⋆ (we just don’t know x⋆). Then

αk =
f (x(k))− f ⋆

‖g (k)‖22

is an optimal step size in some sense. Called the Polyak step size.

A good approximation when f ⋆ is not known (but non-negative) is

αk =
f (x(k))− γ · f

(k−1)
best

‖g (k)‖22

where 0 < γ < 1.
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Projected Subgradient Method

One extension of the subgradient method is the projected
subgradient method which solves problems of the form

minimize f (x)
subject to x ∈ C

Here the updates are

x(k+1) = PC

(

x(k) − αkg
(k)
)

The projected subgradient method has similar convergence
guarantees to the subgradient method.
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Supergradient of mini{a
T
i x + bi}

Consider f (x) = mini{a
T
i x+ bi} and let I (x) = argmini{a

T
i x + bi}.

Then for any i ∈ I (x), g = ai is a supergradient of f at x.

f (x) + gT (z− x) = f (x)− aTi (z− x) i ∈ I (x)

= f (x)− aTi x− bi + aTi z+ bi

= aTi z+ bi

≥ f (z)
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Dual Decomposition Inference [Komodakis et al., 2010]

initialize λc = 0

loop
slaves solve minyc ψc(yc) + λc(yc) (to get µ⋆

c )
master updates λc as

λc ← λc + α

(

µ⋆

c −
1

C

∑

c′

µ⋆

c′

)

until convergence
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parameter learning
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Max-Margin Learning

Assume we have an energy function which is linear in its
parameters, Ew(y; x) = wTφ(y; x).

Let D = {(yt , xt)}
T
t=1 be our set of training examples.

Our goal in learning is to find a parameter setting x⋆ so that
for each training example Ew(yt ; xt) is lower than the energy
of any other assignment Ew(y; xt) by some margin.

We formalise the notion of margin by defining a loss function
∆(yt , y), which is zero when y = yt and positive otherwise.

For simplicity let us assume we only have a single training
example (y†, x†).
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Max-Margin Quadratic Program

Learning goal: Find w such that Ew(y)− Ew(y
†) ≥ ∆(y†, y).

Relaxed and regularized learning goal:

minimize

regularization
︷ ︸︸ ︷

1

2
‖w‖22 +

slack
︷︸︸︷

Cξ

subject to wTφ(y)− wTφ(y†)
︸ ︷︷ ︸

energy difference

≥ ∆(y, y†)− ξ
︸ ︷︷ ︸

rescaled margin

,

very large
︷ ︸︸ ︷

∀y ∈ Y

ξ ≥ 0
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Re-writing Margin Constraints

Recognize that wTφ(y)− wTφ(y†) ≥ ∆
(
y, y†

)
− ξ for all y so, in

particular, it must hold for the worst case y.

minimize 1
2‖w‖

2
2 + Cξ

subject to ξ ≥ max
y∈Y

{

∆(y, y†)− wTφ(y)
}

︸ ︷︷ ︸

loss-augmented inference (for given w)

+wTφ(y†)

ξ ≥ 0

As long as ∆(y, yt) decomposes over cliques of E we can use
inference to find the most violated constraint (for a fixed w).
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Cutting-Plane Max-Margin Learning

Start with active set A = {}.

Solve for w and ξ

minimize 1
2‖w‖

2
2 + Cξ

subject to wTφ(y)− wTφ(y†) ≥ ∆(y, y†)− ξ, ∀y ∈ A
ξ ≥ 0

Find the most violated constraint,

y⋆ ∈ argmin
y∈Y

{

wTφ(y)−∆(y, y†)
}

Add y⋆ to active set A and repeat.
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Subgradient Descent Max-Margin Learning

Recognize that ξ⋆ = maxy∈Y
{
∆(y, y†)− wTφ(y)

}
. So rewrite the

max-margin QP as the non-smooth optimization problem

minimize
1

2
‖w‖22 + C max

y∈Y

{

∆(y, y†)− wTφ(y)
}

︸ ︷︷ ︸

family of linear functions

which we can solve by the subgradient method.
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Tutorial Summary

Structured prediction models, or energy functions, are
pervasive in computer vision (and other fields).

Often we are interested in finding the energy minimizing
assignment.

Exact and approximate inference algorithms exploit structure:

message passing for low treewidth graphs
graph-cuts for submodular energies
dual decomposition for decomposeable energies

Parameter learning within a max-margin setting.

Still very active research in inference and learning.

Any Questions?
stephen.gould@anu.edu.au
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